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Abstract— Iterative CT algorithms have become increasingly 

popular in recent years. They have been found useful when the 

projections are limited in number, irregularly spaced, or noisy, 

which are often encountered in low-dose CT imaging. One way to 

cope with the associated streak and noise artifacts is to interleave a 

regularization objective into the iterative reconstruction 

framework. In this paper we investigate a number of non-linear 

neighborhood filters within an iterative CT framework, OS-SIRT, 

and compare them with total variation minimization (TVM). We 

find that the Non-Local Means (NLM) filter provides the best 

performance, in particular its patch-based variant. Further, we 

also compare a scheme that exploits an artifact-free reference 

image for even better regularization performance. Finally, we also 

compare the studied filters in terms of their computational 

efficiency with acceleration on modern GPUs.        1 

I. INTRODUCTION 

Low dose CT imaging has been gaining considerable momentum 

in recent years. However, low-dose CT leads to noisy and sparse 

X-ray projections, which subsequently lead to significant noise 

and streak artifacts in the reconstructions. In these adverse 

conditions iterative reconstruction algorithms are more 

favorably applied, especially when combined with 

regularization. Here, the method of Total Variation 

Minimization (TVM), has become rather popular and has been 

used in many frameworks, such as ASD-POCS [5]. However, 

TVM is an iterative global optimization algorithm and can be 

costly in compute, lessen practicality in clinical practice.  

    We study if non-iterative filters that only operate in a local 

neighborhood can lead to improved results. An advantage here is 

that they also lend themselves very well to GPU acceleration. 

We specifically study and compare the bilateral filter (BLF) [6] 

and the non-local means filter (NLM) [1]. While the use of local 

neighborhood filters within an iterative CT reconstruction 

framework is not conceptually new, this paper’s contribution is 

(1) a comparison of these both in terms of quality and speed, and 

(2) their extension into an adaptive form [3] and one that uses a 

prior image of the patient [11] .  

II. OVERVIEW 

Our reconstruction framework is fully iterative using our 

OS-SIRT pipeline [7][9] for reconstruction, interleaving 

regularization within each iteration. The regularization enforces 

constraints in the object domain, such as local smoothness and 

coherent edges, while the reconstruction ensures fidelity with the 

acquired data. This type of pipeline has also been used by others, 

but with different reconstruction algorithms and regularization 

schemes. All operations are accelerated on the GPU.  

A. Regularization as a denoising task 

In the context of mitigating artifacts in CT reconstruction, 

regularization is similar to the process of denoising in image 
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processing. In fact, the notion of noise is quite general and can 

include for example streak artifacts. We may distinguish 

between two families of denoising strategies: (i) global 

optimization and (ii) local filtering. Both can be iterative, where 

the former seeks to improve some global objective function and 

the latter repeats the filtering, possibly guided by some error 

criterion and varying parameters along the way. In fact, the two 

families can be unified into a mathematical framework which 

gives them a common theoretical underpinning. Elad [2] shows 

that both derive from a solid theory of statistical estimators and 

regularization. More specifically, the bilateral filter emerges 

from the Bayesian approach as a single iteration of the Jacoby 

normalized diagonal steepest descent algorithm.  

    For the remainder, we shall adhere to the terminology of 

image processing where the goal is to reduce artifacts in images.  

B. Regularization by local neighborhood filtering 

Local neighborhood filters have become popular in image 

processing since they can achieve better computational 

performance and also afford local control. They are 

non-iterative (although they can be applied repeatedly) and are 

based on pixel-wise operations over a small neighborhood.  

    In contrast to global optimization such as TVM, for nonlinear 

neighborhood filters (NNF) the updated value at a pixel x is 

determined by a weighted sum of a functional mapping of its 

local neighborhood Wx. This typically non-linear function 

takes into account both spatial and value discrepancies with 

respect to x, as expressed in the following equation: 

( , , ( )) ( )
( , , , )

( , , ( ))

x

x

t W

x

t W

x t f x f x t
NNF x f W

x t f x















 (1) 

The normalization forces the sum of pixel weights to 1. The 

window area Wx defining the local neighborhood can vary in size 

for pixels at different positions. To compute the weights of the 

neighborhood, a distance metric measures the similarity between 

the pixel at x+t and the central pixel at x. Next, we use this 

general notation to express all filters we have studied.  

    The bilateral filter (BLF) [6]:  The filter only considers a 

fixed sized neighborhood around the target pixel x, and the 

weighting function BLF is the product of spatial distance weight 

cd and range distance weight sr: 
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where G(x) is the Gaussian kernel  
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and d andr control the amount of smoothing. The function cd 

acts as a domain filter to ensure spatial closeness to x such that 

far away pixels have no effects. On the other hand, the function 

sr acts as a range filter to ensure value closeness to f(x) such that 

the values of pixels from different nearby materials cannot 
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diffuse into the material represented by x. Similar to anisotropic 

diffusion it ensures that sharp edges are well preserved. 

The non-local means filter (NLM) [1]: Based on the 

assumption that there is a high degree of redundancy in a given 

image, the NLM filer consults similar pixel neighborhoods 

(called patches) in disjoint image regions and average their 

contributions for a more stable outcome: 

( ) ( , , , )NLM NLMf x NNF x f W 
 (4) 

As such, the variable t parameterizes the offset within the search 

window as before. In order to gauge the similarity of a 

neighborhood patch at x+t with the neighborhood at x, the 

corresponding pixel-differences are weighted by a Gaussian 

kernel Ga with standard deviation σa, inside the patch area P: 
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h acts as a filtering parameter which, when increased, allows for 

more dissimilar patches to contribute to the smoothing.  

The adaptive NLM filter (ANLM) [3]: In the NLM filter, 

the search window has typically a constant, pre-set size 

throughout the image. However, picking a good size of the NLM 

search window can be challenging, especially when noise levels 

and patterns are not spatially invariant, which is most often the 

case. Hence it is more appropriate to locally adapt the window 

size. Kervrann and Boulanger [3] describe an iterative approach 

(with usually less than 4 iterations) that adaptively grows the 

local search window to incorporate neighborhood statistics at an 

increasing level of scale. The expansion is terminated once the 

deviation bias of the weighted smoothing grows too large (i.e. 

the local estimates diverge at increasing scale). We call this 

approach adaptive NLM (ANLM) since it also determines the 

weight of a neighborhood pixel via its patch similarity (the patch 

size itself is fixed) – however, the similarity measure changes as 

the iterations proceed. At each iterative step i, the smoothed 

image fANML(i)(x) and the variance 
2 ( )i x  at position x of a 

neighborhood are calculated using the adaptive weights wi as:  
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Here, Wx,i is the current neighborhood size and is the initial 

standard deviation, estimated from the input image (more detail 

is provided in [3]). The current fANML(i)(x) and
2 ( )i x  then serve 

as input to compute the weights for the next iteration:           (7)  
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There are five parameters: the initial noise variance
2

0 ( )x , the 

patch size P, the parameter h (and a factor ), and the maximal 

number of iterations N. The
2

0 ( )x can be automatically 

generated through robust estimation in the image. For P, we 

found a size of 7×7 practical in most cases. The other parameters 

were relatively insensitive to change within a normal range.   

The reference-based NLM filter (RNLM) [11]: Often prior 

scans of the patient are available which could be used as an 

external site for patch-based neighborhood matching. This gives 

rise to the following equations: 
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Here, fr is the reference image containing similar features as the 

image f to be denoised, frn is the same reference image now 

augmented with similar artifact statistics, and t is some offset to x 

that locates areas with similar features. The value of t could be 

determined by a rough registration or an approximate feature 

matching using block-based histograms, etc. Our work in [11]  

used this filter to restore an image reconstructed with filtered 

backprojection. In the research presented here we use it as a 

regularization operator in an iterative reconstruction scheme. 

III. RESULTS 

We interfaced an NVIDIA GTX 480 GPU with an Intel 2 Quad 

CPU @ 2.66GHz host processor. For testing, we employed the 

NIH Visible Human’s torso (size 256
3
) which has a prominent 

spine structure with different bone sizes and small structures and 

a brain dataset (NIH Visible Human brain, size 256
3
) which also 

has some finer structures. We used a high-quality X-ray 

simulator to obtain various projection sets for torso and brain. 

    In our experiments, we explore the various regularization 

schemes within the interleaved reconstruction pipeline, for both 

the few-view and the noisy projection scenarios. We found the 

best parameters for each filter via experimentation.  

A. Qualitative and quantitative comparison: torso dataset 

We simulated 180 uniformly distributed projections over a 

half-circle trajectory. For the few-view case we selected every 

9
th

 projection from the set, yielding a total of 20 projections. 

Then, for each of the 4 regularization schemes (BLF, TVM, 

NLM, and ANLM), we interleaved regularization with OS-SIRT 

(10 subsets) and ran this pipeline for a total of 200 iterations. For 

the second series of experiments, we added significant Gaussian 

noise (SNR=10) to all 180 projections and ran the same pipeline 

again, but this time for only 20 iterations since this yields about 

the same number of updates as the few-view case (this much 

noise typically also causes the reconstruction procedure to 

diverge when the noisy projections are not pre-filtered).  

    The results of these two experiments are shown in Figure 1 

along with the corresponding parameter settings and the best 

E-CC metric scores they could achieve. The E-CC is a 

perceptual quality metric and was introduced in [10] – it 

measures the cross-correlation (CC) of an edge-filtered image. 

We provide ROI zoomed results for two critical regions, spine 

and lung. The left-most full-body reconstructions were obtained 

without regularization. The first observation we make is that 

streaks seem to be easier to remove than heavy noise – the E-CC 

obtained with regularization is roughly 12-15% higher for the 

former for all regularization schemes. We also readily observe 

that all filters can reduce streaks and noise, recovering some 

structural parts which can be hardly seen in the non-filtered 

result. In the following we focus our detailed discussion on the 

spine – similar observations can also be made for the lung.   
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Figure 1. Torso dataset, reconstructed with the interleaved regularization pipeline both for the few-view (top, 20 projections) and noisy 

(bottom, 180 projections, SNR 10) scenarios. Zoomed results for two critical regions are shown, indicated by the orange (spine) and blue (lung) 

boxes in the left-most reconstructions obtained without regularization. The reconstructions appear ordered according to their E-CC scores. 

 

    The BLF and TVM perform quite similarly, but while the 

BLF keeps sharper edges and provides better streak removal 

than TVM, it also gives the image a more binary look signified 

by abrupt changes along adjacent varying-intensity areas. TVM, 

on the other hand, has smoother transitions here, and it also 

seems to perform better with noise. However, neither of the 

filters is able to recover more subtle features.  

The two NLM-based methods successfully master the 

problems encountered with BLF and TVM – both recover the 

gaps separating the individual vertebrae. The shape and 

structure of the vertebrae is also better described, delineating the 

bony shell around the vertebrae body well. However, for the 

noisy projections case, the ANLM filter is the only one to do so. 

B. Qualitative comparison: brain dataset 

We used the same conditions as for the torso dataset (20 

projections for the few-view case, 180 projections with SNR 10 

Gaussian noise added for the noisy case) and the same 

regularized construction strategy (200 iterations with 

interleaved OS-SIRT 10 for the few-view case, 20 iterations of 

OS-SIRT 10 for the noisy projection case).  

Figure 2a shows the results we obtained for the few-view case.  

We observe that in terms of sharpness and detail preservation 

ANLM and NLM have similar outcomes, but that the ANLM 

better preserves the small structures pointed by the arrow in the 

Original image. We further observe that the BLF produces 

slightly sharper and detailed images than TVM, but not quite as 

good as the NLM filter. The figure also examines the result 

obtained with the RNLM filter. Here we explored two different 

strategies (i) apply the reference image-based regularization 

only once (after the final iteration step), and (ii) apply it in an 

interleaved fashion. It can be clearly observed that the 

interleaved RNLM scheme preserves detail much better and 

restores some fine detail that the ANLM filter cannot, especially 

some of the interior detail of the bone structures. This fine detail 

is just not expressed at a strength that is sufficient enough for the 

(A) NLM filter to restore it from the patches found in the local 

image, making it necessary to use a clean source for these.    

Figure 2b shows the results for the noise case. Here the 

differences of NLM and ANLM are not as profound as for the 

streak case. However, similar qualitative differences can be 

observed for the BLF and TVM, as well as for the two RNLM 

strategies (see above). Interesting for the latter is the dark feature 

pointed to by the arrow in the Original image. This feature does 

not exist in either reference image and is instead restored using 

local NLM since the reference-image based matching did not 

return a sufficiently high sum of weights (while similar is also 

true for the streak case above but there the greater number of 

iterations also enabled a better OS-SIRT data-driven 

reconstruction). Nevertheless, this is a clear indicator that the 

RNLM scheme is very sensitive to the richness of the underlying 

prior and ongoing research seeks to improve on this.  

C. Time performance 

Table 1 lists the run times to filter images of 3 different sizes 

(256
2
, 512

2
, and 1024

2
) on the GPU. We found that performing 

filtering in 3D did not yield any improvements so restricting our 

experiments to 2D is well justified. In the table we list both the 

timings for the non-optimized (NOPT) and the optimized (OPT) 

GPU implementation reported in [12]. This optimization 

achieve a speedup of about 1.2 for the BLF, about 4 for the NLM 

filter, and about 3.2 for the ANLM filter. Please note that these 

speedups are in addition to the two orders of magnitude speedup 

over a corresponding CPU implementation, as reported in [8].   

    To estimate the TVM performance on the GPU we used TVM 

GPU implementation of Pock et al. [4] as a reference. They used 

a NVIDIA 8800 GTX for their experiments and we report their 

timings in Table 2 as well. In order to make these timings 

comparable to ours we extrapolated them to the GTX 480 using 

commonly reported speedup numbers. We may add, however, 

that once the parameter λ grows larger, which is needed for the 

rather noisy data we have used here, the computation time tends 

to increase significantly over those listed here.  

    Overall there is about an order of magnitude difference in the 

run times for each of the filters: BLF, NLM, and ANLM, with 

BLF being the fastest. The TVM requires about the same time as 

NLM. The timing of the RNLM filter is comparable to that of the 

NLM filter since the matching process is similar.   
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Figure 2. Brain dataset, reconstructed with the interleaved regularization pipeline for the (a) few-view scenario (20 uniformly distributed 

projections, 200 iterations with OS-SIRT 10). (b) noisy data (SNR 10, 180 equi-angular projections, 10 iterations with OS-SIRT 10). 

 

(a) 

(b) 

Table 1. Wall clock time (in ms) of the GPU-accelerated BLF, NLM, and ANLM filters both optimized (OPT) and non-optimized (NOPT) for 

different image sizes. Ratio is the speedup NOPT/OPT. For TVM, the parameter λ grows larger for noisy data which further increases time. 

Test Size BLF NLM ANLM TVM (from [4]) 

NOPT OPT Ratio NOPT OPT Ratio NOPT OPT Ratio 8800 GTX GTX 480 

2562 0.65 0.53 1.23 51.09 12.70 4.02 142.32 43.57 3.27 17.50 6.74 

5122 2.15 1.76 1.22 182.49 42.06 4.34 374.8 117.24 3.20 59.60 22.95 

10242 8.08 6.54 1.24 699.23 161.25 4.34 2072.67 597.91 3.47 504.10 194.15 

 

IV. CONCLUSIONS 

We have explored the use of local nonlinear neighborhood 

filtering as a non-iterative alternative to the popular TVM 

method for regularized CT reconstruction. Our results indicate 

that these types of filters can be advantageous to TVM, meeting 

and exceeding its capabilities.  
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