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 

Abstract— With the help of modern parallel computers, iterative 

reconstruction algorithms have become a feasible research topic 

in the field of CT. These types of algorithms can greatly benefit 

from an accurate, realistic CT system model. In our study, we 

model the CT projection as volume integrals and propose a set of 

methods that can compute the volume integrals either exactly or 

approximately. Our approximate volume integral methods have a 

much smaller complexity algorithmically than the exact method, 

but their accuracy is close to it. More importantly, the proposed 

approximate methods can be easily ported to modern parallel 

processors to utilize their massive computation powers.         

 
Index Terms—computed tomography, system matrix, forward 

projection, line integral model, volume integral model  

I. INTRODUCTION 

ith the increasing popularity of iterative reconstruction 

algorithm in the field of CT medical imaging, modeling 

realistic CT systems in software is becoming more crucial than 

ever. The CT model is usually described by a large matrix, A, 

whose columns are corresponding to voxels to be reconstructed 

(J×1 vector) and the rows are corresponding to the projections 

(or line integrals, I×1 vector) that are usually measured by the 

CT scanner. Then, each element, 𝑎𝑖𝑗 , of the matrix represents 

the contribution of a voxel j to a line integral i, the so called 

weight coefficient. This gives rise to the system equation: 

𝐀𝐈 = 𝐉 

The process of calculating the line integrals is known as the 

forward model and its reverse model, generally defined as the 

transpose of the forward model, is known as the 

back-projection operation.  

 The most intuitive approach to describe the forward model 

would be the line integral model (LIM) where each weight 

coefficient, 𝑎𝑖𝑗 , is computed as the intersection length between 

th j-th voxel and the i-th ray. Usually, in this type of approaches 

[1][2], a single ray is described by a zero width line that 

connects the x-ray source and the center of the detector cell for 

the ray-driven approach (or the center of a voxel for the 

voxel-driven approach). 

 The other approach that is much closer to a real CT system is 

the volume integral model (VIM). In this model, a single ray 

can be described by a pyramid shaped 3D polytope that 

connects the x-ray source and the four sides of the rectangular 
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shape of a detector cell. Then, the weight coefficient, 𝑎𝑖𝑗 , is the 

intersection volume between the ray and the cube shaped voxel. 

However, exactly computing the intersection volume (or 

arbitrary shape of convex polygon) is not a trivial problem.  

 There are two well reported approaches that approximate the 

intersection volume. The first approach is the distance-driven 

(DD) method [3] which computes the coefficient as the row or 

slab intersection length combined with the overlap coefficient. 

The overlap coefficient is computed based on the length or area 

of overlap between a voxel and a detector cell when they are 

mapped onto each other as seen by the source. The other 

approach is the separable footprint (SF) method [4] which 

approximates the voxel footprints as 2D separable functions. 

This approximation not only greatly simplifies the computation 

of the coefficient but has also been shown as more accurate than 

the DD methods, while keeping a similar computational cost. 

 Recently, Zhang et al. [5] presented a method that computes 

the exact intersection of the X-ray beam geometry with a voxel. 

However, they only consider 2D fan-beam reconstruction, 

deferring its extension to cone-beam to future work. The fan 

beam method itself is fairly complex, breaking the problem up 

into a set of special cases depending on the type of intersection.  

We present a closed-form solution for exact fan-beam 

intersection which is fairly straightforward and does not require 

a subdivision into cases. Unfortunately this closed form does 

not generalize to cone-beam without a subdivision into simpler 

primitives. In fact, there is no reported closed-form solution for 

the volume of the generalized 3D polytope that arises from 

intersecting a pyramidal come-beam with a voxel. We choose a 

solution that subdivides the polytope into a set of tetrahedrons, 

but like other method of this kind, this bears significant 

overhead. For this reason we also propose three methods that 

approximate the 3D intersection volume by chopping a voxel 

into sub-voxels with known volume. Such solutions are quite 

amenable to parallelization on the GPU. 

 Next we first describe our volume integral methods and then 

evaluate their performances in terms of accuracy and speed. 

II. METHODOLOGY 

We propose four different schemes that compute the weight 

coefficients in a CT system as volume integrals. Figure 1 and 2 

show schematic representations of the four methods in 2D (for 

simplicity) but all have been implemented and tested in 3D. 

Especially, the schemes shown in Figure 2 approximate (or 

indirectly) estimate 𝑎𝑖𝑗  in a fashion that lends itself well to the 

massive parallel computing power of modern GPUs. In the 

following subsections we describe all methods in closer detail.     
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A. Exact Volume Integration Method 

The intersected volume can be computed in an exact manner as 

shown in Figure 1. To compute the intersected volume, 𝑎𝑖𝑗 , we 

first project a voxel, 𝑣𝑗, to a (flat) detector to find detector cells 

that interact with the voxel. For each cell, 𝑐𝑖, a pyramid-like 

shape of  a beam can be designed with four-planes that connect 

the x-ray source to the four-edges of the cell. Then, the 

intersected volume between the voxel and the beam is equal to 

the volume of the voxel clipped by the four-planes. We used the 

Sutherland-Hodgman clipping algorithm [6] which works by 

extending each plane of the convex shape of the beam in turn 

and selecting only vertices from the subject polygon, 𝑣𝑗, that 

are on the visible side.  

For the 2D (fan-beam) case, given the set of vertices returned 

from the clipping algorithm, there is a closed-form solution for 

finding the area of the resulting arbitrary convex polygon: 

𝑎𝑟𝑒𝑎 =  |
(𝑥1𝑦2 − 𝑦1𝑥2) + (𝑥2𝑦3 − 𝑦2𝑥3) + ⋯ + (𝑥𝑛𝑦1 − 𝑦𝑛𝑥1)

2
| 

where 𝑥𝑚 and 𝑦𝑚 are the x- and y-coordinate of a vertex, and 

number of vertices in order, going either clockwise or 

counter-clockwise, staring at any vertex. However, there is no 

such closed-form solution the volume for a convex polygon (a 

polytope) in 3D. There are a number of ways to go about this, 

but decomposing the polytope into a number of tetrahedrons 

whose volume is equal to 1/6 of the absolute value of the triple 

product: 

𝑉𝑜𝑙𝑢𝑚𝑒 =
1

6
|

𝑢1 𝑢2 𝑢3

𝑣1 𝑣2 𝑣3

𝑤1 𝑤2 𝑤3

| 

Here, u, v, and w are the vectors between three vertices and a 

vertex, which can be chosen randomly out of four vertices in a 

tetrahedron. In our implementation, the tetrahedralization is 

realized using 3-D Delaunay triangulation approach [7]. Then, 

the exact intersected volume of 𝑎𝑖𝑗  is computed as the sum of 

all tetrahedrons within the polytope.  

B. Approximate Volume Integral Method 

We will now describe three strategies that approximate or 

indirectly estimate the intersected volume, 𝑎𝑖𝑗 , by dividing a 

voxel j into a number of small sub-voxels. The first two 

methods are to approximate the volume by counting the number 

of sub-voxels within a beam; while the third method will 

indirectly estimate 𝑎𝑖𝑗  by projecting all sub-voxels onto the 

detector. All of these methods are algorithmically much simpler 

than computing the exact volume and, more importantly, are 

targeted to utilize the parallel computation power of modern 

GPUs. Figure 2 shows a schematic representation of these 

methods and details of each method will be explained next.  

1) Riemann sum approach 

One of the simplest and most intuitive approaches to 

approximate the intersected volume, 𝑎𝑖𝑗 , would be counting the 

number of sub-voxels of known volume within the intersected 

volume. The approach is inspired by an approximation of the 

area underneath a curve, also known as a Riemann sum where 

the area is divided into a number of rectangles (or trapezoids) 

and approximated by the sum of all the rectangles. Similarly, a 

voxel, 𝑣𝑗 , is first divided into 𝑁3  of sub-voxels whose side 

length is 1/N of  the voxel’s side. Then, the intersected volume 

is approximated by counting the number of sub-voxels whose 

central points are inside the beam. Figure 2(a) shows a brief 

explanation of this approach with the case that N is 4 (in 2D for 

simplicity). In this example, the volume is approximated by 

6 ∙ 𝛿 where 6 is the number of rectangles whose central points 

(red dots) lie inside of the beam (green area) and 𝛿 is the area of 

a small rectangle.  

2)  Recursive sub-division approach 

In this approach, instead of having a fixed number of 

sub-voxels per voxel as in the Riemann sum approach, we 

recursively divide it into N sub-voxels when the current cube is 

intersecting with the beam. Suppose that each time a voxel is 

divided into N sub-voxels. Each sub-voxel will be evaluated if 

it intersects with a beam or not. If it intersects, the sub-voxel 

will be divided into another N sub-voxels. This process will be 

recursively enacted until a pre-defined number of sub-divisions 

has been reached. The final volume is computes by counting the 

number of the smallest size of sub-voxels that pass the 

intersection test. This process is described in Figure 2(b) for the 

2D case when N is 2 and there are two sub-divisions. In this 

example, the volume is approximated as 9 ∙ 𝛿 where 9 is the 

number of rectangles at the finest levels that are determined as 

the one having overlap region between the beam (green area) 

and tangent circle to the rectangle, and 𝛿 is area of a rectangle 

at the finest level.       

The intersection test is performed by setting the criterion of 

non-intersection cases. There are four cases when a voxel (or a 

sub-voxel) does not overlap with a beam, designed by four 

planes with inward direction of normal vector. 

x-ray  

source 

detector 

𝑎𝑖𝑗  

j-th voxel 

i-th cell 
i-1 

i+1 
i+2 𝑎𝑖𝑗 𝑎𝑖𝑗 

𝑎𝑖𝑗  =              +            +          

Figure 1. Exact Volume Integral Method. (a) Find detector cells that interact with voxel j, (b) Clip the voxel with the x-ray beam, 

(c) Tetrahedralize the intersected convex polygon, and (d) compute 𝑎𝑖𝑗  by summing all tetrahedrons.  

(a) (b) (c) (d) 
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Figure 3. Accuracy and time performance of approximate volume integral methods. (a) Accuracy and (b) Time performance. 

Note that x-axis in both measurements is the number sub-voxels in a voxel. 

RMSE [ms] 

(a) Accuracy measurement (a) Time performance [msec] 

0.0137 for RS 

0.5256 for RSD 

1.6689 for EXACT 

0.3353 for RS 
0.1540 for RSD 

1. If 𝑑𝑢 (𝑑𝑑) is negative distance and its magnitude is larger 

than the half side of the cube, the beam is passing below 

(above) of the cube. 

2. If 𝑑𝑙  (𝑑𝑟) is negative distance and its magnitude is larger 

than the half side of the cube, the beam is passing right 

(left) of the cube. 

Here 𝑑𝑥 is a signed distance from the center of the sub-voxel to 

a plane, 𝑥, and the subscripts {𝑢, 𝑑, 𝑙, 𝑟} are short-hand for the 

location of a plane as {𝑢𝑝, 𝑑𝑜𝑤𝑛, 𝑙𝑒𝑓𝑡, 𝑟𝑖𝑔ℎ𝑡}. If any geometry 

configuration between a sub-voxel and a beam violates one of 

the non-overlap criteria, we perform another sub-division for 

the (sub-)voxel or count the voxel as part of the intersected 

volume, if it reaches the pre-defined number of sub-divisions. 

 

3)  Multi-projection approach 

This approach is a bit different from the other approaches in 

that it does not compute the intersected volume between a voxel 

and a beam. Instead, the central points of all 𝑁3 sub-voxels 

obtained as in Riemann sum approach are projected onto the 

detector. Then, the weight coefficient is computed as follows: 

𝑎𝑖𝑗 =
1

𝑁3
∑ 𝑙𝑘 × 𝐺(𝑝𝑘 ; 0, 𝜎2)

𝑘

 

where 𝑘 is an index of a central point of a sub-voxel, 𝑙𝑘 is the 

intersection length between the k-th sub-voxel and a zero-width 

ray passing through its central point, 𝑝𝑘  is the projection 

location on a (flat) detector of the k-th central point and 𝐺(∙) is 

a cell sensitivity kernel described by a zero mean Gaussian 

distribution. In our implementation, the variance of the cell 

sensitivity kernel is determined to have the side length of a cell 

as its FWHM. Also, the density value at each sub-voxel is 

obtained by using (tri-) linear interpolation and the projected 

values are scattered over nearby cells according to their 

sensitivities. Figure 2(c) shows an illustration of this approach 

for the 2D case.  

III. RESULTS 

We tested the proposed volume integration methods (VIMs) 

with a voxel-driven forward projection of a 8×256×16 sized 

uniform slab with 1×1×1 mm voxels, imaged at 45 degrees in 

conventional cone-beam CT geometry. The distances from the 

source to rotation axis and to the center of a flat detector were 

set to 400 mm and 500 mm, respectively. The detector has a 

size of 512×512 (1×1 mm bins). The projection image obtained 

using exact VIM is used as a reference for all other methods.  

We first tested the Riemann sum (RS) and recursive 

sub-division (RSD) approaches by varying the number of 

sub-voxels. We varied the number of sub-voxels in RS by 

matching the total number of sub-voxels at the finest levels in 

RSD, to enable a fair comparison of accuracy and time 

performance between them. The RMSE metric is used to 

measure the accuracy of both approximate VIMs as follows: 

Figure 2. Approximate Volume Integral Methods. (a) Riemann sum approach, (b) Recursive sub-division approach, and (c) 

Multi-projection approach. 

(a) (b) (c) 

X-ray source 

detector 

i-th voxel 

i-th cell 
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𝑅𝑀𝑆𝐸 =
1

𝐶
∑ √(𝑝𝑖

𝑒𝑥𝑎𝑐𝑡 − 𝑝𝑖
𝑎𝑝𝑝𝑟𝑜

)
2𝐼

𝑖=0
 

where I is total number of line integrals in a view, 𝑝𝑖  is 

projected value at detector cell i, and the super-script denotes 

exact and approximate VIMs. The normalization factor 𝐶 is set 

to the number of non-zero projection values in exact VIM.  

 Figure 3 shows the accuracy and time performance 

comparisons among RS, RSD and exact VIMs. As the RS 

method checks all sub-voxels in a voxel, it shows better 

accuracy than RSD; while RSD shows better time performance 

than RS because it quickly skips a portion of a voxel in which a 

beam does not intersect. Note that the time performance shown 

in Figure 3(b) is the average time to compute the exact or 

approximate intersected volume of a voxel.  

 We also visually inspect and compare the projection images 

obtained from the exact and the two approximate VIMs (RS 

and RSD) as shown in Figure 4.  After having 15625 ( = 53∗2) 

sub-cubes in total for each voxel, both approximate VIMs 

results in almost similar visual appearance as exact method 

even though RSD has much higher RMS error. In addition, 

RSD shows about 2 times faster than RS and 10 times faster 

than exact methods.  

 Lastly, we tested the multi-projection method with the same 

cone-beam CT geometry and uniform slab. We note that this 

method, in fact, uses a line integral model, unlike the other 

methods, but it uses a higher level of subdivision than 

conventional such methods. Figure 4 at the bottom shows a 

projection of the slab using this method for the case where the 

number of sub-voxels id 15,625 (row 4 in Figure 4). The quality 

is quite similar but the projection is 1-2 orders of magnitudes 

faster due to the very simple projective mapping.   

IV. CONCLUSION 

In this paper, we have studied four volume integral methods 

(VIMs) to construct a more realistic and accurate CT system 

model. The exact VIM has provided a gold standard reference 

for developing the approximate methods. The approximate 

VIMs show very close accuracy to the exact one while having 

superior time performance (at most 10 times faster at visually 

acceptable level). Furthermore, the proposed approximate 

VIMs can be easily imported to the parallel processors like 

multi-CPU processors or GPU threads that would be quite 

complicated for exact methods. Projecting the sub-voxels 

centers to the projection plane and distributing their 

contribution turned out to give similar results but a much higher 

speed. In future work we would like to investigate this further. 

Finally, we also plan to reconstruct a full CT data set with the 

approximate VIMs and evaluate their performance. 
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Figure 4. Visual inspection of projection 

images obtained from the exact and the 

three approximate VIMs. For RS and 

RDS, the number of sub-cubes in 

approximate methods is increasing from 

top to bottom as x-axis in Figure 3. 
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