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 

Abstract—Statistical iterative reconstruction (SIR) algorithms 

show great potential for improving image quality in the reduced 

X-ray dose case. However, high computational cost and long re-

construction times remain obstacles preventing the use of SIR in 

practical application. Various optimization algorithms have been 

proposed to make the SIR algorithm parallelizable, in conjunction 

of improved convergence rate. Among them, identifying a set of 

de-coupled voxels within a coordinate descent (CD) optimization 

framework has shown good promise. However, so far this came at 

the price of additional complexity. We propose a novel algorithm 

that finds sets of independent voxels which can be updated sim-

ultaneously without introducing any additional complexity and 

within the original CD framework. We show that the cone-beam 

geometry gives rise to rather complex voxel distribution patterns, 

which however enable a higher degree of parallelism than the 

more regular decomposition patters suggested in the past. We also 

estimate the computational cost for ordered subset schemes which 

have advantages in the amount of parallelism that can be achieved 

per set, but lose performance due to the sequential execution of 

the sets overall.         

 
Index Terms—iterative reconstruction, coordinate descent, SIR 

I. INTRODUCTION 

HE statistical iterative reconstruction (SIR) algorithm for 

computed tomography (CT) has been shown great potential 

to generate high quality images with less artifacts and noise 

even in reduced X-ray dosage. This capability mainly results 

from the statistical noise modeling that puts higher weight on 

reliable measurements while deemphasizing noisy measure-

ments. SIR solves the following weighted least-squares (WLS) 

cost function: 

𝐱̂ = arg min
𝑥≥0

{
1

2
(𝐲 − 𝐀𝐱)𝑇𝐖(𝐲 − 𝐀𝐱) + 𝑅(𝐱)} 

where 𝐲 = (𝑦1, … , 𝑦𝐼)𝑻  is the vector of measured projection 

data, and I is the number of detector cells; 𝐱 = (𝑥1, … , 𝑥𝐽)
𝑇
 is 

the vector of attenuation coefficients of the object subject to be 

reconstructed; 𝐀 is the system matrix with the size of 𝐼 × 𝐽, 𝐖 

is diagonal matrix for statistical weighting, and 𝑅(𝐱) is regu-

larization term. 

 However, the high computational cost for forward and 
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back-projection operations still remains a challenging problem. 

To meet this challenge, with the consideration of modern par-

allel processors and properties of minimization algorithm, 

recent efforts have sought to find a solution between the con-

jugate gradient (CG)-based approach and the coordinate de-

scent (CD)-based approach. The formal approach [1] can up-

date all voxels simultaneously and thus is easy to parallelize, 

but it tends to converge very slowly; while the latter approach 

[2] can converge very quickly but it is hard to parallelize due to 

the sequential, single voxel update scheme.  

 Seeking a middle ground between the CG and CD ap-

proaches, the group coordinate descent (GCD) [3] and 

block-iterative coordinate descent (B-ICD) [4] algorithms have 

been developed.  Both aim at finding parallel voxels within a 

transaxial (x-y) plane where, however, in most cases the cou-

pling among those voxels remains high and so the acceleration 

is not overly dramatic. On the other hand, the axial block co-

ordinate descent (ABCD) algorithm [5] looks for parallel 

voxels along the z-direction where the coupling amount is 

relatively lower than in x-y plane. 

 In this work, we take a rather different route to find sets of 

independent voxels for a given CT scanning geometry and 

system model – one that uses the GPU not only for recon-

struction but also to compute a more accurate (but also more 

complicates) pattern of parallelizable voxels.  

 The remainder of this paper is as follows. In section II, we 

illustrate the intuition behind our method and then explain 

implementation details in section III. Section IV presents the 

results of our studies. Finally, section V ends with conclusions.  

II. MOTIVATION 

A. Independency among voxels 

The ICD-based statistical iterative reconstruction algorithm 

updates a voxel once at a time as follows: 

𝑥𝑗
𝑛+1 =

𝐀𝑗
𝑇 ∙ 𝐖 ∙ (𝐲 − 𝐀𝐱)

𝐀𝑗
𝑇 ∙ 𝐖 ∙ 𝐀𝑗

 (1)  

Equation 1 tells us that the correction, 𝐖 ∙ (𝐲 − 𝐀𝐱), is applied 

by the back projection with 𝐀𝑗 , which is a j-th column vector of 

the system matrix. In other words, an update of a voxel 𝑥𝑗 is 

affected by a few line integrals that are corresponding to the 

non-zero elements of 𝐀𝑗 . This means that updating pixel A and 

pixel C in Figure 1 can be done at the same time because they 
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depend on independent line integrals; while pixel B contains 

shared line integrals with both A and B, and thus should be 

updated separately. We say these voxels are independent of 

each other and call a set of such voxels an independent group.      

B. Knapsack problem 

Finding such an independent group can be equally regarded as 

finding a subset of column vectors from the CT system matrix 

such that there are no overlaps in the positions of non-zero 

elements among the selected column vectors as shown in Fig-

ure 1. 

Suppose 𝑎𝑗 is a binary vector format of 𝐀𝑗  where 1 indicates 

non-zero weight and 𝐺 is a set of binary vectors. Then finding a 

set, 𝐺, becomes a combinatorial optimization problem as fol-

lowings: 

min    ZERO {⋃ 𝑔

𝑔∈𝐺

}    𝑠. 𝑡.  
𝐺 = {𝑎𝑘|1 ≤ 𝑘 ≤ J}

𝑎𝑚 ∩ 𝑎𝑛 = 𝟎
∀𝑎𝑚𝑎𝑛 ∈ G, m ≠ n

 (2)  

Here, ZERO(∙)  is an operator counting the number of zero 

elements in a binary vector and 𝟎 is a zero vector. This kind of 

problem is known as the knapsack problem and it is, unfortu-

nately, a combinatorial NP-hard problem. Thus, instead of 

solving Equation 2 exactly, we solve it using a heuristic algo-

rithm, called first-fit decreasing (FFD) algorithm.  

 With the first-fit decreasing (FFD) algorithm, we first sort all 

vectors, 𝑎𝑗 , in decreasing order according to the number of 

non-zero elements in the vectors. After that, we find a set, 𝐺, by 

greedily adding all 𝑎𝑗 in first-fit order, if and only if it  satisfies 

the conditions in Equation 2.  

III. IMPLEMENTATION 

We now describe how the first-fit decreasing (FFD) algorithm 

is applied to find independent groups for a given CT geometry 

and CT system model. The algorithm consists of two steps: 

first, we identify the number of non-zero elements for each 

voxel and then run the FFD over the voxels.      

A. Counting 

Before applying the FFD to find independent groups, we first 

need to compute the total number of detector cells that interact 

with each voxel in all views. For example, in a view, the 

8-vertices of a voxels are projected onto the detector to roughly 

estimate the maximum intersection area in the detector. Then, 

we count the number of detector cells within the area according 

to the forward (or system) model. With the line integral models 

[6][7], a ray is a zero-width single line that connects the X-ray 

source to the central point of a detector cell; for the area integral 

models [8][9], a volumetric ray is traced. Figure 3 illustrates the 

differences between line integral and area integral models 

(using 2D fan-beam geometry for ease of drawing). 

B. Finding independent groups 

To find an independent group, the FFD algorithm is utilized. 

Suppose there is a list of voxels and an indicator map. The 

indicator map shows what detector cells are related to the 

voxels in the current group. Then, FFD begins with picking a 

voxel from the list that has the largest count number that we 

computed before. The selected voxel is then projected onto the 

detector in all views to determine detector cells that are related 

to the voxel. This is a similar process than described in the 

previous step (see also Figure 3). Then, we check if any one of 

the detector cells is already related with another voxel that has 

been added into the current group previously. This checking is 

done by using the indicator map. If none of the cells have been 

found before, the voxel is added to the group because it is in-

dependent to all voxels previously added. Before inspecting the 

next voxel, we remove some voxels from the list that are de-

pendent to the newly added voxel. There are two types of de-

pendent voxels: 1) voxels on the projection path of the newly 

added voxel and 2) its neighbor voxels. The first type of de-

pendent voxel is removed by tracing each ray that connects the 

i 

j 

System Matrix, A 

- j: voxels 

- i: line-integrals 

Overlap between B & C 

Overlap between A & C 

Figure 1. Example of independency among voxels  

Figure 2. Independent and dependent voxels according to the system model. (a) line integral model and (b) area integral model 

in 2D fan-beam geometry. The estimation of maximum area (EMA) where a voxel gives some contribution in a projection will 

be the same in both models. However, according to the system model, the grouping result can be different.    

 EMA EMA 

(a) (b) 

: detector cells that interacts with the target voxel : target voxel            : independent voxels to the target           : dependent voxels to the target 
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X-ray source to each detector cell that is related to the newly 

added voxel as shown in Figure 3. The second type depends on 

the regularization term that is going to be used in SIR. This 

early elimination of dependent voxels from the list helps to 

reduce the total running time of the FFD process. The process 

will be repeated until the list becomes empty.   

 To find all independent groups, we simply need to maintain a 

global voxel list. After finding an independent group, voxels 

included in the group will be removed from the global list. 

Then, the updated list will be used to find another independent 

group. This procedure is repeated until the global list becomes 

empty.    

IV. RESULTS 

To test the proposed grouping algorithm, we assume a 

cone-beam CT geometry. The object subject to be recon-

structed is set to 128×128×128 with 1×1×1 mm of voxel size. 

The distance from the X-ray source to rotation axis and to the 

center of a flat detector is set to 600 mm and 1000 mm, re-

spectively. The dimension of the flat detector is set to 512×512 

with 1×1 mm cell size. It is worth noting that all CBCT envi-

ronment parameters (including detector size) are determined 

such that all voxels can be projected onto at least 1 detector 

cells in all tested views. Lastly, we assume a line integral model 

and a quadratic regularization term in SIR. These two assump-

tions are needed to make a decision what voxels belong to the 

independent or dependent group as explained in section III.B. 

We ran the proposed algorithm varying the number of views 

from 1 to 360 and, in each case, the projection angles were 

distributed uniformly over 360 degrees. Table I shows the 

outcomes of the proposed method for two extreme cases, single 

view and 360 views in a set. Especially, with 360 views, the 

number of updates that is required per iteration during 

ICD-based SIR is reduced from  1283(= 20,971,152)  to 

13,569. In this case, the expected speed-up with ideal GPU 

implementation is 155. More importantly, the proposed 

grouping method finds 154 independent voxels on average that 

do not have any coupling with any other voxels. This means 

that updating those voxels simultaneously does not require any 

other additional computational complexity but can be done just 

like a single voxel update in original ICD algorithm.   

The ratio of total number of voxels to the number of updates 

obtained from with method is considered the theoretical paral-

lelism we can achieve with an ideal GPU implementation. 

Figure 3 shows it in logarithmic scale. Suppose that we have 

360 views in total and we apply the ordered-subsets (OS) al-

gorithm [10] by varying the number of views per subset. Then, 

the total gain from OS with ideal GPU implementation on 

ICD-based SIR is estimated as following: 

𝑔𝑎𝑖𝑛𝑂𝑆𝑆𝐼𝑅
𝐺𝑃𝑈 =

𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙𝑖𝑠𝑚

(360 /  # 𝑜𝑓 𝑣𝑖𝑒𝑤𝑠 𝑝𝑒𝑟 𝑠𝑢𝑏𝑠𝑒𝑡)
 

Here, the benefit obtained from a parallel implementation of 

SIR is reduced by the number of subsets that must be updated 

sequentially. The result is shown in Figure 3. Considering the 

improved convergence rate with OS, around 100 views per 

subset could be good choice. However, in the real world, there 

are many constrains such as memory bandwidth between CPU 

and GPU, the special GPU architecture and programming 

model and so on. And all of these can possibly change our 

expectation. Future work will determine optimal computational 

performance of GPU-accelerated SIR [11].  

The distribution patterns for the independent voxel groups 

are quite complex. A set of visualizations is presented in Figure 

4 where we assign each group a different color from a rainbow 

scale. This figure shows these patterns for three volume slices – 

bottom, middle, and top along the z-axis – and for different 

numbers of views. We observe as we look at the bottom and top 

slices for greater view numbers – parallelizable voxels tend to 

gather together, creating circular shapes. This is due to the 

characteristics of the cone-beam – rays that are tangential to the 

circle do not share any voxels. We also observe that the dis-

Figure 3. Relationship between expected (ideal) parallelism and estimated gain of GPU-accelerated OS-SIR. Note that paral-

lelism is plotted over logarithmic y-axis for better view. 

𝑔𝑎𝑖𝑛𝑂𝑆−𝑆𝐼𝑅
𝐺𝑃𝑈  𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙𝑖𝑠𝑚 =

1283

# 𝑢𝑝𝑑𝑎𝑡𝑒𝑠
 

Number of views / subset 

TABLE I. STATISTICS OF INDEPENDENT VOXEL GROUPING 

# Views 
# 

updates 

Max. size of inde-

pendent group 

Avg. size of inde-

pendent group 

1 187 16,186 11,214 

360 13,569 449 154 
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tribution of independent groups on the bottom and top are re-

verse (the blue region in the top slice is the red region in the 

bottom). This is strong evidence that the proposed algorithm 

gathers independent voxels within an optimal distance.  

V. CONCLUSION 

We have described a new method to determine parallelizable 

voxels for GPU-accelerated ICD-based SIR. Not only can our 

method provide more parallelism than existing methods, it has 

several more advantages. First, since it finds completely inde-

pendent voxels groups, unlike other methods it does not in-

troduce extra complexity in the SIR procedure. Second, having 

accurate parallel voxel distribution as shown in Figure 4, we 

can devise a good strategy for a GPU implementation of SIR. 

Lastly, the algorithm is not limited for use in cone-beam CT 

geometry – it can work in any beam geometry. 

As a disclaimer, the gains we can expect from the grouping 

results are only obtainable in the ideal case. There are many 

practical aspects that can reduce these expected gains in an 

actual GPU implementation, for example, data transfer between 

CPU and GPU memory, compute capability of GPU device, 

and so on.  Our next step in this study is to apply our grouping 

result to an actual GPU-accelerated SIR framework. We hope 

that we can get sufficiently high speed-up gains that are not too 

far from the expected gains estimated in this paper. We will 

also study how the convergence rate changes with our scheme.  
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