
538 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 18, NO. 6, JUNE 1999

Fast Implementations of Algebraic Methods
for Three-Dimensional Reconstruction

from Cone-Beam Data
Klaus Mueller,* Member, IEEE, Roni Yagel,Member, IEEE, and John J. Wheller

Abstract—The prime motivation of this work is to devise
techniques that make the algebraic reconstruction technique
(ART) and related methods more efficient for routine clinical use,
while not compromising their accuracy. Since most of the com-
putational effort of ART is spent for projection/backprojection
operations, we first seek to optimize the projection algorithm.
Existing projection algorithms are surveyed and it is found
that these algorithms either lack accuracy or speed, or are not
suitable for cone-beam reconstruction. We hence devise a new
and more accurate extension to the splatting algorithm, a well-
known voxel-driven projection method. We also describe a new
three-dimensional (3-D) ray-driven projector that is considerably
faster than the voxel-driven projector and, at the same time, more
accurate and perfectly suited for the demands of cone beam. We
then devise caching schemes for both ART and simultaneous ART
(SART), which minimize the number of redundant computations
for projection and backprojection and, at the same time, are
very memory conscious. We find that with caching, the cost
for an ART projection/backprojection operation can be reduced
to the equivalent cost of 1.12 projections. We also find that
SART, due to its image-based volume correction scheme, is
considerably harder to accelerate with caching. Implementations
of the algorithms yield runtime ratios TSART=TART between 1.5
and 1.15, depending on the amount of caching used.

Index Terms—Algebraic reconstruction technique (ART),
computed tomography (CT), cone-beam reconstruction,
three-dimensional reconstruction.

I. INTRODUCTION

I N this paper we explore several techniques that are geared
toward making algebraic reconstruction methods, such as

the algebraic reconstruction technique (ART) or simultaneous
ART (SART), more efficient, without making any compro-
mises in terms of accuracy. Although our discussion is mostly
focussed on the three-dimensional (3-D) cone-beam case,
many of the presented principles are also valid in the two-
dimensional (2-D) fan-beam and in the 2-D and 3-D parallel-
beam case.

Manuscript received February 6, 1998; revised February 22, 1999. This
work supported in part by General Electric under CCH Grant 950925 and
OSU Grant 732025. The Associate Editor responsible for coordinating the
review of this paper and recommending its publication was R. Huesman.
Asterisk indicates corresponding author.

*K. Mueller is with the Department of Computer and Information Science
and the Department of Pediatrics, The Ohio State University, Columbus, OH
43210 USA.

R. Yagel is with the Department of Computer and Information Science, The
Ohio State University, Columbus, OH 43210 USA.

J. J. Wheller is with the Department of Pediatrics, The Ohio State Univer-
sity, Columbus, OH 43210 USA.

Publisher Item Identifier S 0278-0062(99)06614-8.

This paper is a continuation of a previous paper [13]
that dealt with accuracy issues for cone-beam reconstruction.
Please refer to that paper for background and references
on ART and related methods. ART is an iterative method,
reconstructing an object by a sequence of reconstruction grid
projections and backprojections. Hence, if one wants to make
ART faster and more competitive with the more common
filtered backprojection (FBP) methods, one must keep the
number of iterations small and, at the same time, reduce the
overall cost for the projection–backprojection operations.

Several groups of researchers have worked on reducing
the number of iterations for ART. An important aspect in
achieving this goal is the order in which the projections are
accessed in the iterative reconstruction procedure. In a recent
study, Mueller [14] contrasted various previously published
projection access schemes with a new scheme, the weighted
distance scheme. It was found that for low-contrast objects,
such as the Shepp–Logan brain phantom [17], usually three to
four iterations are sufficient for good reconstruction quality.
The choice of the relaxation coefficientis another important
parameter, which was studied by Herman and Meyer [7].
The impact of was also examined by us in [13], along
with the effects of various other ART parameters, such as
grid initialization and the correction algorithm. There, it was
confirmed that within three iterations, a reconstruction of a
quality close to the maximum can be obtained.

Since most of the computational expense of ART is spent
for projection and backprojection, we must improve the speed
of ART’s projection engine. It turns out that the computational
cost of this projection engine is greatly affected by the
perspective cone-beam projection. In the following sections,
we will give a detailed description of two new highly accurate
projection algorithms, one voxel-driven and one-ray-driven,
and analyze their efficiency in both the parallel-beam and
cone-beam setting. Although other voxel-driven projectors
[19] and ray-driven projectors [9], [10] have been described,
these algorithms are only efficient for the parallel-beam case
or do not allow the stretched interpolation kernels prescribed
in [13] as necessary for accurate cone-beam reconstruction.
Furthermore, our voxel-driven perspective projection algo-
rithm is considerably more accurate than the one described by
Westover [19]. Our ray-driven algorithm, on the other hand,
is a 3-D extension of the 2-D algorithm proposed by Hanson
and Wecksung [6]. However, a fast projection algorithm is not
enough. We must reduce the actual complexity of the overall
projection–backprojection framework. Ideally, we only want

0278–0062/99$10.00 1999 IEEE

MUELLER et al.: FAST IMPLEMENTATION OF ALGEBRAIC METHODS 539

to do the computational equivalent of one projection operation
per image instead of one projection and one backprojection.
This can only be achieved by reusing some of the earlier
computed results for later calculations, which is a technique
termed caching. Our paper will give caching schemes for both
ART and SART which will bring the computational cost of
these popular algebraic methods closer to the theoretical cost
of FBP methods.

The outline of this paper is as follows. Section II gives some
background on previous ART implementations. Section III
then describes a voxel-driven projection algorithm for cone
beam that is more accurate for perspective projection than
existing ones, but does not improve the state of the art in
terms of speed. Section IV gives a new ray-driven projection
algorithm for cone-beam ART that is both accurate and effi-
cient. Section V details various caching schemes to speed ART
and SART. Finally, Section VI puts everything together and
presents a variety of results obtained with our ART testbed
software.

II. PRELIMINARIES AND PREVIOUS WORK

Please refer to our paper [13] for notations and relevant
background on algebraic methods. There we have derived that
the number of necessary projections for a single source rotating
in a circular orbit is where is length of
the cubic reconstruction grid. The single-source, circular orbit
configuration gives rise to a spherical reconstruction region.
The twin-cone source arrangement described by Schlindwein
[16] (see also the conclusions of [13]), on the other hand, re-
constructs a cylindrical region of interest. Here, the necessary
number of projections is

(1)

(half-) projections per detector to reconstruct the cylindrical
reconstruction region sandwiched between the two circular
orbits.

This number , just given, ensures that the ART equa-
tion system is determined. However, ART can also be applied
without change if is smaller or greater than this number. In
this context, an interesting observation was made by Guan
and Gordon [5] for the 2-D case. They showed that, in
theory, the number of required projections in ART is about
half the number of the projections required for FBP. More
precisely . This happens because the Fourier
Slice Theorem arranges the projections onto a polar grid in
frequency space and, in order to provide adequate sampling in
the periphery, one must oversample in the interior frequency
regions. This may be part of the reason for the strength of
ART in the limited projection data case.

Algebraic methods typically represent the volume grid as
a collection of spherical interpolation kernels, placed at the
voxel positions and scaled by the voxel values. This ensemble
of scaled voxel kernels then makes up a continuous represen-
tation of the volume. Since each voxel kernel projects and
backprojects in the same way (as a so-called footprint), many
authors [6], [9], [10], [19] precompute this kernel projection
and store it in a lookup table. (An entry in the footprint table is

thus due to the integral of the ray traversing the voxel kernel
at the respective table position.) Then, all one has to do is
scale the footprint by the voxel value (in grid projection)
or the ART correction factors (in grid backprojection). Two
approaches to perform this projection have been proposed.
One way is the voxel-based approach in which one maps all
voxel footprints to the screen, scaled by the voxel value, where
they accumulate into a projection image. This is done in the
splatting approach for volume rendering, devised by Westover
[19]. In backprojection, the voxel footprints are again mapped
to the screen, but this time they pick up (corrective) energy,
instead of emitting it. In the second approach, one can use
rays to intersect the footprint tables in volume space, again
scale the indexed value by the voxel value, and accumulate the
density integrals (or distribute the correction factors) ray by
ray. Since this is inherently also a splatting approach, we term
this method ray-driven splatting, while the voxel-based method
will be referred to as voxel-driven splatting. Since the voxel-
driven approach produces a whole image or at least an image
region at a time, it only makes sense to use it in conjunction
with an image-based correction algorithm, such as SART. The
ray-driven approach, on the other hand, processes one pixel at
a time and can thus be used with either the pixel-based ART
or the image-based SART.

The preintegrated footprint method has several advantages.

1) The ray integrals are calculated very accurately, since
each footprint table entry can be integrated analytically
or with good quadrature. Thus, the accumulation of the
footprints on the image plane is very close to an analytic
integration of the volume.

2) The complexity for interpolation is reduced from
in volume space (as required for raycasting) to
in image space. Fast incremental algorithms can then
be used to index the footprint tables in volume space
(in ray-driven splatting) or image space (in voxel-driven
splatting).

3) Due to these fast projection algorithms we can afford
interpolation kernels that are larger but have supe-
rior, sinc-like, frequency characteristics, such as the
Bessel–Kaiser function devised by Lewitt [9].

Before we describe the existing projection algorithms in
further detail, let us recall (from [13]) that for accurate cone-
beam reconstruction it is necessary to stretch and scale the
interpolation kernels, depending on their distance from the
source to prevent aliasing in projection and backprojection.
This stretching occurs along two orthogonal axes, perpendic-
ular to the direction of the ray(s) traversing the interpolation
kernel. In [13], the stretching of the 3-D interpolation function
was approximated by a stretching of the 2-D footprint (the
Appendix justifies this approximation). Let us now clarify
these concepts in more detail. In 3-D, the rays emanate from
the source along a curved rayfront of equal grid sampling rate
in a raster composed of two orthogonal sets of sheets (see also
Fig. 3). Each 3-D ray is part of one sheet in each set and is
defined by the intersection of these two sheets. Constrained
by the divergent cone-beam geometry, the distance of two
adjacent sheets within a set increases with distance from the

540 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 18, NO. 6, JUNE 1999

source. This means that, depending on the location of a kernel
with respect to each sheet set, its 2-D footprint must undergo
different distortions in the two principal coordinate axes. Thus,
our projection algorithm must be able to stretch a footprint by
different amounts in the two-sheet raster directions.

While the concept of representing a volume by a field of
interpolation kernels and preintegrating a 3-D kernel into a 2-D
footprint is common to all existing splatting implementations,
the strategy chosen to map the footprint table onto the screen
(in the voxel-driven approach) or to map the rays into the
footprint table (in the ray-driven approach) varies. The map-
ping task is facilitated since we only use spherically symmetric
kernels and cubic grids which yield a circular footprint. For
voxel-driven splatting, both Westover [19] and Matej [10]
simply map the circular footprint to the projection screen
for one voxel and use incremental shifts for the remaining
voxels at that projection angle. This, however, is only correct
for parallel projections, since in perspective projection the
elliptical shape and size of the footprint is different for
every voxel. (More detail is given in Section III.) In the
case of ray-driven splatting we again assume a spherically
symmetric interpolation kernel. Here, the approaches are more
diverse. For instance, Lewitt [9] computes the magnitude
of the crossproduct of the ray unit vector with the vector
from a point on the ray to the voxel center. This yields
the perpendicular distance of the ray to the voxel center
which can be used to index a one-dimensional (1-D) footprint
table storing the radially symmetric projection of the 3-D
kernel. An efficient incremental algorithm can then be used
to find all other voxel distances along the ray. This approach,
however, is not appropriate for cone-beam reconstruction, as
it does not allow independent footprint stretching in the two
ray sheet directions, as is necessary for accurate cone-beam
reconstruction. In another approach, Matej and Lewitt [11]
decompose the voxel grid into a set of 2-D slices. Here, the
orientation of the slices is that orientation most parallel to
the image plane. Recall that a footprint is the preintegrated
kernel function in the direction of a ray, thus, a footprint is
not necessarily planar with the slice planes. The authors project
this footprint function onto a slice plane which results in an
elliptical footprint. Since in parallel projection all rays for a
given projection angle have the same angle with the volume
slices, this remapped elliptical footprint can be used for all
slices and all rays that are spawned for a given projection
orientation. Simple incremental algorithms can be designed to
trace a ray across the volume slices, computing all indexes
into the elliptical footprints that are intersected. However, for
perspective projection, every ray has a different orientation,
necessitating a footprint remapping for every ray, which is
inefficient both to compute on the fly and to store. A more
appropriate approach was outlined for the 2-D case by Hanson
and Wecksung [6]. These authors model a 2-D ray as an
implicit line equation. If one runs a line parallel to the ray
across the center of a given voxel, then the offset difference
of the equations of these two lines yield the perpendicular
distance of the ray to the voxel center, which then can be
used to index a 1-D footprint table. Our ray-driven approach
is a 3-D extension of this algorithm, optimized for speed, that

enables the efficient use of the same footprint table for all
projection rays everywhere in the volume.

The splatting techniques are in contrast to the fast in-
terpolative grid-traversal methods proposed by Siddon [18]
and Joseph [8]. These methods employ nearest neighbor
interpolation or bilinear interpolation, respectively, which,
however, are functions far inferior to the ones that can ef-
ficiently be used in splatting. Matej has conducted a study
that compared ART using Sidden’s algorithm and ART using
Bessel kernels and found that the latter produced considerably
better reconstruction results [12]. In addition, the splatting
approaches, due to their efficient implementation, do not
need to be any costlier than the interpolative grid traversal
schemes as far as the cost-per-kernel crosssection is concerned.
The added expense comes from the fact that these better
interpolation kernels must have a larger extent (typically a
diameter of 4.0, as compared to an extent of 2.0 and 1.0 for
the bilinear and nearest neighbor kernel, respectively).

III. A N ACCURATE VOXEL-DRIVEN

SPLATTING ALGORITHM FOR CONE-BEAM ART

Let us first introduce some terminology. As suggested by
Crawfis and Max [2], we can think of the interpolation kernel
footprint as a polygon with a superimposed texture map that is
placed in object (volume) space. Here, the texture map is given
by the projected kernel function, i.e., the array of line integrals
(the ones stored in the footprint table). For the remainder of
our discussion we will refer to the footprint in object space as
the footprint polygon, while the projection of the footprint
polygon onto the image plane will be called the footprint
image. Recall that splatting accumulates the same value in a
pixel on the image plane as a ray would accumulate when
traversing the volume. Thus, when projecting the footprint
polygon to obtain the line integral for the pixel in the footprint
image, we must ensure that we position the footprint polygon
orthogonal to the direction of the sight ray in object space. The
line integrals are retrieved from the footprint table by indexing
it at the ray-footprint polygon intersection point. Thus, for
splatting to be accurate, the 2-D footprint must be mapped to
the pixel as if the ray emanating from the pixel had traversed
it at a perpendicular angle. Only then does the looked-up
preintegrated integral match the true kernel integration of the
ray. Westover’s perspective extension to voxel-driven splatting
([19]) violates this condition in three instances.

• He does not align the footprint polygon perpendicularly
to the voxel center ray when calculating the projected
screen extent. Rather, he aligns it parallel to the screen
and stretches it according to the perspective viewing
transform.

• When mapping the footprint to the screen pixels he uses
a linear transform rather than a perspective one.

• The footprint polygon is not rotated for every mapped
pixel such that the corresponding pixel ray traverses it at
a perpendicular angle.

While the error for the last approximation is rather small
(see [15, Sec. 5.7.1]), the former two are more significant.
The first approximation computes footprint screen extents that

MUELLER et al.: FAST IMPLEMENTATION OF ALGEBRAIC METHODS 541

Fig. 1. Perspective voxel-driven splatting. First, the footprint polygon of voxelvy;z is mapped onto the image plane, then the affected image pixels
pi � � � pi+4 are mapped back onto the footprint table.

are smaller than the actual ones. For example, for a cone
half angle of 30 and a 128 volume, the maximum error
ratio between correct and approximate footprint extent is 1.15
and the maximum absolute difference between the two is 0.8
pixels (see [15, Sec. 5.7.2]). Here, the absolute error is again
largest for those voxels that are located close to the view cone
boundary. It causes the footprints of these voxels to cover
less area on the projection plane than they really should. The
second approximation has a similar effect. In that case, the
mapping of the footprint table entries to the screen is slightly
squashed. Again, voxels close to the view-cone boundary are
most affected.

Consider now Fig. 1, where we illustrate a new and accurate
solution for perspective voxel-driven splatting. For simplicity
of drawing, we show the 2-D case only. Note that the co-
ordinate system is fixed at the eye point. To splat a voxel

it is first rotated about the volume center such that
the volume is aligned with the projection plane. Then, the
footprint polygon is placed orthogonal to the vector, starting
at the eye and going through the center of Note that
this yields an accurate line integral only for the center ray,
all other rays traverse the voxel kernel function at a slightly
different orientation than that given by the placement of the
2-D (1-D in Fig. 1) footprint polygon in object space. Thus,
the first error in Westover’s approximation still survives. This
error, however, can be shown to be less than 0.01 pixels, even
for voxels close to the source.

The coefficients of the footprint polygon’s plane equation
are given by the normalized center ray (thevector source-

From this equation we compute two orthogonal vectors
and on the plane (only is shown in Fig. 1). Here,
and are chosen such that they project onto the two

major axes of the image. Using and , we can compute
the spatial positions of the four footprint polygon
vertices in object space (and in

the 2-D case depicted in Fig. 1). These four vertices are
perspectively projected onto the image plane. This yields the
rectangular extent of the footprint image, aligned with the
image axes and in the 2-D case).
By expressing the intersections of the pixel rays with the
footprint polygon in a parametric fashion, we can then set up
an incremental scheme to relate the image pixels within the
footprint image with the texture map entries of the footprint
table.

The computational effort to map a footprint polygon onto
the screen and to set up the incremental mapping of the
pixels into the footprint table is quite large: Almost 100
multiplications, additions, and divisions and two square root
operations are necessary. No incremental scheme can be used
to accelerate the mapping of neighboring grid voxels. The high
cost is amplified by the fact that the expensive mapping has
to be done at . Indeed, in our implementation,
perspective projection was more than twice as expensive as
parallel projection.

IV. A FAST AND ACCURATE RAY-DRIVEN

SPLATTING ALGORITHM FOR CONE-BEAM ART

We saw in the previous section that perspective voxel-
driven splatting can be made accurate, however, the expense of
perspective voxel-driven splatting seems prohibitive for use in
cone-beam reconstruction. In this section, we take advantage
of the fact that, in contrast to voxel-driven approaches, ray-
driven methods are generally not sensitive to the nonlinearity
of the perspective viewing transform. It can thus be expected
that ray-driven splatting is more advantageous to use in the
perspective cone-beam situation. The new ray-driven approach
is, in some respects, a 3-D extension to the 2-D algorithm
sketched by Hanson and Wecksung [6] and will work both
for constant-size kernels, as used in cone-beam SART, and
variable-size kernels, as required for cone-beam ART.

542 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 18, NO. 6, JUNE 1999

(a) (b)

Fig. 2. Ray-driven splatting. (a) Determining the range of voxels within a given volume slice plane that are traversed by a ray originating at pixelpi.
(b) Computing the indexdr into the footprint table.

A. Ray-Driven Splatting with Constant-Size
Interpolation Kernels

In ray-driven splatting, voxel contributions no longer ac-
cumulate on the image plane for all pixels simultaneously.
In contrast, each pixel accumulates its raysums separately,
which makes also makes it more suitable for ART than
voxel-driven splatting. Our algorithm proceeds as follows. The
volume is divided into 2-D slices formed by the planes most
parallel to the image plane. When a pixel ray is shot into the
3-D field of interpolation kernels, it stops at each slice and
determines the range of voxel kernels within the slice that
are traversed by the ray. This is shown in Fig. 2(a) for the
2-D case. The ray originating at pixel pierces the volume
slice located at at . The voxel kernels within
the slice that are intersected by the ray are given by the
interval Ceil Floor We compute

as

extent
(2)

where is the inclination of the ray. The computation for
is analogous. After determining the active voxel

interval , we must compute the in-
dexes into the voxel footprint table. This can be efficiently
implemented by realizing that the index into the footprint table
of a grid voxel located at coordinates is given by
the distance of the two parallel lines (planes in 3-D) that
traverse ’s centerpoint and the slice intersection point of the
ray at , respectively [see Fig. 2(b)]. One finds

(3)

where and are the coefficients of the implicit line equation
of the ray and are also given by the

components of the (normalized) ray vector. Maintaining the
variables and along a ray can all be
done using incremental additions.

For the 3-D case, we need to replace the linear ray by
two planes. A 3-D ray is defined by the intersection of two
orthogonal planes cutting through the voxel field. The normal
for one plane is computed as the crossproduct of the ray and
one of the image plane axis vectors. The normal of the second
plane is computed as the crossproduct of the ray and the
normal of the first plane. Thus, the two planes are orthogonal
to each other and are also orthogonal to the voxel footprint
polygons. Thus, the ray pierces the footprint polygon in a
perpendicular fashion, as required. Intersecting the horizontal
plane with a footprint polygon and using plane equations in
the spirit of (3) results in the horizontal row index into
the footprint table, while the intersection with the vertical
plane yields the vertical column index Using these
two indexes, the value of the ray integral can be retrieved
from the 2-D footprint table. Note that the two orthogonal
directions of the indexes and on the footprint
polygon plane allow us to implement the bidirectional footprint
stretching required for the variable-size interpolation kernels
in cone-beam ART.

There are now three nested loops. The most outer loop sets
up a new ray to pierce the volume, the next inner loop advances
the ray across the volume slice by slice and determines the
set of voxels traversed per slice, and, finally, the most inner
loop retrieves the voxel contributions from the footprint tables.
For perspective projection, the plane equations have to be
computed for every ray. This amounts to approximately 50
extra additions, multiplications, and divisions, and three square
roots per pixel. The cost of advancing a ray across the volume
and determining the footprint entries is comparable to the cost
of rotating a kernel and splatting it onto the image plane in the
orthographic voxel-driven approach. The ray-driven approach
changes the splatting algorithm from voxel order to pixel order.
Thus, the most outer loop is of This has the advantage
that the complexity of any extra work that has to be done
for perspective projection (e.g., recomputing the two planes
that define the ray in 3-D) is roughly one order of magnitude
less than in voxel-driven splatting. Note also that ray-driven
splatting does not introduce inaccuracies. As a matter of fact,

MUELLER et al.: FAST IMPLEMENTATION OF ALGEBRAIC METHODS 543

Fig. 3. Determining the local sampling rate of the arrangement of diverging rays. The arrangement of rays traverses the volume grid in two orthogonal
sets of ray sheets (two horizontal sheets, i.e., the cutting planescpj and cpj+1, are shown). Each 3-D ray is part of one sheet in each set and is defined
by the intersection of these two sheets. Depending on the location of the kernel with respect to each sheet set, the 2-D kernel footprint must undergo
different distortions in its two principal coordinate axes.

it prevents the indexing errors in the voxel-driven approach
by design.

B. Ray-Driven Splatting with Variable-Size
Interpolation Kernels

We have proposed in [13] and mentioned in Section II that
the aliasing artifacts caused by the diverging set of rays in
cone beam can be eliminated by progressively increasing the
interpolation-filter extent (and scaling the filter amplitude) as
a linear function of ray depth. To make these concepts more
clear, let us define an image coordinate system with

and being the orthogonal image vectors andbeing the
vector normal to the image plane (see Fig. 3). Typically,
connects the source with the center of the image plane. The
amount of stretching and scaling of the voxel kernels depends
on their location with respect to the image coordinate system.
To determine the proper amount of kernel distortion we need
to express the sampling rate of the arrangement of rays
in coordinates. Once the function is known, we
can then determine the required interpolation filter width or
magnitude at each location along a ray. It was shown in
[13] that is constant along curved rayfront isocontours
and decreases linearly with the increasing distance of the
isocontours from the source. This linear dependency on ray
depth means that each voxel kernel must undergo a nonuniform
distortion along a ray. However, since we use identical,
preintegrated kernels in the form of 2-D footprint polygons,

we cannot realize this nonuniform distortion function. Hence,
as an approximation, we only estimate at the location of
each kernel center and distort the generic 2-D footprint. This
approximation is justified in the Appendix.

Consider again Fig. 3. The coordinates of an image pixel
can be expressed as image The grid of
diverging rays is organized into horizontal and vertical sheets,
or cutting planes, that intersect the image plane and are spaced
by and The ray grid sampling rate is then a 2-D
vector that is related to the local sheet spacings.
Fig. 3 illustrates how is calculated. Here, we see the two
horizontal cutting planes and embedding the rays

and respectively. To approximate
at the location of the kernel center of voxel

we measure the distance between and along
the vector orthogonal to passing through
This distance can be written as
where is a linear function of the plane equations of

and and can thus be updated incrementally for all
intersected voxels along a ray. If we select the horizontal and
vertical cutting planes such that the image plane vectorsand

, respectively, are embedded in them, then we can simply
stretch the footprint polygon by a scale factor of amplitude

to achieve the proper lowpassing in thedirection of the
ray grid. (Recall that, in foward projection, we also have to
scale the kernel’s amplitude by a factor An analogous
argument can be given for the vertical cutting planes and

544 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 18, NO. 6, JUNE 1999

Fig. 4. Error for different schemes of measuring the ray grid sampling rate.

. Also recall from [13] that we only stretch
the footprint polygon if or . If, in forward
projection, or , then the ray grid sampling rate
in that direction is sufficient such that no aliasing can occur.
However, in backprojection we do need to scale the amplitude
of the kernel whenever or . Here, the scale
factor is or , respectively. Note that in order to preserve
the orthogonality of the two cutting planes, in the general case
one cannot achieve thatlies in the horizontal cutting planes
and, at the same time, lies in the vertical planes. However,
since we flip the main viewing direction as soon as the angle
between the ray direction and the major viewing axis exceeds
45 , the angular deviation of the true orientation of the cutting
plane and the correct orientation is small (less than 5).

The incremental scheme to compute the distance between
two cutting planes requires about one addition per voxel in
each slice. Since in a single-orbit reconstructionlies in the

- plane and is aligned with the -axis of the volume
grid, a more efficient way is to measure the vector for a
ray in the volume slice most parallel to the projection
plane and use this vector for all footprint polygons in this
plane. This is shown for the 2-D case in Fig. 4. Here,
is the distance measured by the scheme described first, while

is the slice-based measurement. The error is given by
This means that the simpler method

underestimates the grid sampling rate by some amount. In
the case of , the maximum error occurs for voxels on the
view-cone boundary. Here, for a cone half-angle ,
the simpler method would choose a kernel that is about

-times larger than it needs to be and thus
lead to a greater amount of lowpassing of voxel in
the direction than is required. However, the fact that the
factor is rather small and approaches values close to
1.0 quickly as we move away from the view-cone boundary,
makes this approximation a justifiable one. In the case of,
which determines the kernel stretching factor in the- plane,
the error can get a bit larger. Here, the rays can meet the
volume slice plane most parallel to the viewing plane at an
angle of up to 45 Greater angles are avoided since we flip the
major viewing direction as soon as an angle of 45is exceeded,
as was mentioned above. Thus, the error when
determining the kernel stretch factor for thedirection can
grow up to

V. CACHING SCHEMES FORFASTER

EXECUTION OF ART AND SART

In the previous section, we discussed a ray-driven pro-
jection algorithm that minimizes the number of necessary
calculations per projection by utilizing fast incremental ray
traversal schemes. In this section we will investigate to what
extent previously computed results can be reused, i.e., stored
or cached, so the number of redundant calculations can be
minimized.

Caching can be performed at various scales, with the
largest scale being iteration based, in which all weights are
precomputed and stored on disk. The number of weights to be
stored can be estimated as follows. If we only consider voxels
in the spherical reconstruction region, then the total number of
relevant voxels With a square footprint extent of
4.0, the average number of rays traversing a footprint polygon
is 16. Thus, the number of relevant weights per projection is

For a number of projections and a voxel grid
of 128 voxels, the total number of relevant weight factors
is then about 1.3 trillion floating point values and 5.3 GB of
actual data. This is clearly too much to hold in RAM. On the
other hand, if we just held the coefficients for one projection
at a time, we would need 67 MB of RAM. This is in addition
to the volume data and other data structures, but is feasible
with today’s workstations. However, then we would have to
load a 67-MB file for every new projection that we work on. It
is likely that the disk transfer time exceeds the savings in that
case. In addition, the memory demands grow dramatically for
larger volumes, since the number of weights to store is eight
times the number of voxels.

Since caching on both the iteration and the image level is not
practical, one may exploit caching on the ray level. ART is an
easy candidate for this form of caching since a pixel projection
is immediately followed by a pixel backprojection. So one can
just cache the weight factors calculated in the projection step
for the backprojection step and speedups of close to 2.0 can
be realistically expected, with only little memory overhead.

For SART, two special problems need to be addressed. One
has to do with the use of a ray-driven projection algorithm,
while the other deals with caching. While ART was easy to
pair with a ray-driven projection algorithm since it is itself
ray-driven, the backprojection step of SART is inherently
voxel based and requires some adaption in order to limit
memory requirements. In a brute-force implementation, a
backprojection would require two additional volumes, one to
store the weight accumulation and one to store the correction
accumulation per voxel (see [13, eq. (4)]). Only after all
backprojection rays have been traced can the correction buffer
of each voxel be divided by the weight buffer to form the
voxel correction value. Thus, we need extra memory to hold

floating point values. We can reduce this amount by an
order of magnitude to by tracing all rays simultaneously
in form of a ray front. Since the projection algorithm is slice-
based, i.e., it considers all voxels in one volume slice before
it moves to the next, we can step the entire ray front from
one slice to the next, buffering and updating only the voxels
within the active volume slice.

MUELLER et al.: FAST IMPLEMENTATION OF ALGEBRAIC METHODS 545

Fig. 5. Caching in SART (illustrated for the 2-D case). A partial kernel set of the volume is shown. The rayrp is the current projection ray. Kernels
on its path that are not currently in slabp are added to slabp. Once kernels have been entered into slabp, their computed weights are cached. After the
ray has been cast, all kernels in slabp that have just been fully projected are transferred to slabb, along with their cached weight factors. Rayrb is the
current backprojection ray. All kernels within its path are present in slabb and are backprojected along rayrb: The voxel weight and correction accumulation
buffers are updated in this process. All voxels that have been fully backprojected are then updated by their accumulated correction value and removed
from slabb. In 3-D, the rays become plane sheets (compare Fig. 3).

In SART, the caching of weights computed during projec-
tion is also more difficult, since first an entire image must
be projected before the grid corrections can be backprojected.
Thus, at first glance we may only be able to use caching at
an image level. This would require us to allocate memory
space for floating point weights, e.g., bytes, which
is in addition to other memory requirements. While for

this may be feasible for an average workstation (the
required memory is then 67 MB), for the memory
requirements would be a hefty 536 MB, which may not be
readily available in most workstations. Thus, in real world
applications, caching on the image level is not feasible, at
least with today’s workstations, and one must design a caching
scheme at a finer granularity.

For this purpose, we designed a scheme that keeps two
active slabs, composed of sheets of voxel cross sections. These
voxel cross sections are formed by intersecting the voxel
kernels by consecutive horizontal cutting planes (recall Fig. 3).
In this scheme, illustrated in Fig. 5, one active slab, slab, is
composed of voxels that are currently projected, while the
other, slab, is composed of currently backprojected voxels.
Here, a slab voxel is a data structure with a weight array and
an accumulation buffer for weight and correction sums, to be
used during backprojection. Slab slabis always trailing slab.
At first, slab caches the weights computed in the projection
step. Then, as slabmoves upward in the volume, voxels on
the bottom of slabhave eventually been completely projected
and can be removed from slaband added to slab(along with
all cached weights). A linked list can be used to facilitate the
passing of the data. Once all voxels that a ray can traverse have
been transferred to slab, the ray updates the accumulation
buffers of the affected slabvoxels, using the cached weight

factors and its correction value. As slabmoves upward as
well, voxels at the bottom of slabcan eventually be updated
by the accumulated correction buffer term and removed from
slab .

Let us now compute the memory requirements. The width of
a slab is about four sheets, and a voxel kernel with an extent of
4.0 is traversed by about 16 rays. Thus, the data structure of a
slab voxel consists of an array of 16 weight factors in addition
to two accumulation buffers. Thus, the memory complexity
for the two slab buffers is roughly
This includes the memory for the correction and accumulation
buffers of slab. Thus we would require approximately 10 M
of memory for a 128 volume. Note that this caching scheme
goes well with the variable-size voxel kernels, since here the
slab width is constant for all voxels with and .

VI. RESULTS

Table I lists the run times of the various ART and SART
incarnations that were discussed in the previous sections. The
run times were obtained on an SGI Indigoworkstation and
refer to a reconstruction based on 80 projections with a cone
angle of 40.

Let us first look at the SART correction algorithm. We
observe in Table I that for parallel-beam reconstruction with
SART the voxel-driven approach is about 33% faster than
the ray-driven approach. Hence, it is more advantageous
in the parallel-beam case to perform the grid projection in
object order (i.e., to map the footprint polygons onto the
screen) than to perform the projection in image order (i.e.,
traverse the array of footprint polygons by the pixel rays).
The computational savings in the voxel-driven algorithm for
parallel-beam projection come from the fact that here the

546 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 18, NO. 6, JUNE 1999

TABLE I
RUN-TIMES FOR SART, USING BOTH VOXEL-DRIVEN AND RAY-DRIVEN SPLATTING, AND FOR ART USING RAY-DRIVEN SPLATTING (VOXEL-DRIVEN

SPLATTING IS NOT APPLICABLE FOR ART). THE EFFECT OFCACHING AND VARIABLE-SIZE INTERPOLATION KERNELS ON THERUN TIME IS ALSO

SHOWN. (Tcorr: TIME FOR ONE GRID CORRECTION STEP, CONSISTING OFONE PROJECTION AND ONE BACKPROJECTION, Titer: TIME FOR ONE

ITERATION (ASSUMING 80 PROJECTIONIMAGES AND A CONE ANGLE OF 40�) T3iter: TIME FOR THREE ITERATIONS, THE MINIMUM TIME TO

OBTAIN A RECONSTRUCTION OFGOOD QUALITY [13]. TIMINGS WERE OBTAINED ON A SGI IRIS INDIGO 2 WITH A 200-MHz RS4000 CPU)

footprint-screen mapping is much simpler than the mapping
described in Section III, since the perspective distortion does
not have to be incorporated. In cone-beam reconstruction,
on the other hand, the situation is reversed in favor of the
ray-driven projector. Here, the speedup for using the ray-
driven projector over the voxel-driven projector in SART is
about 2.4. Thus, since the use of the image-based voxel-driven
splatting algorithm is not practical for ART, we conclude that
cone-beam reconstruction should always be performed with
ray-driven projectors.

Now let us investigate the computational differences of ART
and SART and the effects of caching and variable-size splatting
kernels on run time. Comparing the costs for SART and ART,
we notice that uncached SART is about 12% slower than
uncached ART. This is due to the extra computations required
for weighting the corrections before a voxel update and due
to the overhead for managing the additional data structures.
The timings also indicate that the use of a depth-dependent
kernel size incurs about a 25% time penalty for ART and 20%
for SART. In terms of the benefits of caching, we notice that
the straightforward caching for ART speeds reconstruction by
a factor of 1.78. Stated in another way, cached ART reduces
the time for a projection/backprojection operation to the time-
equivalent of 1.12 projections. The more involved caching for
SART, on the other hand, achieves a speedup of 1.4. Caching
in conjunction with the variable-size kernels produces similar
improvements. Since the reconstruction results for SART,
using constant-sized kernels, and ART, using variable-size
kernels, are similar [13], it makes sense to compare these
two methods as well. In this respect, ART, with variable-
size kernels and easy-to-implement caching, is about 1.5 as
fast as uncached SART. However, if SART is enhanced with

elaborate caching schemes, this speed advantage shrinks to a
factor of 1.15.

VII. CONCLUSIONS

The prime motivation of the work presented here was to
devise techniques that make algebraic methods more efficient
for routine clinical use, while not compromising their accu-
racy. In particular, the fact that algebraic methods have been
shown to be capable of producing comparable reconstructions
and, in some settings, even better reconstructions than FBP
makes this effort all worthwhile.

Since the projection algorithm represents the main source
of ART computations, we first focused on this portion of the
ART algorithm. We started by describing a new cone-beam
extension to Westover’s voxel-driven parallel-beam splatting
algorithm [19]. This new extension removes almost all inac-
curacies of previously outlined extensions of that sort. Then
we analyzed existing ray-driven projectors in terms of their
suitability for perspective cone-beam reconstruction. It was
found that, generally, a ray-driven algorithm is far more suited
for the perspective cone-beam projection case than a voxel-
driven splatting algorithm. However, it was also found that
for parallel-beam reconstruction with SART, the voxel-driven
splatting algorithm is faster. In the quest for an efficient ray-
driven algorithm for perspective 3-D projection we observed
that most of the existing ray-driven algorithms were not
applicable for the special needs of cone-beam reconstruction.
We hence extended a conceptually existing 2-D ray-driven
splatting algorithm into 3-D and optimized it for speed and
accuracy. We also described how this algorithm is best used
in conjunction with the depth-dependent interpolation kernels
necessary for cone-beam ART.

MUELLER et al.: FAST IMPLEMENTATION OF ALGEBRAIC METHODS 547

However, a fast projection algorithm is not enough. We
must also reduce the actual complexity of the overall pro-
jection–backprojection framework. This can be achieved by
designing schemes that memorize or cache weight calculations,
performed during projections, for their reuse in subsequent
backprojections. Since it proves prohibitive with regard to
today’s memory cost to perform caching on an iteration-level
or image-level, we devised an easy-to-implement ray-based
caching scheme for ART and a more elaborate ray sheet-
based caching scheme for SART. The latter is more involved
since in SART a voxel must first be fully projected before a
correction/backprojection can be performed on it. Using these
concepts, experiments revealed that caching allows ART to
reduce the cost for a projection/backprojection operation to
the time equivalent of 1.12 projections, while SART has a
more moderate speedup, as was to be expected, due to the
more complicated caching mechanism.

The projection methods outlined in this paper for cubic grids
also fully extend to the dodecahedral or body-centered grids
that were proposed by Matej and Lewitt [11]. (These grids
were shown to reduce the number of voxels to be processed
by about 30%.) Since the dodecahedral grids are really just a
stack of interleaved square grids, the incremental grid traversal
algorithms have to be modified only slightly.

While this paper focused mostly on fast implementations
of ART-type methods in the context of 3-D cone-beam re-
construction, it should be noted that different parts of the
material presented are also relevant for parallel-beam and
fan-beam reconstruction. For instance, the caching schemes
that were described in Section V can be applied for all
beam configurations, while the ray-driven algorithms are also
preferable in the fan-beam setting. However, as was mentioned
before, for parallel-beam projection the ray-driven algorithms
are generally slower (by about 20%), due to the extra overhead
for setting up the rays.

With memory costs decreasing at a fast rate, it may be
possible to use image-based caching in the near future, even
for large reconstruction volumes. However, at the present time
it seems infeasible to do so, which hampers the efficiency of
SART. In addition, with disk-to-memory bandwidths increas-
ing, it may be possible to load precomputed weights faster
from disk than they can be computed on the fly for every
projection. However, as CPU speeds are also increasing at
greater rates than the memory speeds, today’s imbalances may
very well still exist for many years to come.

APPENDIX

STRETCHING OF THE 3-D INTERPOLATION

KERNEL VERSUSSTRETCHING THE 2-D FOOTPRINT

We have shown in [13] that in cone-beam reconstruction the
3-D interpolation kernel of voxels beyond a certain distance
from the source must be stretched above its normal size. To be
specific, the stretching must occur according to the function

, where is the distance at which the sampling rate of
the volume grid just equals the sampling rate of the ensemble
of rays. This means that we must stretch the interpolation

(a) (b)

Fig. 6. (a) Stretching the interpolation kernel atz = zv according to the
perspective stretching functionz=zc which has the form of a trapezoid. (b)
Stretching the kernel by the functionzv=zc, which is a box.

kernel function according to a ramp function of slope
[see Fig. 6a].

But how is this done in practice? The relative kernel
distortion varies depending on the kernel’s coordinate.
Simply preintegrating the distorted kernel for one kernel center
location and then scaling this footprint for another ker-
nel at , based on the ratio , does not yield
the correct footprint of a distorted kernel at that location. If
we wanted to use preintegrated footprints that bear the correct
kernel distortion, we would have to use a different footprint for
each kernel center location. This is obviously impractical.
However, we realize that in most cases For
instance, for a 128volume, a 128 projection image, and a
60 cone angle, the factor is about 0.03 volume
units. Thus, we may stretch the kernels by a box instead of
a trapezoid [see Fig. 6(b)] without committing much of an
error (i.e., the error is 0.015 volume units). This minimal error
enables us to use the generic footprint polygons, scaled up in
the - and direction, depending on their location along

ACKNOWLEDGMENT

The authors would like to thank the anonymous review-
ers for their careful reading of the manuscripts and their
suggestions.

REFERENCES

[1] A. H. Andersen and A. C. Kak, “Simultaneous algebraic reconstruction
technique (SART): A superior implementation of the ART algorithm,”
Ultrason. Imag.vol. 6, pp. 81–94, 1984.

[2] R. Crawfis and N. Max, “Texture splats for 3D scalar and vector field
visualization,”Visualization’93, 1993, pp. 261–266.

[3] L. A. Feldkamp, L. C. Davis, and J. W. Kress, “Practical cone beam
algorithm,” J. Opt. Soc. Amer., 1984, pp. 612–619.

[4] R. Gordon, R. Bender, and G. T. Herman, “Algebraic reconstruction
techniques (ART) for three-dimensional electron microscopy and X-ray
photography,”J. Theoretical Biol., vol. 29, pp. 471–481, 1970.

[5] H. Guan and R. Gordon, “Computed tomography using algebraic recon-
struction techniques (ART’s) with different projection access schemes:
A comparison study under practical situations,”Phys. Med. Biol., no.
41, pp. 1727–1743, 1996.

[6] K. M. Hanson and G. W. Wecksung, “Local basis-function approach to
computed tomography,”Appl. Opt., vol. 24, no. 23, 1985.

[7] G. T. Herman and L. B. Meyer, “Algebraic reconstruction can be
made computationally efficient,”IEEE Trans. Med. Imag., vol. 12, pp.
600–609, June, 1993.

[8] P. M. Joseph, “An improved algorithm for reprojecting rays through
pixel images,”IEEE Trans. Med. Imag., vol. 1, pp. 193–196, June, 1982.

548 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 18, NO. 6, JUNE 1999

[9] R. M. Lewitt, “Alternatives to voxels for image representation in
iterative reconstruction algorithms,”Phys. Med. Biol., vol. 37, no. 3,
pp. 705–715, 1992.

[10] S. Matej and R. M. Lewitt, “Practical considerations for 3-D image
reconstruction using spherically symmetric volume elements,”IEEE
Trans. Med. Img., vol. 15, pp. 68–78, Jan. 1996.

[11] , “Efficient 3D grids for image reconstruction using spherically-
symmetric volume elements,”IEEE Trans. Nucl. Sci., vol. 42, pp
1361–1370, Apr. 1995.

[12] S. Matej, G. T. Herman, T. K. Narayan, S. S. Furuie, R. M. Lewitt,
and P. E. Kinahan, “Evaluation of task-oriented performance of several
fully 3D PET reconstruction algorithms,”Phys. Med. Biol, vol. 39, pp.
355–367, 1994.

[13] K. Mueller, R. Yagel, and J. J. Wheller “Anti-aliased three-dimensional
cone-beam reconstruction of low-contrast objects with algebraic meth-
ods,” IEEE Trans. Med. Imag., vol. 18, pp. 519–537, June 1999.

[14] K. Mueller, R. Yagel, and J. F. Cornhill, “The weighted distance scheme:
A globally optimizing projection ordering method for the Algebraic
Reconstruction Technique (ART),”IEEE Trans. Med. Imag., vol. 16,
pp. 223–230, Apr. 1997.

[15] K. Mueller, “Fast and accurate three-dimensional reconstruction from
cone-beam projection data using algebraic methods,” Ph.D. dissertation,
Ohio State Univ., Columbus, OH, 1998.

[16] M. Schlindwein, “Iterative three-dimensional reconstruction from twin-
cone beam projections,”IEEE Trans. Nucl. Sci., vol. 25, pp. 1135–1143,
May, 1978.

[17] L. A. Shepp and B. F. Logan, “The Fourier reconstruction of a head
section,” IEEE Trans. Nucl. Sci., vol. NS-21, pp. 21–43, 1974.

[18] R. L. Siddon, “Fast calculation of the exact radiological path for a
three-dimensional CT array,”Med. Phys., vol. 12, no. 2, pp. 252–255,
1985.

[19] L. Westover, “Footprint evaluation for volume rendering,”Comput.
Grap. (SIGGRAPH), vol. 24, no. 4, pp. 367–376, 1990.

