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Abstract—This paper examines the use of the algebraic recon-
struction technique (ART) and related techniques to reconstruct
3-D objects from a relatively sparse set of cone-beam projections.
Although ART has been widely used for cone-beam reconstruc-
tion of high-contrast objects, e.g., in computed angiography, the
work presented here explores the more challenging low-contrast
case which represents a little-investigated scenario for ART.
Preliminary experiments indicate that for cone angles greater
than 20���, traditional ART produces reconstructions with strong
aliasing artifacts. These artifacts are in addition to the usual
off-midplane inaccuracies of cone-beam tomography with planar
orbits. We find that the source of these artifacts is the nonuniform
reconstruction grid sampling and correction by the cone-beam
rays during the ART projection–backprojection procedure. A
new method to compute the weights of the reconstruction matrix
is devised, which replaces the usual constant-size interpolation
filter by one whose size and amplitude is dependent on the source-
voxel distance. This enables the generation of reconstructions
free of cone-beam aliasing artifacts, at only little extra cost. An
alternative analysis reveals that simultaneous ART (SART) also
produces reconstructions without aliasing artifacts, however, at
greater computational cost. Finally, we thoroughly investigate
the influence of various ART parameters, such as volume ini-
tialization, relaxation coefficient ���, correction scheme, number
of iterations, and noise in the projection data on reconstruction
quality. We find that ART typically requires only three iterations
to render satisfactory reconstruction results.

Index Terms—Algebraic reconstruction technique (ART),
aliasing, computed tomography (CT), cone-beam reconstruction,
three-dimensional reconstruction.

I. INTRODUCTION

CONE-BEAM computed tomography (CT) can be thought
of as the three-dimensional (3-D) extension of the widely

popular fan-beam CT. It reconstructs a 3-D representation
of either the entire object, or at least a thick section of it,
and is thus a volumetric imaging method. In cone-beam CT,
an X-ray point source revolving about the patient emits a
diverging beam of X rays which, after becoming attenuated
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by the imaged object, is collected by a two-dimensional (2-D)
detector located on the opposite side. While fan-beam CT
has been in clinical use for more than 20 years, cone-beam
CT scanners are still in the prototype stage. It is, however,
expected that cone-beam CT, due to its great advantages, will
play a much larger role in the future. This is for various
reasons. First, cone-beam CT is very dose-efficient, as it
utilizes more of the emitted X rays for image generation
than fan beam, yielding a 2-D projection and not just a one-
dimensional (1-D) strip at each exposure. Second, due to the
speedy data acquisition, motion artifacts caused by patient
movement or breathing are much less of an issue than in
slower forms of volumetric CT, such as the stacks-of-(fan-
beam-)slices representation or the more recent helical/spiral
CT (see, e.g., [10]). Likewise, imaging of dynamic structures
such as the human heart is also greatly facilitated [32].

Cone-beam imaging received much attention with the con-
struction of the dynamic spatial reconstructor (DSR) at the
Mayo Clinic [32] for dynamic volume imaging of moving
organs. However, since the cone angle used was so small
(8 ), good reconstructions could be obtained by employing
a traditional fan-beam algorithm, reconstructing the object in
parallel layers. Later, Altschuler proposed two true cone-beam
algorithms for the DSR, one using an analytic series expan-
sion approach [1], [2] and one using an iterative Bayesian
framework [3]. In unrelated work, Budinger [8] developed a
solution based on least squares.

It is apparent that over the past 15 years cone-beam re-
searchers have mostly focused on reconstruction algorithms
based on the filtered backprojection (FBP) approach (see Smith
[37] for a review of these algorithms and Wang [40] for a
more recent paper on practical implementations of noncircular
source orbits). This focus can be attributed to FBP’s conve-
nient analytical formulation which enables fast computation
of predictable duration. It is for this very reason why today’s
clinical fan-beam scanners also all use algorithms based on
this framework. One should note, however, that modern CT
scanners typically acquire more than 500 projections per slice,
which approximates the continuous form of the inverse Radon
integral rather well. Under these circumstances, FBP produces
very good results. If, however, the set of available projections
is small, the projections are not uniformly spaced in angle,
the projections are sparse or missing at certain orientations
(the limited angle problem), or when one wants to model
some of the photon scattering artifacts in the reconstruction
procedure, FBP tends to either produce inferior results or
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simply cannot be used [20]. We can think of a variety of
clinical and industrial applications where one or more of
these conditions arise, i.e., when projections are few, sparse,
or missing. A clinical example for the latter are datasets of
patients with metal implants where some projections are so
contaminated that they cannot be used. On the other hand,
cardiac imaging or intraoperative imaging yields only a limited
number of images per time interval, due to organ and patient
motion, and also due to restrictions on patient dose of both
X ray and/or radio-opaque dye.

Under these conditions, an alternative reconstruction
method has been shown to have a great margin of advantage.
The algebraic reconstruction technique (ART), originated by
Gordon, Bender, and Herman [11] (see [15] for a discussion
of ART’s utility in practical cases where projections are
limited and/or are noisy). In contrast to FBP, ART is an
iterative procedure, i.e., it works by iteratively updating a
reconstruction grid by a projection–backprojection procedure
until a convergence criterion is satisfied. The reconstruction
task is formulated as a system of (possibly inconsistent)
simultaneous linear equations, one for each projection
ray, which is solved by the iterative ART procedure. This
iterative framework currently gives rise to a significantly
slower reconstruction speed and is the main reason for ART’s
under-utilization in present clinical applications.

While the research on general 2-D ART [11], [12], [14],
[17] and 2-D fan-beam ART [13], [26] is numerous, the
published literature on 3-D cone-beam reconstructors using
ART-type algorithms is rather sparse. Exceptions are the early
works by Colsher [9] and Schlindwein [36]. However, these
implementations were rather inaccurate. The most popular use
of 3-D cone-beam ART in recent years is in 3-D computed
angiography. Here, one acquires a limited set of projection
images of blood-perfused structures, such as vascular trees
in the head or abdominal regions [29], [34]. It should be
noted, however, that the objects reconstructed in 3-D computed
angiography are of rather high contrast, which poses the
reconstruction problem as almost a binary one.

Another notable recent publication is the one by Matej [25],
whose studies indicate that ART also has significant merit for
noisy projection data. Matej showed for PET that ART can
produce quantitatively better reconstruction results than the
more popular FBP and maximum likelihood estimation (MLE)
methods. In this work, however, a cone-beam reconstructor
was not used, but the projection rays were rebinned, which
simplified ART to the parallel-beam case. Another group of
researchers has successfully applied ART for SPECT data
[33]. That ART can produce superior results in the presence
of noise was also demonstrated in an early paper by Herman
[15]. However, this was found only to be true in the limited
projection case. In another paper, Herman then proposed an
alternative form of ART, coined ART3, which relaxes the grid
update conditions in favor for better noise handling [16].

In this paper, we analyze ART for the general low-contrast1

cone-beam setting which is, as was mentioned before, a

1In this context, we define low-contrast objects as objects that have
features of little variation in density (i.e., that have low contrast), such as
the Shepp–Logan brain phantom [35], with a dynamic range of the main
features of only 2.0%. This definition was also used by Tam [39].

scenario that has not been studied much in the past. We will see
that the application of the standard ART algorithm in the cone-
beam setting produces strong aliasing-related noise artifacts for
cone angles greater than 20. Even though these artifacts may
have never been noticeable in high-contrast reconstructions,
they become very visible in the low-contrast situation.

We will conduct our analysis using principles founded
in sampling theory. This enables us to express the weight
coefficients in ART’s system of linear equations in terms
of the interpolation filter that is employed during volume
projection and backprojection. In that respect, the quality of
the interpolation filter determines the accuracy of the weights.
While several authors [5], [22], [23] have operated in this
framework to determine the accurate weights for parallel-beam
reconstruction, the scenario of diverging rays, as occurring
in cone-beam reconstruction, imposes new constraints on
the interpolation filter (and the weights) which, when not
observed, will lead to the mentioned artifacts. We do not
concern ourselves with defining accurate bounds on the speed
of convergence or the nature of the final solution. Properties of
this sort are offered by the rigorous mathematical treatments
set forward by Herman [15] and Natterer [29]. Our work could
be valued as a supplement to these theoretical frameworks, as
these treatments do not sufficiently discuss the importance of
the equation coefficients. As a matter of fact, the coefficients
used in these approaches (i.e., the length of the ray-voxel
intersections) translate to simple nearest neighbor interpola-
tion filters which, when used in the projection-backprojection
operations, have been found to yield inferior reconstruction
results [25]. Furthermore, the diverging nature of the rays
is completely unaccounted for. Our work closes this gap,
rendering the accurate set of weight coefficients for cone-beam
ART and also for fan-beam ART.

In the present work, we have concentrated on single sources
with planar circular orbits only. It is well known that this
configuration gives rise to artifacts in object planes further
off the midplane, due to incomplete coverage of the object’s
3-D Radon domain (see, for instance, Rizo [31]). Since this
is an unavoidable issue with circular source orbits, our work
will not eliminate these kind of artifacts. Only those artifacts
related to aliasing during the ART reconstruction procedure
are handled. However, we will discuss later that our results
are also valid for nonplanar source trajectories, which provide
a more complete projection data set.

The outline of this paper is as follows. Section II gives
a short recap on the workings of ART-type algorithms.
Section III then moves ART into the cone-beam setting,
analyzes its shortcomings, and presents solutions to overcome
these deficiencies. Next, Section IV discusses the use of a
related algebraic method, termed simultaneous ART (SART)
[5], for cone-beam reconstruction. ART and SART, although
relatively different in their view of the reconstruction process,
are of similar efficiency. Finally, Section V puts everything
together and presents a variety of results obtained with
our ART testbed software. In this section, the effects of
a wide range of ART parameters on both reconstruction
quality and speed are investigated. The studied factors include
the value and functional variation of the ART relaxation
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coefficient , the relevance of volume initialization, and the
effect of the ART correction algorithm (ART versus SART).
Finally, Section VI investigates the effect of noise on the
reconstruction result.

II. PRELIMINARIES

ART poses the reconstruction problem as a system of linear
equations

(1)

Here, the are the values of the reconstruction grid elements
(called voxels from now on), the are the values of the
pixels in the acquired projection images, and the weight factors

represent the amount of influence a voxelhas on a ray
passing from the source through image pixel.

Usually, one reconstructs on a cubic voxel grid with a side-
length of voxels. Also, for a 3-D single-orbit reconstruction
we generally assume a spherical reconstruction region and
projection images with a circular ROI. In this case we have

unknown voxel values and
relevant pixels per image. For the equation system (1) to be
determined, the number of projection imagesmust be

(2)

This means that for a total of 86 projection images
is required.

However, it is not always the case thathas this desired
magnitude. Sometimes (1) is overdetermined or, more often,
it is underdetermined. In either case, the large magnitude
of (1) does not allow its solution by matrix inversion or
least squares methods. In addition, noise and sampling errors
in the ART implementation normally do not provide for a
consistent equation system. Thus, an iterative scheme proposed
by Kaczmarz [19] is used. Starting from an initial guess for
the volume vector we select at each iteration step

, one of the equations in (1): say the one for. A
value is measured which is the value of pixelcomputed
using the voxel values as provided by the present state of the
vector . A factor related to the difference of
and is then distributed back onto , which generates

such that if a were computed from , it
would be closer to than . Thus, we can divide each grid
update into three phases: a projection step, a correction factor
computation, and a backprojection step.

The correction process for one element of, i.e., , can
be expressed by

(3)

where is the relaxation factor, typically chosen within the
interval , but usually much less than 1.0 to dampen
correction overshoot. This procedure is repeated in an iterative

fashion for all equations in (1). Note that we will be using fully
constrained ART [15], i.e., we will limit the to an interval
of ] throughout the reconstruction procedure.

The sum term in the nominator of (3) requires us to compute
the integration of a ray across the volume. The integration
process can be performed by using raycasting, i.e., sampling
the volume at equidistant locations with an interpolation kernel

and accumulating the interpolated values. Since accurate
integration requires many sampling points, this is very time
consuming. A more efficient way was proposed by many
authors [13], [22], [23], [41], in the context of parallel-beam
and fan-beam ART. It consists of reordering the ray integral
so that each voxel’s contribution to the integral can be viewed
isolated from the other voxels. To achieve this effect, an
interpolation kernel is placed at each voxel location and its
amplitude is scaled by the voxel’s value. This enables one to
view the volume as a field of overlapping scaled interpolation
kernels of equal size which, as an ensemble, make up the
continuous object representation. A voxel’s contribution
is then given by where follows the line
of kernel integration in the direction of the ray. Here, the
integral represents a voxel weight factor in (3). If the
interpolation kernel is radially symmetric, we may preintegrate

, often analytically, into a lookup table (also called
the kernel footprint). We can then traverse all (scaled) voxel
footprints for each projection ray and, in this way, accumulate
so that the respective ray and weight sums in the nominator
and denominator of (3), respectively (see [27] for more detail).
Backprojection is performed in a similar way except that, here,
the voxels receive (corrective) energy, scaled by their weight
factors, instead of emitting it.

The choice of varies in the existing ART implementations.
We will be using a kernel based on the Bessel–Kaiser window,
as proposed by Matej and Lewitt [22], [23]. Multidimensional
Bessel–Kaiser functions have many desirable properties, such
as fast decay for frequencies past the Nyquist rate and radial
symmetry. They can also be tuned so that the kernel’s fre-
quency spectrum is at a minimum at multiples of the sampling
frequency where the signal’s aliases are largest.

Instead of updating the volume on a ray basis, ART-type
methods exist that correct the volume on an image basis.
One representative of these block-iterative methods is SART,
developed by Andersen [5], which was shown to significantly
reduce the noise artifacts that were observed with ray-iterative
ART. (The same author also demonstrated SART’s strength
in the limited angle problem [4].) The projection step of
SART performs a summed volume rendering [18] of the
reconstruction grid, then subtracts the rendered image from
the acquired projection image, normalizes the result, and
backprojects the image in an inverse volume rendering process.
More formally, the SART correction equation is as follows:

(4)
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(a) (b)

Fig. 1. Slices across the 3-D Shepp–Logan brain phantom. (a)y = �25 mm. (b) z = 8 mm. The pixel intensities in these and all other slice images
presented in this paper were thresholded to the interval[1:0; 1:04] to improve the displayed contrast of the brain features.

In this equation, the correction term for voxel depends
on a weighted average of all rays of a projection that
traverse the voxel. (Here, denotes the orientation angle at
which the projection was taken.) Thus, in SART all rays of a
projection are simultaneously processed, hence the name
simultaneous ART.

Apart from the correction algorithm and also from the
projection access order (see, e.g., [28]), there are other im-
portant parameters that influence both reconstruction quality
and speed of convergence. One of these factors is the re-
laxation coefficient . Natterer [29] gives exact bounds on
the convergence characteristics with respect towhen the
equation system is consistent. However, this is unlikely in
real CT applications. In that case, ART is semiconvergent and
the solution depends on the degree of inconsistency (as given
by noise and quantization artifacts) [29]. With inconsistent
equations, a smaller generally provides for a less noisy
reconstruction, but increases the number of iterations required
for convergence. There is also the issue as to whethershould
be set to a constant value or if it should vary over some
function of time, as suggested by Andersen [4]. Then, how
should we choose , the initial volume? It is clear that an
unlimited set of exact solutions exists if our equation set (1) is
underdetermined but consistent. However, no exact solution,
but many approximate solutions, may exist in the more realistic
case of inconsistent equations. In both cases it is clear that
some solutions will match the true object better than others.
Grid initialization may have a large influence on what solution
ART will converge to. One may hypothesize that the closer
the initial volume matches the true object, the better the final
solution will be. However, since in the general case it is hard to
predict beforehand what the real object will look like, proper
volume initialization is difficult.

III. A M ODIFICATION FOR ART TO ENABLE

ACCURATE CONE-BEAM RECONSTRUCTION

In this section, we investigate the accuracy of ART in the
context of low-contrast 3-D cone-beam reconstruction. We
will find that ART in its present form is unsuitable in the
cone-beam setting, as it produces reconstructions with signif-
icant reconstruction artifacts. Henceforth, we will prescribe a
number of modifications of ART’s projection and backpro-

TABLE I
THE DEFINITION OF A 3-D EXTENSION OF THE SHEPP–LOGAN

PHANTOM [35], SIMILAR TO THE ONE USED BY [6]. THE ANGLES

� AND � ARE THE POLAR AND AZIMUTHAL ANGLES OF THE

ELLIPSOID Z-AXIS. THE SCANNER ROTATES ABOUT THE Y -AXIS

jection mechanisms with which accurate reconstructions can
be obtained and which do not compromise the efficiency of
ART. For quality assessment we will use a 3-D extension of
the Shepp–Logan brain phantom [35], similar to the one due
to Axelsson [6]. The definition of our phantom is given in
Table I, while two orthogonal slices across the phantom are
shown in Fig. 1. From this phantom, we analytically compute
80 projection images of 128 128 pixels each, forcing (1)
to be slightly underdetermined. The projections are obtained
at equidistant angles within a range of ], where

/2 is the cone half-angle.
Although detailed quantitative results are postponed to

Section V, we would like to illustrate the material in this
section by the use of some examples. These examples will
assume certain settings of parameters such asand ,
which will later be shown to be a good compromise between
accuracy and speed of convergence.

A. Reconstruction Artifacts in Cone-Beam ART
When Traditional Techniques Are Used

Let us now apply the ART algorithm of (3) to reconstruct
a 128 volume from 80 projections with . is
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(a) (b)

Fig. 2. (a) The slice of Fig. 1(a) reconstructed with traditional ART from cone-beam projection data (� = 0:08,  = 60
�, VVV (0)

= 0: three iterations, 80
projections). Notice the significant stripe artifacts that completely obliterate the small tumors. (b) A reconstruction of the same slice from parallel beam data
using the same algorithm and parameter settings. This reconstruction does not have the strong artifacts of (a).

set to 0.08 and . The implementation uses the
traditional preintegrated equal-sized interpolation kernels for
computing the elements of (3) (as described in Section II).
The reconstruction result of slice mm after three
iterations is shown in Fig. 2(a). Here, we observe significant
reconstruction artifacts which obliterate the small tumors in
the lower image regions almost completely. For a comparison,
Fig. 2(b) shows a 3-D reconstruction from parallel beam data
with the same algorithm and parameter settings. No significant
artifacts are present in this case.

Thus, the artifacts must result from the cone-beam config-
uration in which rays emanate from the source and traverse
the volume in a diverging fashion before finally hitting the
projection plane. It may be suspected that it is this diverging
nature of the rays that causes the reconstruction artifacts
in Fig. 2(a). Indeed, more evidence is provided by Fig. 3,
where we show the reconstruction volume of a solid sphere
(diameter 0.75 ) after the first correction image (at )
was applied to a volume initialized to . We show
the outcome of this correction (basically a smearing of a
filled circle across the volume) for both 60cone-beam data
[Fig. 3(a)] and parallel-beam data [Fig. 3(b)]. In these figures
we choose the axis to coincide with the beam direction.
Consider now Fig. 3(a) (side view) where we show a cut across
the center of the cone along thedirection. A nonuniform
density distribution along this slice can be clearly observed.
Now let us look at two cross-sectional cuts of the cone,
perpendicular to the axis. Here, we choose to be
the location of the cross-sectional slice that cuts across the
volume center, to be the location
of a slice close to the source (a near slice), and

to be the location of a slice far from the source
and the volume center (a far slice) (see also Fig. 4). We see
in Fig. 3, that much more energy is deposited in the volume
slices close to the source where the ray density is high (near
slice), while only a little energy is deposited in the volume
slices further away from the source where the ray density
is low (far slice). In particular, the far slice displays a grid-
like pattern which indicates an undersampling of the volume
by the rays in this slice. This inadequate ray-sampling rate

potentially gives rise to aliasing, which is very likely to have
caused the reconstruction artifacts of Fig. 2(a). The effects of
aliasing are amplified since in ART the volume is projected
and updated continuously, with every projection introducing
additional aliasing into the reconstruction.

In contrast to the cone-beam case, the parallel-beam cor-
rection, shown in Fig. 3(b), provides a homogeneous density
distribution. No excess density is deposited in the near slice
at and no aliasing-prone grid-like pattern is generated
in the far slice at . Thus, reconstruction artifacts are
unlikely to occur and, indeed, have not been observed in
Fig. 2(b). In the following section, we will now investigate
our observations more formally.

B. A New Scheme for Projection and Backprojection
to Prevent Reconstruction Artifacts

Both the projection and the backprojection algorithms must
be adapted to avoid the aliasing problems outlined in the
previous section. These enhancements make it necessary to
modify ART’s basic correction algorithm. We now describe
these new concepts in more detail.

1) Adapting the Projection Algorithm for Cone-Beam ART:
In the usual implementation of ART, a pixel value is
computed by the ray integral

(5)

where is the ray going from the source to image pixeland
is the interpolation kernel function, preintegrated in the

direction of ray . As noted before, the ART weight factor
that determines the amount of influence of voxelon

the pixel sum is thus given by .
Although in ART a volume is updated for each ray sepa-

rately, it is convenient for our discussion to treat all rays that
belong to one projection image as an ensemble and act as if
grid correction is performed only after all image rays have
completed their forward projection. Doing so allows us to use
principles from sampling theory to explain and subsequently
eliminate the reconstruction artifacts observed before. We
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(a)

(b)

Fig. 3. Reconstruction of a solid sphere (diameter= 0.75n) after one correction at' = 0� was applied. (a) Cone angle = 60�. (b) Parallel beam = 0�.
The side view shows a cut across the volume alongz, e.g., the direction of the cone beam. Withz = zc being the location of the volume center slice
perpendicular to the cone direction (see also Fig. 4), the near slice is the volume slice atz = zn = zc � 0:25n and the far slice is the volume slice at
z = zf = zc + 0:25n. Notice the uneven density distribution for the cone-beam reconstruction, while for parallel-beam the density is uniformly distributed.

(a) (b)

Fig. 4. Perspective projection for the 2-D case. (a) Rays emanate from the source into the volume along a curved rayfront which position is quantified bys(z),
the closest distance of the rayfront to the source. For our discussion, we approximate the curved rayfronts by planar rayfronts or slices. Thenzc is the location
of the volume center slice,zn is the location of the near slice of Fig. 3, andzf is the location of the far slice of Fig. 3. (b) Slice imagesgs(z) for z = zn, zc,
andzf . The sampling periodTr in each of the slice images is determined by the distancez of the slice image from the source:Tr(zn) < Tr(zc) < Tr(zf).

admit that this approach is slightly incorrect since in ART the
projection sum of a ray belonging to a particular projection
image always contains the grid corrections performed by the
previous ray(s) of the same projection image. Due to this
circumstance, the projections and corrections obtained with

ray-based ART and image-based ART are not strictly the same.
However, this simplification has only a minor effect on the
outcome of our analysis. As a further simplification, let us
also assume that is an ideal (spatially infinite) sinc filter
with a box spectrum in the frequency domain. Although this
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assumption may seem unrealistic at first, it helps to focus the
following analysis onto its relevant points and does not affect
the main outcome significantly.

Consider now Fig. 4(a) where the 2-D case is illustrated.
Here, the dashed lines denote the linear rays along which the
volume is integrated. The rays that emanate from the source
traverse the volume in the form of a curved rayfront. Within
this curved rayfront the rate at which the ensemble
of rays samples the grid is constant (see Appendix A). The
further the rayfront is away from the source, the smaller is
the ray ensemble’s grid-sampling rate. If one characterizes the
position of the rayfront by the closest distance from the source

, then there is a at which the rayfront
samples the grid at exactly the grid-sampling rate, e.g.,

. Then, for the rayfront-sampling
rate is higher than the grid-sampling rate, while for the
rayfront-sampling rate is lower than the grid-sampling rate. For
our discussion, we approximate the curved rayfronts by planar
rayfronts or slices (see Appendix B for an error analysis).
Thus, in Fig. 4(a), is the location of the near slice of Fig. 3
and is the location of the far slice.

We mentioned earlier that by placing an interpolation kernel
at each grid voxel and scaling it by the grid voxel’s value
we obtain a field of overlapping interpolation kernels that

reconstructs the discrete grid function into a continuous
function . Let us now decompose the volume into an infinite
set of parallel slices along. The contribution of a voxel
to the function represented by a slice is then given by
the 2-D intersection of its interpolation kernel and the slice
[marked as thick line across voxel’s kernel in Fig. 4(a)].
This kernel intersection is denoted by . The sum of all
scaled kernel intersections then produces the continuous
slice function and a ray integral for pixel value is
computed by sampling all slices in the ray direction along.
This changes (5) into

(6)

Here, is the coordinate of voxel and is
the 2-D kernel slice at , traversed by ray .

The rayfront as a whole produces a sampled slice image
at each depth [see Fig. 4(b)]. Hence, a complete

projection image can be formed by adding these sampled slice
images . This leads to an alternate expression for

(7)

This equation and Fig. 4(b) illustrate that the ray-sampling rate
1/ within each sampled slice image is not constant, but is
a linear function of .

The process in which an ensemble of rays in a rayfront
at depth generates a sampled slice image can be
decomposed into two steps.

1) Reconstruction of the discrete grid signal into a
continuous signal by convolving with the
interpolation filter .

2) Sampling by a comb function with period
.

This can be written as

comb

comb

(8)

Here, and in all following equations, . In the frequency
domain, (8) is expressed as follows:

comb

(9)

If the backprojection is performed correctly (we will justify
this later), we can assume that the grid contains frequencies of
up to but not greater than . Then, since is considered
an ideal box in the frequency domain with bandwidth, it
removes all aliases of and we can write (9) as follows:

comb

(10)

using the relationship [7]

comb (11)

In the parallel-beam case, for all and the aliases
of in will not overlap. In that case, (attenuated
by a nonideal ). However, in the cone-beam case there is a
chance that ’s signal aliases in overlap in the frequency
domain whenever , i.e., . Thus each slice
with potentially contributes an aliased signal to the
composite projection image.

We can fix this problem by adding a lowpass filter
between and the sampling process for all slices with

comb

(12)

An efficient way of implementing this concept is to pre-
convolve with a lowpass filter , say a boxfilter of
width , and use this new filter in place of for
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(a) (b)

Fig. 5. (a) Frequency response of the interpolation filterH0 and the combined filterHB at zf=zc = 1:42Tg . (b) Impulse response of the same filtersh0

and hb at z=zc = 1:42Tg (dash-dot:h0, solid: hb). In both cases,h is the Bessel filter described by Matej [23].

interpolation. An alternative method is to simply decrease the
bandwidth of to which gives rise to a filter

comb

(13)

This technique was also used in [38] to achieve accurate
perspective volume rendering with the splatting technique
[41]. The frequency response of is shown in Fig. 5(a) for
the slice at where . The frequency
response of is also shown. In both cases,is the Bessel
filter described by Matej [23]. We notice that the frequency
responses of both filters are similar and we also observe that
both effectively limit the bandwidth to . Note,
however, that although reducing the bandwidth offor
properly separates the signal aliases, the upper frequency bands
of the grid signal in these regions have been filtered out by
the lowpass operation and will not contribute to the projection
images.

According to the Fourier scaling property, is obtained
from by stretching and attenuating it in the spatial domain.
The sampled slice signal is then

comb

(14)

This filter is shown in Fig. 5(b) and is also contrasted with
. The spatial extent of is , while the spatial

extent of is (for ). Thus,
for , . Therefore, if ,
then as long as , is more efficient to use for
interpolation. Since the majority of all interpolations occur in
this range, the use of is to be preferred.

Finally, although one must use a stretched and attenuated
version of to lowpass before sampling it into when

, one cannot use a narrow and magnified version of
when . Doing so would increase’s bandwidth above

and would introduce higher order aliases of into the

reconstructed . Hence, we must use in its original width
when .

Not only the ART projection step is affected by the nonuni-
form grid-sampling rate of the cone-beam rays, the backpro-
jection step must also be adapted. This is discussed next.

2) Adapting the Backprojection Algorithm for Cone-Beam
ART: In backprojection, as in forward projection, the volume
is traversed by an ensemble of divergent rays. However,
in backprojection the rays do not traverse the volume to
gather densities, instead, they deposit (corrective) density into
the volume. In other words, the volume now samples and
interpolates the ensemble of (correction) rays, rather than the
rays sampling and interpolating the volume. For the following
discussion recall that, for convenience, we assume that all

rays of a projection first complete their projection
and then all simultaneously correct the volume voxels. Let us
now again decompose the volume into an infinite set of slices
along the axis, oriented perpendicular to the beam direction,
and consider the corrections for the voxels within each slice
separately. Each ray carries with it a correction factor corr,
computed by the fraction in (3). As in the projection phase,
we use as the interpolation filter within a slice. Then
the total correction to update is given by the sum of
all ray corrections corr, for voxel within a
slice, integrated over all slices. This gives rise to the following
equation which is similar to (6):

corr

corr (15)

This equation is in line with the traditional viewpoint of ART.
Let us now consider an alternative representation that will help
us to explain the aliasing artifacts of cone beam. We observe
from Fig. 4 that the intersection of the ensemble of rays with a
slice, say the one at , gives rise to a discrete image
with the pixel values being the correction factors corr. Note
that the pixel rate in the is a linear function of , which is
equivalent to the situation for the in the projection case
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[illustrated in Fig. 4(b)]. In order to compute the correction
factors , the voxel grid then samples and interpolates each
of the slice images into a correction image with
constant pixel period , and each voxel integrates all its
correction factors in the along . Again, we use as
the interpolation filter within a slice. The correction for
voxel can then be expressed as follows:

(16)

Here, is the coordinate of voxel and
is the 2-D kernel slice at , traversed by ray at

.
Let us concentrate on one interpolated correction image

. Since the interpolated signal is now the ensemble of
rays and the sampling process is now the volume grid, the
roles of and in (8)–(10) are reversed. The interpolation
of the rayfront slice image into a correction image
by the voxel grid can be decomposed into two steps.

1) Reconstruction of the discrete correction rayfront signal
into a continuous signal by convolving

with the interpolation filter . Notice that, for now, in
order to capture the whole frequency content of, we
set the bandwidth of to the bandwidth of the rayfront
grid . This is a new approach to ART, as
normally the bandwidth of is always set to , along
with an amplitude scale factor of 1.0.

2) Sampling into by a comb function with period
.

This is formally written as

comb

comb

(17)

In the frequency domain, this is expressed as follows:

comb

(18)

Since ’s and ’s bandwidth is always , all aliases of
are eliminated by the filtering with and we can write (18)
as follows:

comb

(19)

again using the relationship of (11). We potentially get over-
lapping aliases in when . However, when , no
overlap occurs. This means that only for do we need
to limit to the bandwidth of the grid, i.e., , resulting in a
filter . For all other we use the bandwidth of the rayfront

. More formally

comb

comb

(20)

Again, according to the Fourier scaling property,is obtained
from by stretching and attenuating it in the spatial domain.
The sampled slice signal is then

comb

comb

(21)

Thus, for , the bandwidth of is and the scaling
factor in the spatial domain is . Reducing the amplitude
of when prevents the over-exposure of corrective
density in the volume slices near the source [as evident in
Fig. 3(a)]. On the other hand, for , the bandwidth
of is and the scaling factor in the spatial
domain is 1.0. In this case,’s width is increased from to

, which prevents the under-exposure of some voxels
in the volume slices far from the source and facilitates a
homogenous distribution of the corrective energy. If we used
a more narrow filter for then we would introduce the
higher order aliases of into the reconstructed , which
is manifested by the aliased grid-like pattern in the far slice
of Fig. 3(a).

Note that if projection and backprojection are performed
with the proper filtering, as described here, then the recon-
struction volume will never contain frequencies greater than

. Thus, our previous argument that the grid projection may
assume that the volume frequencies never exceedis correct.
Of course, there is a small amount of aliasing introduced by the
imperfect interpolation filter, but these effects can be regarded
negligible as the Bessel–Kaiser filter has a rather fast decay
in its stop band [see Fig. 5(a)].

3) Putting Everything Together:Since we are using an in-
terpolation kernel that is preintegrated into a 2-D footprint
table, we cannot represent the depth-dependent kernel size
accurately and still use the same footprint everywhere in the
volume. An accurate implementation would have to first distort
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(a) (b)

Fig. 6. Reconstruction with ART utilizing the new variable-width interpolation kernels. (a) The cone cut of Fig. 3(a) after one projection was processed.
We observe a uniform distribution of the correction factors. (b) The slice of Fig. 1(a) (� = 0:08,  = 60

�, VVV (0)
= 0: three iterations, 80 projections).

The strong artifacts apparent in Fig. 2(a) were successfully eliminated by using the new filter.

the 3-D kernel with respect to the depth coordinateand then
integrate it along . Since the amount of distortion changes
for every , we would have to do this process anew for every
voxel. Since this is rather inefficient, we use an approximation
that utilizes the generic footprint table of an undistorted
kernel function and simply stretches it by whenever
appropriate. Here, is the depth coordinate of the voxel
center. Thus, the volume regions covered by the voxel kernel
for which are lowpassed too much, while for the
amount of lowpassing is less than required. However, since the
kernel extent is rather small and the volume bandlimit rarely
reaches the Nyquist limit, this error is not significant.

Another issue is how one goes about estimating the local
sampling rate of the grid of rays. Highest accuracy is
obtained when the curved representation of the rayfronts is
used (see Fig. 4). In this case one would compute the normal
distance between the set of neighboring rays traversing the
voxel for which the kernel needs to be stretched (see Appendix
A). An easier way, that is nevertheless a good approximation,
is to simply use the voxel’s coordinate in conjunction with
the method of similar triangles to estimate(see Appendix B
for a quantitative error analysis). This approximates the curved
rayfronts to planar rayfronts, as we did in our theoretical
treatment. Various fast algorithms for the estimation of
are the subject of another paper [27].

Since the interpolation kernel is stretched and scaled differ-
ently for projection and backprojection, the computed weights
in these stages are different as well. Thus, (3) changes to

(22)

Here, is the weight factor used for the forward projection
and is the weight factor used for backward projection.

Fig. 6 shows images of a reconstruction obtained with the
same parameters settings than Fig. 2(a), but using the new
approach for cone-beam ART. Fig. 6(a) shows the cone cut
of Fig. 3(a) after one projection was processed. As was to

be expected, the correction cone now has uniform intensity.
Finally, Fig. 6(b) shows the reconstructed slice of Fig. 1(a).
Here we observe that this reconstruction no longer displays
the strong aliasing artifacts that dominated Fig. 2(a).

IV. 3-D CONE-BEAM RECONSTRUCTION WITHSART

Let us now investigate SART and its behavior in the cone-
beam setting. The bracketed part in the numerator of (4)
is equivalent to the numerator of (3). Hence, the projec-
tion process of SART is identical to the one of ART and
Section III-B1 applies again. However, SART’s backprojec-
tion process differs from that of ART. In contrast to ART, in
SART, after the ray grid has been interpolated by the volume
grid, a voxel correction is first normalized by the sum of
influential interpolation filter weights before it is added to the
voxel. This changes (15) to

corr

corr

corr

(23)

We will see that this provides for a smoothly interpolated
correction signal, even when the bandwidth of the interpolation
filter is a constant , as is the case in the traditional ART
and SART approaches. Let us now illustrate this behavior
through an example (see Fig. 7). Here, we utilize a uniform
discrete correction signal [spikes in Section III-B2], a
1-D version of the one used in Fig. 3, and a linear interpolation
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(a) (b)

Fig. 7. Reconstructing a uniform discrete correction signalcs(z) (spikes) into the continuous signalc(z) with ART and SART, using a linear interpolation
filter h (depicted here for a bandwidth of!g in a dotted line). Signalc(z)ART is the reconstruction ofcs(z) with ART and the traditional interpolation filter
of bandwidth!g. In (a), whenz < zc the correction signal is magnified, as in Fig. 3(a), near slice. In (b), whenz > zc the correction signal is aliased, as in
Fig. 3(b), far slice. As previously discussed, we can avoid these effects by using variable interpolation kernels, i.e., by scaling the amplitude ofh in (a) and
by wideningh in (b), which yields the correct signalc(z)var:kern:ART in both cases. The normalization procedure of SART prevents magnification and aliasing
artifacts and, thus, in both (a) and (b) a correctly reconstructed signalc(z)SART, identical toc(z)var:kern:ART , is produced.

(a) (b)

Fig. 8. Reconstruction with SART. (a) The cone cut of Fig. 3(a), after one projection was processed. (b) The slice of Fig. 1(a) (� = 0:3,  = 60�,
VVV (0) = 0: three iterations, 80 projections). The aliasing artifacts apparent in Fig. 2(a) do not exist.

filter (dotted line) for ease of illustration. In this figure we
show the result of the signal reconstruction with, i.e., the
signal prior to sampling into by the voxel grid.
Consider now Fig. 7(a), where the situation for is
depicted. In this case, the uniform correction signal has a rate

. In accordance with our previous results, we see that
if is reconstructed with traditional ART utilizing an
with constant bandwidth , we obtain a signal with
an amplitude much higher than the original correction signal.
We know that we can avoid this problem by reducing the
interpolation filter magnitude, which gives rise to the correctly
scaled signal . The correction signal reconstructed
with SART, on the other hand, does not require a
reduction of the interpolation filter amplitude, since for each
voxel the sum of interpolated ray corrections is normalized
by the sum of the respective interpolation filter weights. Thus,
with SART, the reconstructed correction signal always has the
correct amplitude. For [see Fig. 7(b)] when ,
we observe an aliased signal of half the grid frequency for

instead of the expected constant signal. Sampling
into would then result in a gridded pattern

similar to the one observed in the far slice of Fig. 3(a). We
know, however, from the previous discussion that we can

eliminate this effect by widening with respect to . This
yields the correct signal . For SART, on the other
hand, a smooth and uniform of correct amplitude
is obtained even with the original interpolation filter width,
again, due to the normalization step. Consider now Fig. 8(a)
which shows the actual cone cut of Fig. 3(a) for SART. We
see that the distribution of correction energy is homogeneous,
even though the bandwidth of the interpolation filter was set
to everywhere in the volume. Finally, Fig. 8(b) shows a
reconstruction obtained with SART under the same conditions
as the previous ART reconstructions. We observe that no
significant reconstruction artifacts are noticeable. Thus, we can
conclude that the SART approach is inherently more adequate
for algebraic cone-beam reconstruction than the traditional
unmodified ART approach.

V. RESULTS

In order to assess the goodness of the reconstructions,
we define two figures of merit: 1) the correlation coefficient
(CC) between the original 3-D Shepp–Logan brain phantom
(SLP) and the reconstructed volume and 2) the background
coefficient of variation (CV). These measures were also used
by Ros et al. [33].
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We calculate CC within two selected regions of the SLP:
1) the entire inside of the head (without the skull) and 2)
an ellipsoidal volume containing the three small SLP tumors,
as shown at the bottom of the brain section of Fig. 1(a) and
described by ellipsoids 7, 8, and 12 in the SLP definition
(see Table I). While 1) measures the overall correlation of
the reconstructed volume with the original, 2) captures the
sensitivity of the reconstruction algorithm to preserving small
object detail. The CC is defined by

CC (24)

where and are the values of the voxels in the original
phantom volume and the reconstructed volume, respectively,
and and are their means.

The background CV is calculated within four ellipsoidal
featureless regions located in different areas of the SLP.
Since these regions are ideally uniform, CV represents a good
measure for the noise present in the reconstructed SLP. The
overall CV is the average of the four individual CV’s and is
defined as

CV (25)

where is the standard deviation of the voxel values within
region .

Using CV and CC to assess reconstruction quality, we have
conducted a thorough study of the effects of various parameter
settings as follows.

• The Initial State of the Reconstruction Volume: 1) Zero;
2) the average value of one of the projection images,
properly scaled; and 3) the average value of the SLP brain
matter (e.g., 1.02). The last initialization method is hard
to achieve in practice, since one does not usually know
the average value of the reconstructed object in advance.

• The Setting of the Relaxation Coefficient: Experiments
revealed that values in the range of yielded
reconstructions that offered the best balance with respect
to reconstruction quality and number of iterations.
Therefore, reconstructions were obtained for

and
• Time-Weighted Variation of During the First Iteration:

Starting from 10% of the final value we have used: 1)
immediate update to the final value; 2) a linear increase;
and 3) an increase due to a shifted cosine function (similar
to [4]).

• The Correction Algorithm: 1) ART and 2) SART.
• The Size of the Interpolation Kernel: 1) Constant and 2)

depth-dependent, as described in Section III-B.
• The Cone Angle: 20 , 40 , and 60.
• The Number of Iterations: 1–10.

During our experiments we found that there is no significant
difference in reconstruction quality whetheris varied linearly
or with a cosine function. Thus, we only report results using
a linear variation.

Fig. 9 shows a number of plots illustrating CC and CV for
various reconstruction methods and parameter settings. Fig. 10
shows reconstructed SLP slice images after three iterations.
Three iterations were chosen because the plots indicate that
after this number of iterations both CC and CV have reached
a level close to their final value. In both Figs. 9 and 10 the
following terminology is used. Each parameter combination
is described by a three-digit code. The first digit codes the
size of the interpolation kernel ( for constant and for
variable, depth-dependent). The second digit codes the volume
initialization method (- for zero and for projection average,

for SLP average). Last, the third digit codes the function at
which is varied during the first iteration (- for no variation
and for linear increase). Reconstructions were obtained for
each combination of parameter settings over the length of ten
iterations for all six settings of. In order to keep the amount
of presented data manageable, we do not plot the effect ofin
Fig. 9. Instead, at every iteration and parameter combination
we pick the lowest CV or highest CC, respectively, that
was obtained in the set of six-dependent reconstructions.
As the ideal is somewhat object-dependent [17], this does
not represent a serious tradeoff. During the course of our
experiments, we found that for ART and the SLP the
that produces good reconstructions within four iterations is
somewhere around 0.08 and for SART thissetting is around
0.3.

Fig. 9(a)–(c) shows the CC for the SLP tumors at a cone
angle of 40 for the three main correction methods used:
ART using the constant interpolation kernel, ART using the
variable-size interpolation kernel, and SART using both ker-
nels. In Fig. 9(a) we see that the reconstructions forare
always better than the respective ones without. Since it
is not any costlier to do , the following plots will always
use . In Fig. 9(b) we see that reconstruction results with

are similar to the ones with . Since is not
realistic anyway, we will use only for the remaining
discussion. In the same figure we also observe that- , -,
and - yield only marginally worse results than , thus,
we will eliminate these settings from further plots. Finally, in
Fig. 9(c), we see that SART - is either similar or always
better than SART -- and the same is true for SART- and
SART --. Thus, we will be using only SART - and SART

- . Also, preceding experiments revealed that SART is not
dependent on the initial state of the volume. This is largely
due to the circumstance that SART corrects the volume on an
image basis, which provides a good initialization after the first
image was spread onto the volume.

The following plots [Fig. 9(d)–(l)] illustrate the effects of
the settings of the remaining parameters on CC and CV.
[Please use the legends inserted into Fig. 9(f) and (i).] In
Fig. 9(d), (g), and (j), we observe that when using the constant-
sized interpolation kernel for ART, CC and CV for recon-
structions at a 60cone angle improve significantly as volume
initialization is made more accurate. This can also be seen in
the reconstructed images shown in the first column of Fig. 10.
If the volume is initialized to zero, the small SLP tumors
(and other portions of the image) are completely obliterated by
aliasing artifacts (ART --). The artifacts are reduced some-
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(a) (b)

(c) (d)

(e) (f)

Fig. 9. CC and background CV for ART and SART with constant and variable interpolation kernel size for three regions of the SLP (using 80 projections
of 1282 pixels each). Each reconstruction was performed for� = 0:5; 0:3; 0:1; 0:08; 0:05; and0:02; and the graphs plot the hightest CC/lowest CV of all
� settings at each iteration. (C: constant sized kernel,V : variable sized kernel,I: volume initialized to average of projection 0,I�: volume initialized to
average of the SLP,G: linear increase of� during the first iteration, -: volume initialization to zero or constant�).

what if the volume is initialized to the average value of one of
the projection images (ART ). The artifacts are reduced
further, but are still quite noticeable if the volume is initialized
to the average value of the SLP brain matter (ART ).
It is apparent that volume initialization alone cannot remove
all artifacts. However, the reconstructions obtained with the
variable-sized interpolation kernel in conjunction with ART
and the ones obtained with SART are all artifact free. The plots
support these observations with only SART and the ART
methods having good CC and low CV. The plots also indicate
that reconstruction quality increases when SART is used with

a kernel instead of a kernel, however, the improvements
are not large. By the same token, reconstruction quality also
improves when the ART methods are used in conjunction
with volume initialization and gradually increasing relaxation
coefficient, but the rate of improvement is at a much smaller
scale than in the ART case.

From the images in the second column in Fig. 10 we observe
that for a cone angle of 40, considerable artifacts around the
tumors still remain for ART -- and ART . Again, notice
the improvements with more accurate volume initialization.
For ART the artifacts are more attenuated, but are
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(g) (h)

(i) (j)

(k) (l)

Fig. 9. (Continued.) CC and CV for ART and SART with constant and variable interpolation kernel size for three regions of the 3-D Shepp–Logan phantom.
(C: constant sized kernel,V : variable sized kernel,I: volume initialized to average of projection 0,I�: volume initialized to average of Shepp–Logan brain,
G: linear increase of� during the first iteration, -: volume initialization to 0 or constant�).

still visible (however, note again that ART may not
always be realizable). On the other hand, with ART and
SART - , the artifacts are completely eliminated. The plots
of Fig. 9(e), (h), and (k) support these observations: the CC’s
are consistently higher, especially for small object detail like
the SLP tumors, and the CV’s are consistently lower with the
ART methods and SART than for the ARTmethods (with
ART being closest to ART and SART).

The plots of Fig. 9(f), (i), and (l) indicate that for a smaller
cone angle of 20 the differences between the methods are
not as pronounced as for the larger cone angles, as long as
one initializes the volume at least with the average projection

image value. The circumstance that ART and SART
maintain a marginally better CC for the SLP tumors in a
quantitative sense could be relevant for automated volume
analysis and feature detection. However, in a visual inspection
the differences are hardly noticeable, as indicated in the
reconstruction images in the third column of Fig. 10.

Finally, in Fig. 11 we show the sagittal cut of Fig. 1(b),
reconstructed with the new variant of ART from 60cone-
angle projection data. We notice that although no aliasing
artifacts due to the cone-beam projection/backprojection are
present, we still have inaccuracies in the planes at the top
and bottom of the phantom. These inaccuracies are due to
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Fig. 10. Slice of Fig. 1(a) reconstructed with various methods and cone angles.

the incompleteness of the projection data obtained from the
circular source orbit and have been observed in other single-
source, circular-orbit cone-beam reconstruction algorithms as
well [40].

VI. RECONSTRUCTION WITHNOISY PROJECTIONDATA

This discussion would not be complete without an excursion
into the effects of noise on the reconstruction result. In
particular, we would like to investigate how relevant the
noise-like artifacts introduced by aliasing in projection and

backprojection are in the presence of noise in the underlying
projection data and also with regards to the contrast of the
object features. For this purpose we have added various levels
of Gaussian noise to our projection data. The noise model
employed was the one proposed by Herman [16]. Here, each
projection pixel is multiplied by a Gaussian distributed random
number with mean 1.0 and standard deviation. In our
experiments, we applied noise levels of (0.5%),

(1%), and (3%). Since the dynamic
range of the Shepp–Logan phantom’s features are at similar
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Fig. 11. The sagittal slice of Fig. 1(b), reconstructed with ART (using
depth-adaptive kernels) from 60� cone-beam data. Although no alias-
ing-related artifacts are present, we still have artifacts due to incomplete
projection data in the top and bottom planes of the object.

levels, we chose to increase the signal-to-noise ratio for better
visualization of the effects. This was achieved by increasing
the contrast of the underlying Shepp–Logan phantom by a
factor of four.

Consider now Fig. 12(a), where we have reconstructed the
phantom with projection data subjected to 0.5% noise—about
1 4 of the contrast of the three small tumors. We see that the
noise-artifacts due to aliasing dominate those due to photon
count noise. Next, consider Fig. 12(b) where the projection
data contained 1% noise (about 12 of the tumor contrast).
We observe that the artifacts due to aliasing are now at about
the same level as those due to noise in the projections. We also
recognize that by using ART with adaptive kernels or SART,
we can at least eliminate the aliasing-related noise-like artifacts
and so improve the quality of the reconstruction. The artifacts
due to projection noise, however, still remain. Finally, let us
test at what level of feature contrast the aliasing artifacts start
to become irrelevant. Fig. 12(c) provides more insight. Here,
we have increased the contrast in the phantom by a factor of
eight and have added 1% noise to the projections. We observe
that the effects of aliasing, although noticeable, are much less
pronounced than at lower contrasts. We conclude from these
experiments that the noise-like artifacts due to aliasing in
projection–backprojection are mostly relevant for objects with
low feature contrast, typically less than 10%. However, other
experiments (with both noisy and noiseless data) have shown
that they are still noticeable for much higher contrasts (20%
and more). Furthermore, we conclude that for the low-contrast
objects the effects of projection noise starts to dominate the
aliasing-related noise once the projection noise level exceeds
approximately half of the feature contrast.

VII. CONCLUSIONS

This paper examined the use of ART-type methods to
reconstruct 3-D objects from a relatively sparse set of cone-
beam projection data. In particular, we were interested in
the reconstruction of low-contrast objects which put a high
demand on the accuracy of the reconstruction algorithm.
In the past, ART has seen frequent use for the cone-beam
reconstruction of high-contrast objects, e.g., in computed an-
giography, however, the low-contrast case has not received
much attention until now. One purpose of this paper was

to present ART as an attractive alternative to the various
FBP-type approaches that are mainly used in today’s general
cone-beam reconstruction research. In particular, it is the
limited projection case where we see ART’s greatest potential.
Even though ART is iterative in nature, which was often
equated with slowness of computation, our research indicates
that really only three iterations are necessary to render a
reconstruction result close to the optimum (given proper
parameter settings). We found that ART’s present mechanism
of computing the weight coefficients was insufficient for cone
angles greater than 20in that it lead to strong aliasing artifacts
in the reconstructed object. We showed examples where small
object detail was completely obliterated by these aliasing
artifacts. Even though these artifacts may have never been
noticeable in high-contrast reconstructions, they become very
visible in the low-contrast case. To eliminate these artifacts,
the new concept of depth-dependent interpolation kernels was
introduced. By using these kernels we obtain cone-beam
reconstructions free of cone-beam related aliasing artifacts.
In this respect, it may be worthwhile to investigate if these
kinds of kernels are also useful for wide-angle cone-beam
FBP reconstructions. On the other hand, apart from the ART
correction scheme, we also investigated the use of SART as an
alternative correction algorithm. We found that SART, being
a projection-based correction procedure, is also very suitable
to prevent the aliasing artifacts of traditional ART.

We then investigated the impact of volume initialization and
the setting of the relaxation coefficient for the various methods
developed. Our results indicate that for cone angles of 60, as
is often used for microtomography, strong aliasing artifacts
prevail, even with optimal volume initialization. These arti-
facts can only be eliminated when ART is used in conjunction
with the depth-dependent kernel or by using SART. The same
is also true, though in a less dramatic way, for cone angles
of 40 , which are commonplace in many clinical applications.
For cone angles of 20the aliasing effects are not visible with
either method, but can still be measured numerically.

Our research suggests that SART conceptually represents a
better correction scheme than the traditional ART approach,
as it produces artifact-free reconstructions for all cone angles
without the need for depth-dependent interpolation kernel
sizes. However, SART’s drawback is that it is not easily
accelerated. As other research [27] has indicated, ART is
considerably easier to speed up than SART, and runtime
ratios of approximately 1.5 have been observed.
However, by using elaborate methods for SART this ratio can
be brought down to 1.15.

It should be mentioned that the ART methods outlined in
this paper for cubic grids also fully extend to the dodecahedral
grids that were proposed in [24]. These grids were shown to
reduce the number of voxels to be processed by about 30%.

We have demonstrated that our new variant of ART (and
also SART) removes cone-beam related aliasing artifacts,
even when the projections are noisy. All that remains in
the reconstructions are the noise-related artifacts. Although
it has often been said that ART performs poorly in the
presence of noise, Herman’s variants of ART, termed ART2
[15] and ART3 [16], were demonstrated to render superior
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(a)

(b)

(c)

Fig. 12. Reconstructions with noisy data and different levels of phantom contrasts: (a) 0.5% of noise and four times the original contrast. (b) 1% of noise
and four times the original contrast. (c) 1% of noise and eight times the original contrast. (Two iterations, all other parameters like Fig. 10.)

results, at least when the projections were sparse. Since these
algorithms were mostly studied in the early days of ART, with
rather inaccurate projection methods, it would be interesting
to see how they perform with modern projection technology.
Present research is underway to investigate these pioneering
algorithms, in addition to new variants.

Finally, in this paper we have restricted our reconstruction
domain to an isolated spherical region, such as the human
head. Of course this is not always possible, for instance, when
imaging an extended object such as the human torso. In this
case, the circumstance that cone-beam rays at large angles
with respect to the mid-plane traverse object regions that are
not part of the reconstructed object region is likely to have
an adverse affect on the reconstruction result. This problem is
generally called the teepee effect and is shown in Fig. 13(a).
We can prevent the teepee effect by using noncircular source

paths (see, e.g., [40]) or twin-cone source arrangements [21],
[36]. In the latter solution, two cone-beam sources rotate
on noncoplanar coaxial congruent circular orbits around the
patient and the reconstruction algorithm utilizes only rays,
due to adjacent half cones of these two point sources [see
Fig. 13(b)]. The distribution of rays in the cylindrical twin-
cone region of interest is nearly homogeneous. Note that
larger reconstruction regions will require larger cone angles
and henceforth depth-adaptive interpolation kernels. At the
same time, noncircular orbits and twin-cone arrangements
will also improve the completeness of the projection data
when the object does fit into a sperical reconstruction region
(see, e.g., Wang [40] for a comprehensive study). By using
these trajectories, we can reduce the remaining artifacts in the
object planes further off the midplane (as shown in Fig. 11).
Future work is planned to investigate the performance of the
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(a) (b)

Fig. 13. (a) Single cone geometry: rays at large angles with respect to the mid-plane traverse regions outside the reconstruction sphere. (b) Twin-cone
geometry: a nearly homogenous ray density is achieved in the cylindrical volume section that is traversed by the two adjacent twin half cones [21], [36].

Fig. 14. Computing the perpendicular ray distancêTr to estimate the
accurate ray grid sampling ratê!r. The dashed line is the ray that traverses
from the source through the center of projection pixeli = 2. The lines (shown
in solid) that connect the pixel boundaries with the source intersect the volume
slice atz = zs. The distance between these intersections isTr and1=Tr was
used in Section III as the approximate ray grid sampling rate.Tg is the period
of the volume grid andzc is the slice in whichTr = Tg. Finally, T̂r is given
by the perpendicular distance of the two pixel boundary rays atz = zs.

here presented concepts in conjunction with the twin-cone
arrangement and other more advanced source trajectories.

APPENDIX A
ACCURATE RAY-GRID SAMPLING RATE

In Section III we used the approximate ray grid sampling
rate . Consider Fig. 14 where we show one of several ways
to estimate the accurate ray-grid sampling rateat a volume
grid position with and . Here, is the
index of the projection pixel and is the distance between
the points of intersection of the lines that go from the source
to the pixel boundaries with the volume slice plane at .
The method uses the perpendicular distancebetween these
two pixel bounding lines to compute for the ray
of pixel (see Fig. 14)

(26)

A plot of the rayfront for which is shown in
Fig. 15.

Fig. 15. Shape of the rayfront with constant!̂r. Here the case of̂!r = 1:0
is shown. In the regions on the left side of the curve the ray grid sampling
rate is higher than the sampling rate of the volume grid, while in the regions
on the right of the curve the ray grid sampling rate is lower than the
volume-grid-sampling rate.

Fig. 16. The relative errorestretch when usingTr instead of T̂r for
stretching the kernel functions. We see that further away from the cone center
the kernel is stretched too much if the curved ray front is approximated by
a planar rayfront to estimate!r. This means that the grid signal is overly
smoothed when sampled. The maximum error of 15% occurs at the cone
boundary. This means that the kernel is stretched 15% more than necessary.

APPENDIX B
ERRORSWHEN APPROXIMATING

THE RAY GRID SAMPLING RATE

The relative error when using instead of for
stretching the kernel functions is given by

(27)

This error is plotted in Fig. 16.
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