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Anti-Aliased Three-Dimensional Cone-Beam
Reconstruction of Low-Contrast Objects
with Algebraic Methods
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Abstract—This paper examines the use of the algebraic recon-
struction technique (ART) and related techniques to reconstruct
3-D objects from a relatively sparse set of cone-beam projections.
Although ART has been widely used for cone-beam reconstruc-
tion of high-contrast objects, e.g., in computed angiography, the
work presented here explores the more challenging low-contrast
case which represents a little-investigated scenario for ART.
Preliminary experiments indicate that for cone angles greater
than 20°, traditional ART produces reconstructions with strong
aliasing artifacts. These artifacts are in addition to the usual
off-midplane inaccuracies of cone-beam tomography with planar
orbits. We find that the source of these artifacts is the nonuniform
reconstruction grid sampling and correction by the cone-beam
rays during the ART projection—backprojection procedure. A
new method to compute the weights of the reconstruction matrix

by the imaged object, is collected by a two-dimensional (2-D)
detector located on the opposite side. While fan-beam CT
has been in clinical use for more than 20 years, cone-beam
CT scanners are still in the prototype stage. It is, however,
expected that cone-beam CT, due to its great advantages, will
play a much larger role in the future. This is for various
reasons. First, cone-beam CT is very dose-efficient, as it
utilizes more of the emitted X rays for image generation
than fan beam, yielding a 2-D projection and not just a one-
dimensional (1-D) strip at each exposure. Second, due to the
speedy data acquisition, motion artifacts caused by patient
movement or breathing are much less of an issue than in

is devised, which replaces the usual constant-size interpolation Slower forms of volumetric CT, such as the stacks-of-(fan-

filter by one whose size and amplitude is dependent on the source-

beam-)slices representation or the more recent helical/spiral

voxel distance. This enables the generation of reconstructions CT (see, e.g., [10]). Likewise, imaging of dynamic structures

free of cone-beam aliasing artifacts, at only little extra cost. An
alternative analysis reveals that simultaneous ART (SART) also
produces reconstructions without aliasing artifacts, however, at
greater computational cost. Finally, we thoroughly investigate
the influence of various ART parameters, such as volume ini-
tialization, relaxation coefficient A, correction scheme, number
of iterations, and noise in the projection data on reconstruction
quality. We find that ART typically requires only three iterations
to render satisfactory reconstruction results.

Index Terms—Algebraic reconstruction technique (ART),
aliasing, computed tomography (CT), cone-beam reconstruction,
three-dimensional reconstruction.

I. INTRODUCTION

such as the human heart is also greatly facilitated [32].

Cone-beam imaging received much attention with the con-
struction of the dynamic spatial reconstructor (DSR) at the
Mayo Clinic [32] for dynamic volume imaging of moving
organs. However, since the cone angle used was so small
(8°), good reconstructions could be obtained by employing
a traditional fan-beam algorithm, reconstructing the object in
parallel layers. Later, Altschuler proposed two true cone-beam
algorithms for the DSR, one using an analytic series expan-
sion approach [1], [2] and one using an iterative Bayesian
framework [3]. In unrelated work, Budinger [8] developed a
solution based on least squares.

It is apparent that over the past 15 years cone-beam re-

ONE-BEAM computed tomography (CT) can be thoughdearchers have mostly focused on reconstruction algorithms

of as the three-dimensional (3-D) extension of the widelyased on the filtered backprojection (FBP) approach (see Smith
popular fan-beam CT. It reconstructs a 3-D representati{8v] for a review of these algorithms and Wang [40] for a
of either the entire object, or at least a thick section of itnore recent paper on practical implementations of noncircular
and is thus a volumetric imaging method. In cone-beam C¥gurce orbits). This focus can be attributed to FBP’s conve-

an X-ray point source revolving about the patient emits

rient analytical formulation which enables fast computation

diverging beam of X rays which, after becoming attenuatedf predictable duration. It is for this very reason why today’s
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simply cannot be used [20]. We can think of a variety adcenario that has not been studied much in the past. We will see
clinical and industrial applications where one or more dhat the application of the standard ART algorithm in the cone-
these conditions arise, i.e., when projections are few, sparseam setting produces strong aliasing-related noise artifacts for
or missing. A clinical example for the latter are datasets @bne angles greater than®2@ven though these artifacts may
patients with metal implants where some projections are fgve never been noticeable in high-contrast reconstructions,
contaminated that they cannot be used. On the other hafitby hecome very visible in the low-contrast situation.

cardiac imaging or intraoperative imaging yields only a limited \we will conduct our analysis using principles founded
number of images per time interval, due to organ and patigpt sampling theory. This enables us to express the weight
motion, and also_ due to restrictions on patient dose of bofRaticients in ART's system of linear equations in terms
X ray and/or radio-opaque dye. of the interpolation filter that is employed during volume

Under these conditions, an alternative reconstruction . . N .
method has been shown to have a great margin of advant r?g;ectlon and backprojection. In that respect, the quality of

The algebraic reconstruction technique (ART), originated E&e interpolation filter determines the accuracy of the weights.

Gordon, Bender, and Herman [11] (see [15] for a discussi hile several authors [5], [22], [23] have operated in this
of ART:S utility1in practical cases where projections ar ramework to determine the accurate weights for parallel-beam

limited and/or are noisy). In contrast to FBP, ART is alﬁeconstruction, the scenari_o of_diverging rays, as ocgurring
iterative procedure, i.e., it works by iteratively updating ' COne-beam reconstruction, imposes new constraints on
reconstruction grid by a projection—backprojection proceduf@e interpolation filter (and the weights) which, when not
until a convergence criterion is satisfied. The reconstructi@®served, will lead to the mentioned artifacts. We do not
task is formulated as a system of (possibly inconsistefiPncern ourselves with defining accurate bounds on the speed
simultaneous linear equations, one for each projecti®hconvergence or the nature of the final solution. Properties of
ray, which is solved by the iterative ART procedure. Thithis sort are offered by the rigorous mathematical treatments
iterative framework currently gives rise to a significantlget forward by Herman [15] and Natterer [29]. Our work could
slower reconstruction speed and is the main reason for ARBe valued as a supplement to these theoretical frameworks, as
under-utilization in present clinical applications. these treatments do not sufficiently discuss the importance of
While the research on general 2-D ART [11], [12], [14]the equation coefficients. As a matter of fact, the coefficients
[17] and 2-D fan-beam ART [13], [26] is numerous, theised in these approaches (i.e., the length of the ray-voxel
published literature on 3-D cone-beam reconstructors usiingersections) translate to simple nearest neighbor interpola-
ART-type algorithms is rather sparse. Exceptions are the eatityn filters which, when used in the projection-backprojection
works by Colsher [9] and Schlindwein [36]. However, theseperations, have been found to yield inferior reconstruction
implementations were rather inaccurate. The most popular wgsults [25]. Furthermore, the diverging nature of the rays
of 3-D cone-beam ART in recent years is in 3-D computeid completely unaccounted for. Our work closes this gap,
angiography. Here, one acquires a limited set of projectigandering the accurate set of weight coefficients for cone-beam
images of blood-perfused structures, such as vascular tre@sr and also for fan-beam ART.
in the head or abdominal regions [29], [34]. It should be In the present work, we have concentrated on single sources
noted, however, that the objects reconstructed in 3-D computgith planar circular orbits only. It is well known that this
angiography are of rather high contrast, which poses tbenfiguration gives rise to artifacts in object planes further
reconstruction problem as almost a binary one. off the midplane, due to incomplete coverage of the object’s
Another notable recent publication is the one by Matej [253-D Radon domain (see, for instance, Rizo [31]). Since this
whose studies indicate that ART also has significant merit fgy an unavoidable issue with circular source orbits, our work
noisy projection data. Matej showed for PET that ART caWill not eliminate these kind of artifacts. Only those artifacts
produce quantitatively better reconstruction results than thslated to aliasing during the ART reconstruction procedure
more popular FBP and maximum likelihood estimation (MLEjre handled. However, we will discuss later that our results
methods. In this work, however, a cone-beam reconstruct@e also valid for nonplanar source trajectories, which provide
was not used, but the projection rays were rebinned, whighmore complete projection data set.
simplified ART to the parallel-beam case. Another group of The outline of this paper is as follows. Section Il gives
researchers has successfully applied ART for SPECT datashort recap on the workings of ART-type algorithms.
[33]. That ART can produce superior results in the presengection Ill then moves ART into the cone-beam setting,
of noise was also demonstrated in an early paper by Hermaalyzes its shortcomings, and presents solutions to overcome
[15]. However, this was found only to be true in the limitedhese deficiencies. Next, Section IV discusses the use of a
projection case. In another paper, Herman then proposedrafated algebraic method, termed simultaneous ART (SART)
alternative form of ART, coined ART3, which relaxes the grigs], for cone-beam reconstruction. ART and SART, although
update conditions in favor for better noise handling [16]. relatively different in their view of the reconstruction process,
In this paper, we analyze ART for the general low-contrasgre of similar efficiency. Finally, Section V puts everything
cone-beam setting which is, as was mentioned beforetqether and presents a variety of results obtained with
our ART testbed software. In this section, the effects of
lin this context, we dc_efine onv-cc_)ntrast objects as objects that haye \wide range of ART parameters on both reconstruction
features of little variation in density (i.e., that have low contrast), such as _,. . . . .
the Shepp—Logan brain phantom [35], with a dynamic range of the maiHality and speed are investigated. The studied factors include
features of only 2.0%. This definition was also used by Tam [39]. the value and functional variation of the ART relaxation



MUELLER et al: ANTI-ALIASED THREE-DIMENSIONAL CONE-BEAM RECONSTRUCTION 521

coefficient \, the relevance of volume initialization, and theashion for all equations in (1). Note that we will be using fully
effect of the ART correction algorithm (ART versus SART)constrained ART [15], i.e., we will limit they; to an interval
Finally, Section VI investigates the effect of noise on thef [0, vmax] throughout the reconstruction procedure.
reconstruction result. The sum term in the nominator of (3) requires us to compute
the integration of a ray across the volume. The integration
Il. PRELIMINARIES process can be performed by using raycasting, i.e., sampling
ART poses the reconstruction problem as a system of lindBf volume at equidistant locations with an interpolation kernel
equations h and accumulating the interpolated values. Since accurate
integration requires many sampling points, this is very time
N consuming. A more efficient way was proposed by many
Di = Z W; Uy, 1<i< M. (1) authors [13], [22], [23], [41], in the context of parallel-beam
j=1 and fan-beam ART. It consists of reordering the ray integral
so that each voxel’s contribution to the integral can be viewed
Here, thev; are the values of the reconstruction grid elemenisolated from the other voxels. To achieve this effect, an
(called voxels from now on), the; are the values of the interpolation kernel is placed at each voxel location and its
pixels in the acquired projection images, and the weight factaimplitude is scaled by the voxel’s value. This enables one to
w;; represent the amount of influence a voxelas on a ray view the volume as a field of overlapping scaled interpolation
passing from the source through image pikel kernels of equal size which, as an ensemble, make up the
Usually, one reconstructs on a cubic voxel grid with a sideontinuous object representation. A voxgk contribution
length ofn voxels. Also, for a 3-D single-orbit reconstructions then given byw; - [ h(s)ds where s follows the line
we generally assume a spherical reconstruction region a@fdkernel integration in the direction of the ray. Here, the
projection images with a circular ROI. In this case we havitegral [ h(s) ds represents a voxel weight factor in (3). If the
N = (1/6)7n® unknown voxel values and/ = (1/4)xn? interpolation kernelis radially symmetric, we may preintegrate
relevant pixels per image. For the equation system (1) to Bdi(s) ds, often analytically, into a lookup table (also called

determined, the number of projection imagesnust be the kernel footprint). We can then traverse all (scaled) voxel
footprints for each projection ray and, in this way, accumulate

S = M = 0.67n. (2) so that the respective ray and weight sums in the nominator

(1/4)mn? and denominator of (3), respectively (see [27] for more detail).

This means that for = 128 a total of 86 projection images Backprojection is performed in a similar way except that, here,
is required. the voxels receive (corrective) energy, scaled by their weight

However, it is not always the case théthas this desired factors, instead of emitting it.
magnitude. Sometimes (1) is overdetermined or, more often,The choice of: varies in the existing ART implementations.
it is underdetermined. In either case, the large magnitutiée will be using a kernel based on the Bessel-Kaiser window,
of (1) does not allow its solution by matrix inversion oms proposed by Matej and Lewitt [22], [23]. Multidimensional
least squares methods. In addition, noise and sampling erBessel—-Kaiser functions have many desirable properties, such
in the ART implementation normally do not provide for aas fast decay for frequencies past the Nyquist rate and radial
consistent equation system. Thus, an iterative scheme proposgametry. They can also be tuned so that the kernel's fre-
by Kaczmarz [19] is used. Starting from an initial guess fayuency spectrum is at a minimum at multiples of the sampling
the volume vectoV = V(9 we select at each iteration stedrequency where the signal’s aliases are largest.
k, k > 0 one of the equations in (1): say the one for A Instead of updating the volume on a ray basis, ART-type
valuepgk) is measured which is the value of pixetomputed methods exist that correct the volume on an image basis.
using the voxel values as provided by the present state of fAge representative of these block-iterative methods is SART,
vectorV = v® A factor related to the difference qjgk) developed by Andersen [5], which was shown to significantly
and p; is then distributed back ont®®, which generates reduce the noise artifacts that were observed with ray-iterative
V&1 guch that if ap§k+1) were computed fromv B+t ART. (The same author also demonstrated SART's strength

‘ (k) . ..in the limited angle problem [4].) The projection step of
would be closer tg; thanp,™. Thus, we can divide each grid ART performs a summed volume rendering [18] of the

update into three phases: a projection step, a correction factor ) ) :
computation, and a backprojection step. reconstruction grid, then subtracts the rendered image from

The correcton process fo one elementi e. v, can -t SR B o8 IR0, SO e rendeing process
be expressed by pro) 9 gp '

N More formally, the SART correction equation is as follows:
k N

(1) _ () =t Pi— > Wintn
) =v; +A 3 Wij 3 Z n=1

J N - = @
2 : 2 N
Win, piCD,
n=1 Win,
n=

wij

where \ is the relaxation factor, typically chosen within the — v{**% = 4{* 4 L (4)
interval [0.0,1.0], but usually much less than 1.0 to dampen Z Wij

correction overshoot. This procedure is repeated in an iterative piCl
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@ (b)

Fig. 1. Slices across the 3-D Shepp-Logan brain phantomy (&) —25 mm. (b) = = 8 mm. The pixel intensities in these and all other slice images
presented in this paper were thresholded to the intgivél 1.04] to improve the displayed contrast of the brain features.

In this equation, the correction term for voxgl depends TABLE |

on a Weighted average of all rays of a projectiﬁ’g that THE DEFINITION OF A 3-D EXTENSION OF THE SHEPP-LOGAN
h H d tes th rientation anal ¢ PHANTOM [35], SMILAR TO THE ONE USED BY [6]. THE ANGLES

tra\_/erse the V_OXQ_j. (Here,¢ denotes e_ orientation angic a 6 AND ¢ ARE THE POLAR AND AZIMUTHAL ANGLES OF THE

which the projection was taken.) Thus, in SART all rays of a  Eiupsoib Z-Axis. THE SCANNER ROTATES ABOUT THE Y -AXIs

projection P, are simultaneously processed, hence the name

SimUltaneOUS ART. | Center (mm) Half-axis (mm) Angle (degrees)
Apart from the correction algorithm and also from the x y . x y z 0 o |
projection access order (see, e.g., [28]), there are other im- | 00 0.0 00 | 690 | 900 | 920 | 00 0.0 2.0
portant parameters that influence both reconstruction quality | o0 | 00 | -1.84 | 66.24 | 880 | 874 | 00 | 00 | -098
and speed of convergence. One of these factors is the re- | 220 | 250 | 00 | 410 | 210 | 160 | 720 [ 00 | -002
laxation coefficientA. Natterer [29] gives exact bounds on 4 20 | 250 | 00 | 310 | 220 | 110 | 720 | 00 | 002
the convergence characteristics with respect\twvhen the s 00 | 250 | 350 | 210 | 350 | 250 | 00 | 00 | 00l
equation system is consistent. However, this is unlikely ins 00 | 250 | 100 | 46 | 46 | 46 | oo | 0o | ool

real CT applications. In that case, ART is semiconvergentand | so | 250 | 605 | 46 | 20 | 23 | 00 | 00 | ool
the solution depends on the degree of inconsistency (as given | co | 250 | 605 | 46 2.0 23 | 900 | 00 | ool

by noise and quantization artifacts) [29]. With inconsistent 60 | 625 | -105 | 56 | 100 | 40 | 900 | 00 | 002
equations, a smalleA generally provides for a less noisy g 00 | 625 | 100 | 56 | 100 | 56 | oo 00 | 002
reconstruction, but increases the number of iterations required | oo | 250 | 100 | 46 | 46 | 46 | oo 00 | ool
for convergence. There is also the issue as to whetiséould 73 00 | 250 1 605 | 23 23 23 00 00 | ool

be set to a constant value or if it should vary over some — - —

function of time, as suggested by Andersen [4]. Then, hg@ction mechanisms with which accurate reconstructions can
should we choos& (), the initial volume? It is clear that anpe optained and which do not compromise the efficiency of
unlimited set of exact solutions exists if our equation set (1) BRT. For quality assessment we will use a 3-D extension of
underdetermined but consistent. However, no exact solutigRe Shepp-Logan brain phantom [35], similar to the one due
but many approximate solutions, may exist in the more realis{ig Axelsson [6]. The definition of our phantom is given in
case of inconsistent equations. In both cases it is clear th@pje |, while two orthogonal slices across the phantom are
some solutions will match the true object better than otheihown in Fig. 1. From this phantom, we analytically compute
Grid initialization may have a large influence on what solutiogg projection images of 12& 128 pixels each, forcing (1)
ART will converge to. One may hypothesize that the closgg pe slightly underdetermined. The projections are obtained
the initial volume matches the true object, the better the fingl equidistant angles within a range off0, 180° + ], where
solution will be. However, since in the general case itis hard 197 is the cone half-angle.

volume initialization is difficult. Section V, we would like to illustrate the material in this
section by the use of some examples. These examples will
lll. A M ODIFICATION FOR ART TO ENABLE assume certain settings of parameters such and v,
ACCURATE CONE-BEAM RECONSTRUCTION which will later be shown to be a good compromise between

In this section, we investigate the accuracy of ART in thBccuracy and speed of convergence.
context of low-contrast 3-D cone-beam reconstruction. We ) ) .
will find that ART in its present form is unsuitable in the”>: Reconstruction Artifacts in Cone-Beam ART
cone-beam setting, as it produces reconstructions with sigrffeén Traditional Techniques Are Used
icant reconstruction artifacts. Henceforth, we will prescribe a Let us now apply the ART algorithm of (3) to reconstruct
number of modifications of ART’s projection and backproa 128 volume from 80 projections withy = 60°. X is
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(@) (b)

Fig. 2. (a) The slice of Fig. 1(a) reconstructed with traditional ART from cone-beam projection)atad(08, v = 60°, v(® = 0: three iterations, 80
projections). Notice the significant stripe artifacts that completely obliterate the small tumors. (b) A reconstruction of the same slice febinepanadata
using the same algorithm and parameter settings. This reconstruction does not have the strong artifacts of (a).

set to 0.08 andV‘® = 0. The implementation uses thepotentially gives rise to aliasing, which is very likely to have

traditional preintegrated equal-sized interpolation kernels foaused the reconstruction artifacts of Fig. 2(a). The effects of

computing the elements of (3) (as described in Section IBliasing are amplified since in ART the volume is projected

The reconstruction result of slice = —25 mm after three and updated continuously, with every projection introducing

iterations is shown in Fig. 2(a). Here, we observe significaatlditional aliasing into the reconstruction.

reconstruction artifacts which obliterate the small tumors in In contrast to the cone-beam case, the parallel-beam cor-

the lower image regions almost completely. For a comparisdgction, shown in Fig. 3(b), provides a homogeneous density

Fig. 2(b) shows a 3-D reconstruction from parallel beam dagstribution. No excess density is deposited in the near slice

with the same algorithm and parameter settings. No significétz = 2z, and no aliasing-prone grid-like pattern is generated

artifacts are present in this case. in the far slice atz = z;. Thus, reconstruction artifacts are
Thus, the artifacts must result from the cone-beam confignlikely to occur and, indeed, have not been observed in

uration in which rays emanate from the source and travers¥)- 2(b). In the following section, we will now investigate

the volume in a diverging fashion before finally hitting th@ur observations more formally.

projection plane. It may be suspected that it is this diverging

nature of the rays that causes the reconstruction artifaBtis A New Scheme for Projection and Backprojection

in Fig. 2(a). Indeed, more evidence is provided by Fig. 39 Prevent Reconstruction Artifacts

where we show the reconstruction volume of a solid spherepoth the projection and the backprojection algorithms must
(diameter= 0.75) after the first correction image (at=0°) pe adapted to avoid the aliasing problems outlined in the
was applied to a volume initialized %' = 0. We show previous section. These enhancements make it necessary to
the outcome of this correction (basically a smearing of @odify ART’s basic correction algorithm. We now describe
filled circle across the volume) for both 8@one-beam data these new concepts in more detail.

[Fig. 3(a)] and parallel-beam data [Fig. 3(b)]. In these figures1) Adapting the Projection Algorithm for Cone-Beam ART:
we choose the: axis to coincide with the beam direction.|n the usual implementation of ART, a pixel vall;pék) is
Consider now Fig. 3(a) (side view) where we show a cut acrogémputed by the ray integral

the center of the cone along thedirection. A nonuniform

density distribution along this slice can be clearly observed. (k) N N
Now let us look at two cross-sectional cuts of the cone, b = Z ViWij = Z v;h(ri) (5)
perpendicular to the axis. Here, we choose = z. to be =t =t

the location of the cross-sectional slice that cuts across thherer; is the ray going from the source to image pixeind
volume center,z = z, = 2. — 0.25n to be the location £ is the interpolation kernel functioh, preintegrated in the

of a slice close to the source (a near slice), ang- z; = direction of rayr;. As noted before, the ART weight factor
zc + 0.25n to be the location of a slice far from the sourcew;; that determines the amount of influence of voxglon

and the volume center (a far slice) (see also Fig. 4). We sge pixel sump’™ is thus given byh(r;).

in Fig. 3, that much more energy is deposited in the volume Although in ART a volume is updated for each ray sepa-
slices close to the source where the ray density is high (neately, it is convenient for our discussion to treat all rays that
slice), while only a little energy is deposited in the voluméelong to one projection image as an ensemble and act as if
slices further away from the source where the ray densiyid correction is performed only after all image rays have
is low (far slice). In particular, the far slice displays a grideompleted their forward projection. Doing so allows us to use
like pattern which indicates an undersampling of the volum@inciples from sampling theory to explain and subsequently
by the rays in this slice. This inadequate ray-sampling ragéiminate the reconstruction artifacts observed before. We
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Fig. 3. Reconstruction of a solid sphere (diameted.752) after one correction at = 0° was applied. (a) Cone angle= 60°. (b) Parallel beamy = 0°.

The side view shows a cut across the volume aleng.g., the direction of the cone beam. With= z. being the location of the volume center slice
perpendicular to the cone direction (see also Fig. 4), the near slice is the volume stice at, = z. — 0.25n and the far slice is the volume slice at

z = zy = z. + 0.25n. Notice the uneven density distribution for the cone-beam reconstruction, while for parallel-beam the density is uniformly distributed.

projection plane

raylront

4 Pis2

: — A Pits T ITI‘(Z:f)

Source T e T T - 4 T
: ' - Pi - -+ T

------ = Pia - T

o Pi2
a gs(zn) gs(zr) gs(:f)
Zn Ze <y voxel j’s interpolation
kernel
(a) (b)

Fig. 4. Perspective projection for the 2-D case. (a) Rays emanate from the source into the volume along a curved rayfront which position is quéantified by
the closest distance of the rayfront to the source. For our discussion, we approximate the curved rayfronts by planar rayfronts or sticés tHéndocation
of the volume center slice,, is the location of the near slice of Fig. 3, ang is the location of the far slice of Fig. 3. (b) Slice imagggz) for z = z,, z.,
andz;. The sampling period- in each of the slice images is determined by the distanogthe slice image from the sourc;.(z,) < Tr(z.) < T (zy).

admit that this approach is slightly incorrect since in ART theay-based ART and image-based ART are not strictly the same.
projection sum of a ray belonging to a particular projectionlowever, this simplification has only a minor effect on the
image always contains the grid corrections performed by tbetcome of our analysis. As a further simplification, let us
previous ray(s) of the same projection image. Due to thidso assume that is an ideal (spatially infinite) sinc filter
circumstance, the projections and corrections obtained witlith a box spectrum in the frequency domain. Although this



MUELLER et al: ANTI-ALIASED THREE-DIMENSIONAL CONE-BEAM RECONSTRUCTION 525

assumption may seem unrealistic at first, it helps to focus the2) Sampling f(z) by a comb function with period; =
following analysis onto its relevant points and does not affect — T,z/z..
the main outcome Significantly. This can be written as

Consider now Fig. 4(a) where the 2-D case is illustrated.

Here, the dashed lines denote the linear rays along which the . Y Y

2, i1,.) = = |- fe(z, KT, e

volume is integrated. The rays that emanate from the sourcgs(7’ i) Comb(]}) <f (2, KTy) * h<Tg>>
Y
T,

traverse the volume in the form of a curved rayfront. Within y
this curved rayfront the rate, = 1/7, at which the ensemble :comb(T pym ) : <fs(27 kTy) = h( ))
. . . g~f~ec g
of rays samples the grid is constant (see Appendix A). The ®)

further the rayfront is away from the source, the smaller is

the ray ensemble’s grid-sampling rate. If one characterizes ﬁqgre, and in all following equations, € 9. In the frequency
position of the rayfront by the closest distance from the sourge - ain (8) is expressed as follows:

s(z), then there is a&s(z) = z = z. at which the rayfront ’ '

samples the grid at exactly the grid-sampling raig e.g., v

w, = wy, = 1/T,. Then, forz < z. the rayfront-sampling Gs(z, v) :mcomb<m>

rate is higher than the grid-sampling rate, while for z. the A grel”

rayfront-sampling rate is lower than the grid-sampling rate. For , < Z Flo—Fk-w,) H(i)) (9)
our discussion, we approximate the curved rayfronts by planar Nt I Wy

rayfronts or slices (see Appendix B for an error analysis).

Thus, in Fig. 4(a)z, is the location of the near slice of Fig. 3If the backprojection is performed correctly (we will justify

and z; is the location of the far slice. this later), we can assume that the grid contains frequencies of
We mentioned earlier that by placing an interpolation kerngp to but not greater tham,/2. Then, sinceh is considered

h at each grid voxej and scaling it by the grid voxel's value an ideal box in the frequency domain with bandwid, it

v; we obtain a field of overlapping interpolation kernels thaemoves all aliases of and we can write (9) as follows:
reconstructs the discrete grid functigf) into a continuous

function f. Let us now decompose the volume into an infinite 1
. A ) Gs(z,v) = comb) * F'(v)
set of parallel slices along. The contribution of a voxel WyZe /% <wgzc/2>
to the functiong(z) represented by a slice is then given by oo
the 2-D intersection of its interpolation kernel and the slice = Z Flv—Fk-wyz./2)
[marked as thick line across voxgls kernel in Fig. 4(a)]. k=—o0
This kernel intersection is denoted By z). The sum of all i
scaled kernel intersectiorigz) then produces the continuous = > Flo—k-w,) (10)
slice functiong(z) and a ray integral for pixel valupgk) is k=—o0

computed by sampling all slices in the ray direction aleng
This changes (5) into

N N e k
= [ Y v = [ Sz —z,m). @ o= 3 o(v-x)
% j=1 % j=1

using the relationship [7]

k=—oco

Here, z; is the » coordinate of voxelj and h( ) is In the parallel-beam case,. = w, for all z and the aliases

R Z iy 2= Zj, T; . . -

the 2_[; kernel slice atz — =), traversed by ray; Jo e of I'in G_S will not overlap. I_n that case€7, = F; (attenuateq
e " bé a nonidealh). However, in the cone-beam case there is a

The rayfront as a whole produces a sampled slice imag ance thatts signal aliases iz, overlap in the frequenc
gs(z) at each depth: [see Fig. 4(b)]. Hence, a complete 9 ® P N y

SR . domain whenevet, < w,, i.e., z > z. Thus each slice
projection image can be formed by adding these sampled sl|c% : : . .
: This leads to an alternate ex ression]ﬁﬁ?) with z >z pgteqtlally contributes an aliased signal to the
imagesg, (2). P composite projection image.

*) . We can fix this problem by adding a lowpass filte
b = / gs(z, iT;.). (7)  betweenH and the sampling process for all slices with> =,

This equation and Fig. 4(b) illustrate that the ray-sampling rate 1 v s
/T, within each sampled slice image is not constant, but sz, v) = e comb<wgzc/z> * <Z Flv—k-w,)
a linear function ofz. e
The process in which an ensemk_JIe (_)f rays in a rayfront H<i> 'LP< v )>’ v >z (12)
at depth> generates a sampled slice imaggz) can be Wy Wz [
decomposed into two steps.
1) Reconstruction of the discrete grid sign@lz) into a An efficient way of implementing this concept is to pre-
continuous signalf(z) by convolving f;(z) with the convolve H with a lowpass filterL,, say a boxfilterB of
interpolation filter h. width z/z., and use this new filted B in place of H for
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Fig. 5. (a) Frequency response of the interpolation fi€rand the combined filteH B at z;/z. = 1.42T. (b) Impulse response of the same filtérs
andhb at z/z. = 1.42T, (dash-dot:h’, solid: hb). In both casesh is the Bessel filter described by Matej [23].

interpolation. An alternative method is to simply decrease theconstructedf. Hence, we must usg in its original width

bandwidth ofH to w,z./~ which gives rise to a filteld’ when z < z..
v Not only the ART projection step is affected by the nonuni-
Gs(z, v) = Wyl comb<m> form grid-sampling rate of the cone-beam rays, the backpro-
e oo e jection step must also be adapted. This is discussed next.
* < Z Flv—Fk-w,y) H< v ))7 2) Adapting the Backprojection Algorithm for Cone-Beam
ke —oo wyze /7 ART: In backprojection, as in forward projection, the volume

2> 2. (13) s traversed by an ensemble of divergent rays. However,

. . . : in backprojection the rays do not traverse the volume to
This technique was also used in [38] to achieve accurate S . . o
. . : . . _gather densities, instead, they deposit (corrective) density into
perspective volume rendering with the splatting techniqg

. g e volume. In other words, the volume now samples and
[41]. The frequency response &f’ is shown in Fig. 5(a) for . .
) interpolates the ensemble of (correction) rays, rather than the
the slice atz = z; wherez;/z. = 1.42T,. The frequency

response off B is also shown. In both cases,is the Bessel rays sampling and interpolating the volume. For the following

filter described by Matej [23]. We notice that the frequenc iscussion recall _that_, for convenience, we assume that all
¢ rays of a projectionF, first complete their projection

responses of both filters are similar and we also observe t .
both effectively limit the bandwidth tas, = 0.7w,. Note and then all simultaneously correct the volume voxels. Let us

however, that although reducing the bandwidthdbr = > =, now again decompose the volume into an infinite set of slices

properly separates the signal aliases, the upper frequency baeHagg the/? axis, oriented perpendmular to the t?ea_m d|recthn,
of the grid signal in these regions have been filtered out gyd consider the corrections for the voxels within each slice

the lowpass operation and will not contribute to the projectiorfParately. Each ray carries with it a correction factor corr
images. computed by the fraction in (3). As in the projection phase,

According to the Fourier scaling property. is obtained W& useh(z) as the interpolation filter within a slice. Then

from h by stretching and attenuating it in the spatial domaiffl€ total correctiondu; to updatev; is given by the sum of
The sampled slice signal is then all ray corrections cofr 1 < ¢ < N, for voxel j within a

y 1 y slice, integrated over all slices. This gives rise to the following
gs(z, iT,.) _comb<i) . <f5(z, kT,) = T h<ng/Zc )) equation which is sm!:’;\r to (6):
> Ze (14) dv; = / Z cort; - w;;(z)

This filter 4’ is shown in Fig. 5(b) and is also contrasted with % =1
hb. The spatial extent ofib is |hb| = |~|+]|b|, while the spatial N,
extent of &’ is |A'| = |b||h| = 2/z.|h| (for T, = 1.0). Thus, = / Z cort; - h(z — zj, ;). (15)
for |b] < |h|/(|h] — 1), |M'| < |hb|. Therefore, if|h| = 4.0, # =1
then as long as/z. < 1.33, i’ is more efficient to use for This equation is in line with the traditional viewpoint of ART.
interpolation. Since the majority of all interpolations occur ihet us now consider an alternative representation that will help
this range, the use df’ is to be preferred. us to explain the aliasing artifacts of cone beam. We observe

Finally, although one must use a stretched and attenuafegin Fig. 4 that the intersection of the ensemble of rays with a
version of 2 to lowpassf before sampling it intay, when slice, say the one at= z, gives rise to a discrete imagg( =)
z > z,, one cannot use a narrow and magnified versioh ofwith the pixel values being the correction factors goMote
whenz < z.. Doing so would increasé’s bandwidth above that the pixel rate in the,(z) is a linear function of, which is
w, and would introduce higher order aliases faf into the equivalent to the situation for thg, () in the projection case
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[illustrated in Fig. 4(b)]. In order to compute the correctioragain using the relationship of (11). We potentially get over-
factorsduv;, the voxel grid then samples and interpolates eatdpping aliases i), whenz < z.. However, where > z., no

of the slice images:;,(z) into a correction imagel,(z) with overlap occurs. This means that only fox z. do we need
constant pixel period’,, and each voxe} integrates all its to limit H to the bandwidth of the grid, i.ew,, resulting in a
correction factors in the, (z) alongz. Again, we usé:(z) as filter H'. For all other» we use the bandwidth of the rayfront
the interpolation filter within a slice. The correctialy; for w,. More formally

voxel j can then be expressed as follows:

N,
dv; = / Z cs(z, 1T )h(z — 2, T, — y;)
=1

s v
. (Eeerarals))
- / Az, JTy). (16) =

z z < Ze
Here,y; is they coordinate of voxe}j andh(z — z;, iT,. — y;) = 1 comb<ﬁ>
is the 2-D kernel slice af» — z;), traversed by ray; at Yy Yy
(LT1 - yj) = v

Let us concentrate on one interpolated correction image * Z Clo—k-w) 'H<w ZC/Z> )
ds(z). Since the interpolated signal is now the ensemble of e !
Z > 2. (20)

rays and the sampling process is now the volume grid, the

roles ofw, andw, in (8)—(10) are reversed. The interpolatiorhgain, according to the Fourier scaling propefiyis obtained

of the rayfront slice image, (=) into a correction imageé, () 1o 1, by stretching and attenuating it in the spatial domain.
by the voxel grid can be decomposed into two steps. The sampled slice signal is then

1) Reconstruction of the discrete correction rayfront signal

¢s(#) into a continuous signal(z) by convolvingc, (=) dy(z, 5T,) :comb<£> ) <c5(z KT,.) * 1 h<£>>
with the interpolation filterh. Notice that, for now, in e 1, ’ ze/z \1y

order to capture the whole frequency contentgfwe z < Zc
set the bandwidth ok to the bandwidth of the rayfront Y Y

= bl =) (ec.(z, ET.)+h ,
grid 1/7,. = z./2T,. This is a new approach to ART, as com < g> <c (= ) <ng/zC ))
normally the bandwidth of. is always set tav,, along Z > Ze. (21)

with an amplitude scale factor of 1.0.

2) Sampling:(z) into d,(z) by a comb function with period Thus, forz < z, the bandwidth off” is w, and the scaling
T factor in the spatial domain is/z.. Reducing the amplitude

g- .
This is formally written as of h _vvh(_en z < Zc preven_ts the over-exposure of corr_ecuve_
density in the volume slices near the source [as evident in
£>_<CS(27 kﬂ)*h(ﬁ» Fig. 3(a)]. On the other hand, for > z., the bandwidth

d,(~, 3T,) =comb . . . .
(% JT5) <Tg of H' is w, = wyz./z and the scaling factor in the spatial

y y domain is 1.0. In this casé,’s width is increased fronT}, to
:comb<?>-<cs(z, kTyz/ ) * h<T 2/ )) T,2/7., which prevents the under-exposure of some voxels
7 e 17) in the volume slices far from the source and facilitates a
homogenous distribution of the corrective energy. If we used

r

In the frequency domain, this is expressed as follows: a more narrow filter forz > 2. then we would introduce the
1 v higher order aliases @f () into the reconstructed »), which
D.(z,v)=— comb<—> is manifested by the aliased grid-like pattern in the far slice
“g “g of Fig. 3(a).

with the proper filtering, as described here, then the recon-
struction volume will never contain frequencies greater than
SinceC’s and H’s bandwidth is alwaysv,, all aliases ofC, w,. Thus, our previous argument that the grid projection may
are eliminated by the filtering with and we can write (18) assume that the volume frequencies never exeges correct.

r

*< i Clo— k- w)- H< v )) (18) Note that if projection and backprojection are performed

as follows: Of course, there is a small amount of aliasing introduced by the
1 v imperfect interpolation filter, but these effects can be regarded
Dy(z,v) = o comb<w—> * C(v) negligible as the Bessel-Kaiser filter has a rather fast decay

‘. g in its stop band [see Fig. 5(a)].

3) Putting Everything TogetherSince we are using an in-
terpolation kernel that is preintegrated into a 2-D footprint
0o table, we cannot represent the depth-dependent kernel size
Z Clv—k-wpz/z.) (19) accurately and still use the same footprint everywhere in the
k=—oc0 volume. An accurate implementation would have to first distort

[

g
Q
<

-
<
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(@) (b)

Fig. 6. Reconstruction with ART utilizing the new variable-width interpolation kernels. (a) The cone cut of Fig. 3(a) after one projection wasdroces
We observe a uniform distribution of the correction factors. (b) The slice of Fig. @} (.08, v = 60°, V(®) = 0: three iterations, 80 projections).
The strong artifacts apparent in Fig. 2(a) were successfully eliminated by using the new filter.

the 3-D kernel with respect to the depth coordina@nd then be expected, the correction cone now has uniform intensity.
integrate it alongz. Since the amount of distortion change&inally, Fig. 6(b) shows the reconstructed slice of Fig. 1(a).
for every z, we would have to do this process anew for everlere we observe that this reconstruction no longer displays
voxel. Since this is rather inefficient, we use an approximatidhe strong aliasing artifacts that dominated Fig. 2(a).

that utilizes the generic footprint table of an undistorted

kernel function and simply stretches it by, />, whenever IV. 3-D CONE-BEAM RECONSTRUCTION WITHSART
appropriate. Herez, is the depth coordinate of the voxel Let us now investigate SART and its behavior in the cone-

center. Thus, the volume regions covered by the voxel kerrbeéam setting. The bracketed part in the numerator of (4)

forwhichz < z, are Iovypassed too muqh,wh|le for> 2, t.he is equivalent to the numerator of (3). Hence, the projec-
amount of lowpassing is less than required. However, since Wh process of SART is identical to the one of ART and
kernel extent is rather small and the volume bandlimit rare ection 11l-B1 applies again. However, SART's backprojec-
reaches th? Nyqqist limit, this error is not signific_ant. tign process differs from that of ART. fn contrast to ART, in
An?.ther |stsue 'Sf ht(l?1w ong g?es abo:jt. ehstlrtnatlng the l(.)@ RT, after the ray grid has been interpolated by the volume
S?)TP'nC? rr;ew,,tho € gc;' 0 rayst. i '9 efsthaccur?cy t'sgj]rid, a voxel correction is first normalized by the sum of
obtained when e curved representation ot the raylronts; ‘chuentiaI interpolation filter weights before it is added to the

used (see Fig. 4). In this case one would compute the norr(%g el. This changes (15) to

distance between the set of neighboring rays traversing the

voxel for which the kernel needs to be stretched (see Appendix N

A). An easier way, that is nevertheless a good approximation, /Zcorri -wij(2)
is to simply use the voxel's coordinate in conjunction with dv; = - ile

the method of similar triangles to estimaig (see Appendix B -

for a quantitative error analysis). This approximates the curved L ; wij (2)

rayfronts to planar rayfronts, as we did in our theoretical N,

treatment. Various fast algorithms for the estimationwgf /Zcorri Bz, )

are the subject of another paper [27]. 2= ’
Since the interpolation kernel is stretched and scaled differ- = N

ently for projection and backprojection, the computed weights /Z h(z, ri)

in these stages are different as well. Thus, (3) changes to =5

b3 uhal > cort - h(r)
? m-n

_ =t
R (22) TN, : (23)
N i —
Z w wB Z h(r;)
m Yin =1
n=1

We will see that this provides for a smoothly interpolated
Here,w?, is the weight factor used for the forward projectiortorrection signal, even when the bandwidth of the interpolation
andw? is the weight factor used for backward projection. filter is a constantv,, as is the case in the traditional ART
Fig. 6 shows images of a reconstruction obtained with tteexd SART approaches. Let us now illustrate this behavior
same parameters settings than Fig. 2(a), but using the niough an example (see Fig. 7). Here, we utilize a uniform
approach for cone-beam ART. Fig. 6(a) shows the cone discrete correction signal [spikes(z) in Section 11I-B2], a
of Fig. 3(a) after one projection was processed. As was 1aD version of the one used in Fig. 3, and a linear interpolation
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Fig. 7. Reconstructing a uniform discrete correction signék) (spikes) into the continuous signalz) with ART and SART, using a linear interpolation
filter 2 (depicted here for a bandwidth of; in a dotted line). Signat(z)arT is the reconstruction ofs (=) with ART and the traditional interpolation filter

of bandwidthw,. In (a), whenz < z. the correction signal is magnified, as in Fig. 3(a), near slice. In (b), whenz. the correction signal is aliased, as in
Fig. 3(b), far slice. As previously discussed, we can avoid these effects by using variable interpolation kernels, i.e., by scaling the aniplitu@g anhd

by wideningh in (b), which yields the correct signa(:))&aﬂ%‘d“’- in both cases. The normalization procedure of SART prevents magnification and aliasing
artifacts and, thus, in both (a) and (b) a correctly reconstructed signakar, identical toc(z) %3k, is produced.

(@) (b)

Fig. 8. Reconstruction with SART. (a) The cone cut of Fig. 3(a), after one projection was processed. (b) The slice of Fig.2(8)3( v = 60°,
v(® = 0: three iterations, 80 projections). The aliasing artifacts apparent in Fig. 2(a) do not exist.

filter /v (dotted line) for ease of illustration. In this figure weeliminate this effect by widening with respect tow,.. This
show the result of the signal reconstruction withi.e., the yields the correct signal(z)ia:ke-. For SART, on the other
signal ¢(z) prior to sampling intods(z) by the voxel grid. hand, a smooth and unifore(z)sarr Of correct amplitude
Consider now Fig. 7(a), where the situation fer< z. is is obtained even with the original interpolation filter width,
depicted. In this case, the uniform correction signal has a r&gain, due to the normalization step. Consider now Fig. 8(a)
w, > w,. In accordance with our previous results, we see thahich shows the actual cone cut of Fig. 3(a) for SART. We
if ¢,(z) is reconstructed with traditional ART utilizing al See that the distribution of correction energy is homogeneous,
with constant bandwidt,, we obtain a signat(z) arr with —€ven though the bandwidth of the interpolation filter was set
an amplitude much higher than the original correction signd® w, everywhere in the volume. Finally, Fig. 8(b) shows a
We know that we can avoid this problem by reducing theeconstruction obtained with SART under the same conditions

interpolation filter magnitude, which gives rise to the correcti§S the previous ART reconstructions. We observe that no
scaled signak(z) @ ke The correction signal reconstructedsignificant reconstruction artifacts a_re.nonceable. Thus, we can
with SART, ¢(z)sarr ON the other hand, does not require gonclude th'at the SART approach is mherently more adgguate
reduction of the interpolation filter amplitude, since for eaclp” @lgebraic cone-beam reconstruction than the traditional
voxel the sum of interpolated ray corrections is normalizégnmodified ART approach.

by the sum of the respective interpolation filter weights. Thus,

with SART, the reconstructed correction signal always has the V. REsSULTS

correct amplitude. Foe > ~, [see Fig. 7(b)] whenu, < w,, In order to assess the goodness of the reconstructions,
we observe an aliased signal of half the grid frequency fore define two figures of merit: 1) the correlation coefficient
¢(#z)arr instead of the expected constant signal. Samplif@C) between the original 3-D Shepp-Logan brain phantom
c(z)arr into d,(z) would then result in a gridded pattern(SLP) and the reconstructed volume and 2) the background
similar to the one observed in the far slice of Fig. 3(a). Weoefficient of variation (CV). These measures were also used
know, however, from the previous discussion that we cdiy Roset al. [33].
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We calculate CC within two selected regions of the SLP: Fig. 9 shows a number of plots illustrating CC and CV for
1) the entire inside of the head (without the skull) and 2)arious reconstruction methods and parameter settings. Fig. 10
an ellipsoidal volume containing the three small SLP tumorshows reconstructed SLP slice images after three iterations.
as shown at the bottom of the brain section of Fig. 1(a) afthree iterations were chosen because the plots indicate that
described by ellipsoids 7, 8, and 12 in the SLP definitioafter this number of iterations both CC and CV have reached
(see Table I). While 1) measures the overall correlation aflevel close to their final value. In both Figs. 9 and 10 the
the reconstructed volume with the original, 2) captures tliellowing terminology is used. Each parameter combination
sensitivity of the reconstruction algorithm to preserving smal described by a three-digit code. The first digit codes the

object detail. The CC is defined by size of the interpolation kernelX for constant andV for
variable, depth-dependent). The second digit codes the volume
Z (Wi = )03 = p1o) initialization method (- for zero and for projection average,
CC= L (24) I~ for SLP average). Last, the third digit codes the function at
\/Z (v — iy )2 Z (0; — pho )2 which X is varied during the first iteration (- for no variation
i i and @ for linear increase). Reconstructions were obtained for

Fach combination of parameter settings over the length of ten

where o; and v; are the values of the voxels in the Orlglna|ferations for all six settings oX. In order to keep the amount

phantom volume and Fhe reconstructed volume, reSpeCt'Ve&f’presented data manageable, we do not plot the effexirf
and p,, and p,, are their means.

: i .. Fig. 9. Instead, at every iteration and parameter combination
The background CV is calculated within four eII|p50|da|:e pick the lowest CV or highest CC, respectively, that

featureless regions located in different areas of the SL&%S obtained in the set of siX-dependent reconstructions.

Since these regions are ideally uniform, CV represents a go 9 the ideal) is somewhat object-dependent [17], this does

measure for the noise present in the reconstructed SLP. h(? . .
overall CV is the average of the four individual CV’'s and is'?o represent a serious tradeoff. During the course of our
experiments, we found that for ART and the SLP the

defined as . that produces good reconstructions within four iterations is
1 o; somewhere around 0.08 and for SART thisetting is around
CV = 1 — (25) 03

Fig. 9(a)—(c) shows the CC for the SLP tumors at a cone
whereo; is the standard deviation of the voxel values withigngle of 40 for the three main correction methods used:
region i. ) ) ART using the constant interpolation kernel, ART using the

Using CV and CC to assess reconstruction quality, we haygriable-size interpolation kernel, and SART using both ker-

conQucted a thorough study of the effects of various paramefgiis |n Fig. 9(a) we see that the reconstructions Goare
settings as follows. always better than the respective ones with6utSince it

» The Initial State of the Reconstruction Volunig Zero; is not any costlier to daZ, the following plots will always
2) the average value of one of the projection imagesse G. In Fig. 9(b) we see that reconstruction results with
properly scaled; and 3) the average value of the SLP braiy ¢ are similar to the ones witl7*G. SinceVI*Q is not
matter (e.g., 1.02). The last initialization method is hargkalistic anyway, we will use only’IG for the remaining
to achieve in practice, since one does not usually knag¥scussion. In the same figure we also observetthat, V I-,
the average value of the reconstructed object in advang@dV 1*- yield only marginally worse results than/G, thus,

+ The Setting of the Relaxation CoefficientExperiments we will eliminate these settings from further plots. Finally, in
revealed that values in the range [002, 0.5] yielded Fig. 9(c), we see that SART-G is either similar or always
reconstructions that offered the best balance with respegitter than SART-- and the same is true for SART-G and
to reconstruction quality and number of iterationsSART V--. Thus, we will be using only SART-G and SART
Therefore, reconstructions were obtained far = V.-G. Also, preceding experiments revealed that SART is not
0.5,0.3,0.1,0.08,0.05, and0.02. dependent on the initial state of the volume. This is largely

+ Time-Weighted Variation ok During the First Iteration due to the circumstance that SART corrects the volume on an
Starting from 10% of the final value we have used: Jijnage basis, which provides a good initialization after the first
immediate update to the final value; 2) a linear increasgnage was spread onto the volume.
and 3) an increase due to a shifted cosine function (similarThe following plots [Fig. 9(d)—(l)] illustrate the effects of

to [4]). the settings of the remaining parameters on CC and CV.
* The Correction Algorithm1) ART and 2) SART. [Please use the legends inserted into Fig. 9(f) and (i).] In
* The Size of the Interpolation Kernel) Constant and 2) Fig. 9(d), (g), and (j), we observe that when using the constant-
depth-dependent, as described in Section IlI-B. sized interpolation kernel for ART, CC and CV for recon-
* The Cone Angte20°, 40°, and 60. structions at a 60cone angle improve significantly as volume
* The Number of Iterationsl-10. initialization is made more accurate. This can also be seen in

During our experiments we found that there is no significattte reconstructed images shown in the first column of Fig. 10.
difference in reconstruction quality whethers varied linearly If the volume is initialized to zero, the small SLP tumors
or with a cosine function. Thus, we only report results usin@nd other portions of the image) are completely obliterated by
a linear variation. aliasing artifacts (ARTC--). The artifacts are reduced some-
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Fig. 9. CC and background CV for ART and SART with constant and variable interpolation kernel size for three regions of the SLP (using 80 projections
of 128 pixels each). Each reconstruction was performedXoe= 0.5,0.3,0.1,0.08,0.05, and0.02, and the graphs plot the hightest CC/lowest CV of all

A settings at each iterationC'( constant sized kernel/: variable sized kernell: volume initialized to average of projection 07: volume initialized to

average of the SLRG: linear increase of during the first iteration, -: volume initialization to zero or constant

what if the volume is initialized to the average value of one @& V' kernel instead of & kernel, however, the improvements
the projection images (ART'I@). The artifacts are reducedare not large. By the same token, reconstruction quality also
further, but are still quite noticeable if the volume is initializedmproves when the ARV methods are used in conjunction
to the average value of the SLP brain matter (ART*@). with volume initialization and gradually increasing relaxation
It is apparent that volume initialization alone cannot remoweefficient, but the rate of improvement is at a much smaller
all artifacts. However, the reconstructions obtained with theeale than in the ARTC case.

variable-sized interpolation kernel in conjunction with ART From the images in the second column in Fig. 10 we observe
and the ones obtained with SART are all artifact free. The pldtsat for a cone angle of 40 considerable artifacts around the
support these observations with only SART and the ART tumors still remain for ARTC-- and ARTCI(. Again, notice
methods having good CC and low CV. The plots also indicatee improvements with more accurate volume initialization.
that reconstruction quality increases when SART is used wilor ART CI*G the artifacts are more attenuated, but are
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Fig. 9. (Continued) CC and CV for ART and SART with constant and variable interpolation kernel size for three regions of the 3-D Shepp-Logan phantom.
(C: constant sized kernel;': variable sized kernel[: volume initialized to average of projection 0 : volume initialized to average of Shepp—Logan brain,
G: linear increase of\ during the first iteration, -: volume initialization to O or constaxjt

still visible (however, note again that ART'/*G may not image value. The circumstance that ART/IG and SART
always be realizable). On the other hand, with ARTG and maintain a marginally better CC for the SLP tumors in a
SART C-G, the artifacts are completely eliminated. The plotquantitative sense could be relevant for automated volume
of Fig. 9(e), (h), and (k) support these observations: the CGisalysis and feature detection. However, in a visual inspection
are consistently higher, especially for small object detail likine differences are hardly noticeable, as indicated in the
the SLP tumors, and the CV's are consistently lower with threconstruction images in the third column of Fig. 10.
ART V methods and SART than for the ART methods (with Finally, in Fig. 11 we show the sagittal cut of Fig. 1(b),
ART CI*G being closest to ARTV and SART). reconstructed with the new variant of ART from %68one-
The plots of Fig. 9(f), (i), and (l) indicate that for a smallelangle projection data. We notice that although no aliasing
cone angle of 20 the differences between the methods arartifacts due to the cone-beam projection/backprojection are
not as pronounced as for the larger cone angles, as longpessent, we still have inaccuracies in the planes at the top
one initializes the volume at least with the average projecti@md bottom of the phantom. These inaccuracies are due to
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60 cone angle 40" cone angle 20’ cone angle
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ART CI*G

ART VIG
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Fig. 10. Slice of Fig. 1(a) reconstructed with various methods and cone angles.

the incompleteness of the projection data obtained from tbackprojection are in the presence of noise in the underlying
circular source orbit and have been observed in other singpejection data and also with regards to the contrast of the
source, circular-orbit cone-beam reconstruction algorithms @lsject features. For this purpose we have added various levels

well [40]. of Gaussian noise to our projection data. The noise model
employed was the one proposed by Herman [16]. Here, each
VI. RECONSTRUCTION WITHNOISY PROJECTION DATA projection pixel is multiplied by a Gaussian distributed random

This discussion would not be complete without an excursigtdmber with mean 1.0 and standard deviatienin our
into the effects of noise on the reconstruction result. Iexperiments, we applied noise levels of= 0.005 (0.5%),
particular, we would like to investigate how relevant the = 0.01 (1%), ands = 0.03 (3%). Since the dynamic
noise-like artifacts introduced by aliasing in projection anthnge of the Shepp—Logan phantom’s features are at similar
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to present ART as an attractive alternative to the various
FBP-type approaches that are mainly used in today’s general
cone-beam reconstruction research. In particular, it is the
limited projection case where we see ART'’s greatest potential.
Even though ART is iterative in nature, which was often
equated with slowness of computation, our research indicates
that really only three iterations are necessary to render a
reconstruction result close to the optimum (given proper
parameter settings). We found that ART’s present mechanism
of computing the weight coefficients was insufficient for cone
angles greater than 2@h that it lead to strong aliasing artifacts
Fig. 11. The sagittal slice of Fig. 1(b), reconstructed with ART (usingn the reconstructed object. We showed examples where small
depth-adaptive kernels) from ®0cone-beam data. Although no alias-gpject detail was completely obliterated by these aliasing
ing-related artifacts are present, we still have artifacts due to incomplete,. .

projection data in the top and bottom planes of the object. artifacts. Even though these artifacts may have never been
noticeable in high-contrast reconstructions, they become very

) ) ) ) visible in the low-contrast case. To eliminate these artifacts,
levels, we chose to increase the signal-to-noise ratio for betfgr o concept of depth-dependent interpolation kernels was

visualization of the effects. This was achieved by increasingoquced. By using these kernels we obtain cone-beam
the contrast of the underlying Shepp-Logan phantom by, &.onstructions free of cone-beam related aliasing artifacts.

factor of four. In this respect, it may be worthwhile to investigate if these
Consider now Fig. 12(a), where we have reconstructed ti&ys of kernels are also useful for wide-angle cone-beam

phantom with projection data subjected to 0.5% noise—abQ¥sp reconstructions. On the other hand, apart from the ART
1/4 of the contrast of the three small tumors. We see that thgyaction scheme, we also investigated the use of SART as an
noise-artifacts due to aliasing dominate those due to pholofnative correction algorithm. We found that SART, being
count noise. Next, consider Fig. 12(b) where the projectia yiection-based correction procedure, is also very suitable
data contained 1% noise (about2Lof the tumor contrast). y, yrevent the aliasing artifacts of traditional ART.

Vk\]/e obser\lle tr:at thﬁ artifacts due to ghahsmg are now at abOUfye then investigated the impact of volume initialization and
the same er:/e ‘E‘S those due to nﬁlse;ln the pl:OjeC'?IOI’lS. We 3I$0 setting of the relaxation coefficient for the various methods
recognize that by using ART with adaptive kemels or SARTy, 6 0ped. Our results indicate that for cone angles 6f 86

we can at least eliminate the aliasing-related noise-like artlfa%soﬂen used for microtomography, strong aliasing artifacts
and so imp_ro".e the qua”ty of the rec_onstruc_tion..The artifacﬁeva", even with optimal volume initialization. These arti-
due to projection noise, however, still remain. Fma!ly, let U cts can only be eliminated when ART is used in conjunction
test at what level of feature contrast the aliasing artifacts stgft,, o depth-dependent kernel or by using SART. The same
to becom_e irrelevant. Fig. 12(c) provides more insight. Herg, 5154 true, though in a less dramatic way, for cone angles
we have increased the conirast in the phantom by a factoroc?f4oo, which are commonplace in many clinical applications.

eight and have added 1% noise to the projections. We 0bsepyg. e angles of 20the aliasing effects are not visible with
that the effects of aliasing, although noticeable, are much Ieéﬁ er method, but can still be measured numerically

pronounced than at lower contrasts. We conclude from the.SE'Our research suggests that SART conceptually represents a

eXp_e”me”‘; thkat the _n0|se-l|ke a:tlfaclts duef to S_Ilasmg _&tter correction scheme than the traditional ART approach,
projection—backprojection are mostly relevant for objects with j; produces artifact-free reconstructions for all cone angles

low fgature con_trast, typic‘?”y less thgn 10%. However, OthWithout the need for depth-dependent interpolation kernel
experiments (with both noisy and noiseless data) have shog\{ es. However, SART's drawback is that it is not easily

that they are still noticeable for much higher contrasts (Zog%celerated. As other research [27] has indicated, ART is
and more). Furthermore, we conclude that for the low-contr nsiderably easier to speed up than SART anoi runtime

objects the effects of projection noise starts to dominate t i0STsarr/Tare Of approximately 1.5 have been observed.

aliasing-related noise once the projection noise level exce Swever by using elaborate methods for SART this ratio can
approximately half of the feature contrast. be broug'ht down to 1.15

It should be mentioned that the ART methods outlined in
this paper for cubic grids also fully extend to the dodecahedral

This paper examined the use of ART-type methods trids that were proposed in [24]. These grids were shown to
reconstruct 3-D objects from a relatively sparse set of con@duce the number of voxels to be processed by about 30%.
beam projection data. In particular, we were interested inWe have demonstrated that our new variant of ART (and
the reconstruction of low-contrast objects which put a higllso SART) removes cone-beam related aliasing artifacts,
demand on the accuracy of the reconstruction algoritheven when the projections are noisy. All that remains in
In the past, ART has seen frequent use for the cone-betila reconstructions are the noise-related artifacts. Although
reconstruction of high-contrast objects, e.g., in computed ah-has often been said that ART performs poorly in the
giography, however, the low-contrast case has not receivatsence of noise, Herman’s variants of ART, termed ART2
much attention until now. One purpose of this paper wd$5] and ART3 [16], were demonstrated to render superior

VII. CONCLUSIONS
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ART/ no adaptive filter ART/ adaptive filter SART
©

Fig. 12. Reconstructions with noisy data and different levels of phantom contrasts: (a) 0.5% of noise and four times the original contrast. (by4% of no
and four times the original contrast. (c) 1% of noise and eight times the original contrast. (Two iterations, all other parameters like Fig. 10.)

results, at least when the projections were sparse. Since thesths (see, e.g., [40]) or twin-cone source arrangements [21],
algorithms were mostly studied in the early days of ART, wit[86]. In the latter solution, two cone-beam sources rotate
rather inaccurate projection methods, it would be interestimgp noncoplanar coaxial congruent circular orbits around the
to see how they perform with modern projection technologpatient and the reconstruction algorithm utilizes only rays,
Present research is underway to investigate these pioneedng to adjacent half cones of these two point sources [see
algorithms, in addition to new variants. Fig. 13(b)]. The distribution of rays in the cylindrical twin-
Finally, in this paper we have restricted our reconstructiasone region of interest is nearly homogeneous. Note that
domain to an isolated spherical region, such as the humarger reconstruction regions will require larger cone angles
head. Of course this is not always possible, for instance, whand henceforth depth-adaptive interpolation kernels. At the
imaging an extended object such as the human torso. In th@me time, noncircular orbits and twin-cone arrangements
case, the circumstance that cone-beam rays at large anglék also improve the completeness of the projection data
with respect to the mid-plane traverse object regions that avben the object does fit into a sperical reconstruction region
not part of the reconstructed object region is likely to havsee, e.g., Wang [40] for a comprehensive study). By using
an adverse affect on the reconstruction result. This problentligse trajectories, we can reduce the remaining artifacts in the
generally called the teepee effect and is shown in Fig. 13(apject planes further off the midplane (as shown in Fig. 11).
We can prevent the teepee effect by using noncircular soufegture work is planned to investigate the performance of the
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source source |

reconstruction region
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Fig. 13. (a) Single cone geometry: rays at large angles with respect to the mid-plane traverse regions outside the reconstruction spherené) Twin-co
geometry: a nearly homogenous ray density is achieved in the cylindrical volume section that is traversed by the two adjacent twin half congs [21], [36

y=iT, 1201 P
P 100 T
Lo 80 T
X7 L ? iTe g0 7

37T, ~ T 10} 7

27, [ r, 1M

T — T R A 207 d

g e
0 - 0120 130 140 150 180 170
-T, <L Zc Z z 2z
-+ P

Fig. 15. Shape of the rayfront with constat. Here the case ab,. = 1.0

is shown. In the regions on the left side of the curve the ray grid sampling
rate is higher than the sampling rate of the volume grid, while in the regions
Fig. 14. Computing the perpendicular ray distarnife to estimate the on the right of the curve the ray grid sampling rate is lower than the
accurate ray grid sampling rafs-. The dashed line is the ray that traverseyolume-grid-sampling rate.

from the source through the center of projection pixel 2. The lines (shown

in solid) that connect the pixel boundaries with the source intersect the volume

projection plane

slice atz = z5. The distance between these intersectiorig-ignd1/T, was 1.14 Ee

used in Section Ill as the approximate ray grid sampling ngeisAthe period
of the volume grid and. is the slice in whichl}- = T,. Finally, T’ is given
by the perpendicular distance of the two pixel boundary rays=atz,.

here presented concepts in conjunction with the twin-cone
arrangement and other more advanced source trajectories.

APPENDIX A
ACCURATE RAY-GRID SAMPLING RATE

1.12
1.1
1.081 '___,-"'

1.08 T

1.04 -

1. 021: . dd_'_,_,_,-'"_
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€stretch

In Section Il we used the approximate ray grid samplingig. 16. The relative error.i,c.c, When usingT, instead of T, for
ratew,. Consider Fig_ 14 where we show one of several waysgetching the kernel functions. We see that further away from the cone center

to estimate the accurate ray-grid sampling rateat a volume

grid position withz = z, andy = ¢Z,.. Here,i € 9 is the

the kernel is stretched too much if the curved ray front is approximated by
a planar rayfront to estimate,.. This means that the grid signal is overly
smoothed when sampled. The maximum error of 15% occurs at the cone

index of the projection pixel and’. is the distance betweenboundary. This means that the kernel is stretched 15% more than necessary.
the points of intersection of the lines that go from the source

to the pixel boundaries with the volume slice plane at z,.

The method uses the perpendicular distaficbetween these

two pixel bounding lines to computg, = 1/7, for the ray
of pixel i (see Fig. 14)
TT 1, cos ¢
=2 T, cos ¢
L S
Ze ({T,)* + 22

S (26)

V(GO
A plot of the rayfront for whichZ,. = 1T, = 1 is shown in
Fig. 15.

Ze

APPENDIX B
ERRORSWHEN APPROXIMATING
THE RAY GRID SAMPLING RATE

The relative errorgc.c, When usingZ,. instead of7;. for
stretching the kernel functions is given by

Cstretch = E/ﬂ

- <7_ Tg> sl
e (i1g)* + 2

VA P

(27)

Ze

This error is plotted in Fig. 16.
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