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Abstract —Visualization algorithms can have a large number of parameters, making the space of possible rendering results rather
high-dimensional. Only a systematic analysis of the perceived quality can truly reveal the optimal setting for each such parameter.
However, an exhaustive search in which all possible parameter permutations are presented to each user within a study group would
be infeasible to conduct. Additional complications may result from possible parameter co-dependencies. Here, we will introduce an
efficient user study design and analysis strategy that is geared to cope with this problem. The user feedback is fast and easy to
obtain and does not require exhaustive parameter testing. To enable such a framework we have modified a preference measuring
methodology, conjoint analysis, that originated in psychology and is now also widely used in market research. We demonstrate our
framework by a study that measures the perceived quality in volume rendering within the context of large parameter spaces.

Index Terms —Conjoint Analysis, Parameterized Algorithms, Volume Visualization

1 INTRODUCTION

The main purpose of visualization is to produce images that allow
users to gain more insight into the illustrated data. This is a complex
issue, depending on many factors of the visualization system, starting
from human-computer interaction, to rendering speed, to rendering
style and algorithm, and finally human perception and cognition. With
the exception of the last component all of these factors have been de-
signed by humans and many diverse technologies have emerged, and
are still emerging, over the years. But in the end, human perception
is the ultimate judge that determines which of these are the most ef-
fective. A popular focus of the field of visualization is the modeling
and optimization via engineering and mathematics tools and frame-
works, and often the designer/engineer him/herself judges the success
of the method. Here, the easiest parameters to measure are rendering
speed and memory consumption and others, which are all engineer-
ing quantities. However, in light of the importance of the last element
in the chain, the human observer, a more recent focus has become to
also conduct adequate user studies to measure the success of a pro-
posed method. This practice is already common place in the field
of human-computer interaction, and to a more limited extent also in
information visualization, but less so in scientific and medical visu-
alization. In essence, user studies are always considered burdensome
since in many cases there are a large number of parameters and algo-
rithmic alternatives, requiring many trials, that is, human subjects and
experiments, to produce statistically significant results. This has been
a major obstacle in assessing a method’s success in terms of the hu-
man perceptive and cognitive system. The pressing question is: can
we make this task easier by introducing a more methodical and or-
ganized approach. For this it pays to look at other fields, especially
those driven by heavy monetary investments. One then finds that user
studies play a major and dominant role in product marketing, where
it is important to tune the various parameters of a product before it
is being launched to market (or determine its launch at all). Clearly,
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these studies must be conducted as thoroughly as possible, in order to
maximize the outcome, but they also must be conducted as efficiently
as possible in order to minimize the time, burden put on the partici-
pants in the study and samples needed to explore the vast parameter
space in a statistically significant manner. A technique calledconjoint
analysis[5] is the answer to all of these design goals, and this paper
makes this technique accessible to visualization researchers and their
specific domain setting. Visualization researchers are faced with the
task that a large number of algorithms need to be compared. However,
the number of algorithms is too large for a single user to compare/rank
all of them in reasonable time (and with reasonable accuracy). Fortu-
nately, in many visualization areas, such as volume visualization, the
algorithms are not strictly arbitrary but to some extent related; that is,
they are all different incarnations of one parameterized algorithm and
are obtained by fixing the parameter values. A comparison of the al-
gorithms then leads to a ranking of the algorithms/parameter settings.
This is essentially the same problem that market researchers face when
eliciting consumers’ preferences on substitute goods that can be de-
scribed in terms of attributes and attribute levels. Conjoint analysis, as
introduced above, is a well established family of questionnaire based
techniques to elicit consumer’s preferences. It frees the evaluator from
the daunting burden of presenting the effects of all attribute levels to
all users for evaluation but nevertheless allows statistically significant
results.

A main contribution of this paper is the development of our own
conjoint analysis technique as an extension of Thurstone’s method of
comparative judgment [14]. Like most techniques it is based on some
assumptions (model), but it has the advantage that all assumptions can
be tested, which is not the case with off-the-shelf conjoint analysis
software like Sawtooth’ software [1]. The model assumptions allow
us to derive robust preference estimates from sparse data, i.e., every
user needs to ‘explore’ only a small fraction of the large parameter
space.

We demonstrate our conjoint analysis technique in four related stud-
ies that fit two important visualization purposes: visual aesthetics and
the conveyance of detail. In this pursuit, we can gain further insights.
For example, we determine the relative importance of the algorithm’s
parameters and their levels. This is important information if one has
to tradeoff perceived quality against other objectives like time or file
size. Conjoint analysis allows us to quantify these tradeoffs. We can
also study the effects of age, gender, culture, or color deficiencies on
users’ preferences.

Our analysis framework is timely in light of the various recent ef-
forts to optimize viewpoints [8, 13], transfer functions [10], sampling
intervals [15, 2], high-level appearance descriptors [12], illustrative



rendering parameters [3], perceived salience [9], and others. All of
these use mostly mathematical, engineering, but also sometimes aes-
thetics and perception-motivated arguments to devise their methods.
Controlled user studies need to eventually decide which strategy is
most effective and relevant for the human observer, especially in con-
junctive terms. Furthermore, these user studies can also be helpful
to fine tune the parameters of these methods, which may also be task
and domain dependent. In the following sections we first overview the
theory of our framework in accessible terms, and then apply it within
a typical multi-parameter volume rendering scenario to demonstrate
the analysis path. While the results are in fact insightful in their own
right, they should also and perhaps predominantly be valued as indi-
cators for the analytical power of our framework as a more general
user assessment tool and as a guideline on how to conduct and ana-
lyze a conjoint study in the context of visualization algorithms evalu-
ation/comparison.

2 CHOICE BASED CONJOINT ANALYSIS

A class of items has a conjoint structure if it can be described by the
Cartesian productA1× . . .×An of attribute setsAi . The elements of
the attribute sets are called attribute levels. An itema is then repre-
sented by a vector(a1, . . . ,an) with ai ∈ Ai , i.e., by fixing the attribute
levels. Conjoint analysis is a family of techniques for eliciting from a
population of people their ranking (on some scale) of the elements in
A1× . . .×An, i.e., on the items. Conjoint analysis techniques can be
distinguished by two (not independent) parameters: firstly the elicita-
tion procedure, i.e., the way preference data are obtained from respon-
dents, and secondly the way the elicited data are processed in order
to derive a representation of individual or aggregated preference infor-
mation (typically in form of a value or utility function).

In recent years choice based conjoint analysis has become the most
popular conjoint analysis technique. It got its name from the method
employed for elicitation, namely, preferences are elicited in a sequence
of choice tasks. In a choice task a small number of items (typically
between two and four) is presented to a respondent who has to state
which one out of these she/he prefers most. Choice tasks are popular
in market research since they resemble real buying situations and thus
tend to provide the most reliable information.

There are many different ways to analyze the data obtained from
several respondents and several choice tasks each, but any analysis
method defines ascaleon which the items are compared. A scale as-
signs to each item a number. In conjoint analysis there are essentially
two types of scales used: onordinal scalesthe numbers assigned to
the items are their ranks in a linear order. Note that the nominal dif-
ference between ranks has no meaning. Oninterval scalesan item is
preferred over another if it gets assigned a larger number. Differences
of the assigned numbers have a meaning on interval scales, but these
scales have nonatural zero. Note that translating all scale values on
an interval scale has no effect.

Another difference in analysis methods is whether they define a
scale for each respondent, or just a scale for a population of respon-
dents (aggregated scale). Our analysis method defines an interval scale
for a population of respondents.

3 DATA COLLECTION

As mentioned several times our goal was to measure the perceived
quality of a visualization algorithm for different parameter settings that
we describe in Section 4. We chose choice based conjoint analysis as
our elicitation procedure, where each choice task was a paired com-
parison between two renderings, i.e., between two parameter settings.
Note that the cognitive burden increases with the number of items from
which to choose. Higher cognitive burden should result in poorer data
quality. We decided to use choice tasks with the least cognitive burden,
namely paired comparisons.

For our study we used two data sets. The first data set FOOT
is meant to cover the medical application domain, whereas the sec-
ond data set ENGINE covers the engineering applications area. See
Figure 2 for various images rendered for these two data sets. The
ENGINE data size is 256× 256× 256, and the FOOT data size is

154× 263× 222. For the FOOT data set we had 2250 different pa-
rameter settings resulting in 2250 different renderings (images) and
for the ENGINE data set we had 2700 different parameter settings.

Perceived quality itself can be measured along different directions.
We made this more explicit by asking two different questions:Which
image do you like best?andWhich image shows more detail?We
will later refer to the first question as AESTHETICSand the second as
DETAIL . Note that the second question is more specific than the first,
which is fairly general.

Each combination of data set and question is considered as a dif-
ferent study, i.e., we conducted the four different conjoint studies
[ENGINE, AESTHETICS], [ENGINE, DETAIL ], [FOOT, AESTHETICS]
and [FOOT, DETAIL ].

We elicited data for our studies from visitors at an exhibition that
took place to celebrate the 25th anniversary of the computer science
department at ETH Z̈urich. Our survey took place in a room at the
exhibition that was darkened using light-impermeable black curtains.
The room had six work places each having a computer with mouse and
LCD screen with resolution 1280x1024 pixels. During the survey the
light in the room was switched off.

786 visitors of the exhibition participated in our study. From the
participants we collected the following data: age, gender and color de-
ficient (yes or no). To test for color deficiencies we used the Ishihara
test [7]. Every respondent took part in exactly two of our conjoint stud-
ies, i.e., a respondent always had to answer the same randomly chosen
question on both data sets. That is, each respondent participated in
one study for each data set FOOT and ENGINE, respectively. We did
not conduct the two studies one after the other, but interleaved them:
alternately a respondent was shown ENGINE image pairs and FOOT
image pairs to choose from, altogether 20 pairs for each data set. The
image pairs for the comparisons were determined as follows: the first
image was drawn uniformly at random from the set of all images. The
second image was then drawn uniformly at random from the set of im-
ages having for each parameter a different value than the first image.
The images were presented side by side on the screen with a black
stripe separating them. The background of the screen was set to black.
All images had a resolution of 512×512 pixels. Respondents chose an
image by clicking on it, after a click the next image pair was shown.
Typically the respondents needed three to five minutes to complete the
survey.

4 RENDERING ALGORITHM

We have chosen a relatively standard volume visualization scenario to
demonstrate our user study framework. Using GPU-accelerated ray
casting rendering, the visualization of each object can be described
in terms of the parameters COLORMAP, RENDERING, V IEWPOINT,
RESOLUTION, STEP SIZEand BACKGROUND. The parameter COL-
ORMAP has three levels which correspond to different color maps
that are applied for transfer function design. For all transfer func-
tions, the alpha channel has been set to always reveal most of the
object’s structures, in order to suppress ‘occlusion’ to act as an in-
dependent variable. The parameter RENDERING describes the applied
rendering mode and has five levels: DVR (Direct Volume Render-
ing), DVRNS (Direct Volume Rendering with No Shading, just com-
positing), DVRGM (Direct Volume Rendering with Gradient Modu-
lation to highlight surfaces), XRAY (Colored X-Ray) and MIP (Col-
ored Maximum Intensity Projection). The parameter VIEWPOINT has
six levels for the ENGINE and five levels for the FOOT data set. It
describes the viewpoint under which the observer sees the object. Dif-
ferent viewpoints are chosen in such a way that most structures are
always kept visible, again to prevent ‘occlusion’ from playing a sig-
nificant role in the study. The parameter RESOLUTION describes the
screen resolution used for rendering. We render at the resolution of the
dataset and twice that. Note that in the end the image size was always
512×512 (the image rendered at reduced resolution, that is, at volume
resolution, was scaled up with bilinear filtering). STEP SIZEis the ray
traversal increment (measured in voxel size), which has three levels,
0.2, 0.5 and 1.0. Finally the parameter BACKGROUND describes the
color of the background and has five levels:BLACK , WHITE, DARK



GREEN, DARK BLUE andYELLOW. Combining these parameters re-
sults in the 2700 ENGINE images and in the 2250 FOOT images.

5 DATA ANALYSIS : THEORY

In this section we describe a method to define an interval scale for a
population of respondents from their choices in paired comparisons.
Note that in general any 1 out-ofk choice task provides informa-
tion aboutk−1 paired comparisons. Our method extends Thurstone’s
method of comparative judgement [14], which does not assume a con-
joint structure. In a nutshell, our method works as follows: At first
we estimate scale values for all levels of a single attribute. To this end
we interpret any paired comparison as a comparison of just the two
levels of the given attribute that are present in this comparison, ignor-
ing differences in the levels of all other attributes. We can apply this
method to all attributes to obtain scale values for all their levels. Note
that the scale values for levels of different attributes need not be com-
parable yet. To make them comparable we design a rescaling method.
It builds on the fact that for the computation of the scale values for
any attribute, always the same stated preferences are used, namely, the
outcomes of all paired comparisons. Finally, the scale value of an al-
gorithm, i.e., complete parameter set, is just the sum of the scale values
of the parameter values.

5.1 Thurstone’s method

A good introduction into Thurstone’s work is given in [4]. Here we
summarize it only briefly. Our goal is to define a meaningful scheme
to assign scale values on an interval scale ton items that we label
by 1, . . . ,n. Thurstone’s intuition was that the relative frequencyFi� j
that i was preferred overj by the respondents is an indirect measure
for the distance betweeni and j. He derived an interval scale from this
intuition under the assumption that the scale valuesSi of the itemsi are
uncorrelated normally distributed random variables with expectations
µi and variancesσ2

i ≡ σ2, i.e., all the variances are the same.
The idea is to assign to each itemi the valueµi , on an interval scale,

which still has to be defined. To do so we need to estimate all theµi ’s
from the paired comparison data that we have available. It turns out
that it is easier to estimate the differencesµi − µ j . We use the latter
and assign to each itemi the value

1
n

n

∑
j=1

(µi −µ j ) = µi −
1
n

n

∑
j=1

µ j =: µi − µ̄.

That is, we only shift the scale that assignsµi to item i by the value
µ̄, i.e., as interval scales both scales are the same. Note that by the
properties of normal distributions, the differencesSi−Sj are normally
distributed with expectationsµi −µ j and variance 2σ2. This yields

P[Si −Sj > 0] =
1√

4πσ2

∫ ∞

0
e−

(x−(µi−µ j ))
2

4σ2 dx= Φ
(

µi −µ j√
2σ

)
,

whereΦ is the cumulative distribution function

Φ(x) =
1√
2π

∫ x

−∞
e−

y2

2 dy

of the standard normal distribution. Hence,

µi −µ j =
(√

2σ

)
Φ−1(P[Si −Sj > 0]

)
.

We can estimateP[Si −Sj > 0] by the observed quantityFi� j , i.e.,
the relative frequency that itemi was preferred overj and thus es-
timate µi − µ j by

√
2σΦ−1

(
Fi� j

)
and the scale value of itemi by

si =
√

2σ

n ∑ j 6=i Φ−1
(
Fi� j

)
. The choice ofσ essentially fixes the scale,

but the ratio of differences of scale values is not affected by the choice
of σ , i.e., any fixed choice ofσ would work. A natural but arbitrary
choice isσ = 1.

5.2 Conjoint structure case

Recall that in conjoint analysis we assume that the items come from
setA with conjoint structure, i.e.,A = A1× . . .×An. Thus we have
choice data (from paired comparisons), where the elements inA were
compared. The setA is typically fairly large and we do not have
enough choice information to apply Thurstone’s method directly.
Instead we take a decompositional approach and first order the levels
in each of the attributesAi , i = 1, . . . ,n on interval scales. For that
purpose, whenever in a choice task(a1, . . . ,an) ∈ A was preferred
over (b1, . . . ,bn) ∈ A, we consider this asai was preferred over
bi , providedai 6= bi . That is, we derive choice information on the
attribute level from choice information on the item level. We then can
apply Thurstone’s method to the choice data on attribute level to get a
scale for each attribute. When applying Thurstone’s method we set all
variances to 1, which fixes the scales for all the attributes but does not
necessarily make these scales comparable. For any attributeAi with
levelsai1, . . . ,aiki

let si1, . . . ,siki
be the scale values that we get from

applying Thurstone’s method on the attribute level. The next step is
to aggregate these scales. We make the following assumption that
extends the distribution assumption needed for Thurstone’s method
for a single attribute:

Assumption. For any attributeAi the scale valuesSi1, . . . ,Siki
are

all normally distributed with varianceσ2
i1 and expectations drawn

from another normal distribution which itself has expectation 0 and
varianceσ2

i2. That is, we assume that the scale values for the levels of
attributeAi are drawn from a normal distributionNi with expectation 0
and varianceσ2

i1 +σ2
i2 (the convolution of the two normal distribution

functions introduced before).

As when applying Thurstone’s method the valueσ2
i1 is the same

for all theSi j , but not necessarily 1. Later it will be chosen such that
the scales for all attributes become comparable, i.e., the scaled scale
valuesσi1si j will be comparable. Now remember that we derived the
scales on the attribute level from paired comparisons on the item level.
That is, all the distributionsNi , i = 1, . . . ,n should describe the dis-
tribution of scale values on the item level, i.e., the item scale values
should follow theNi distributions and all these distributions should be
the same, i.e.,

σ
2
i1 +σ

2
i2 = σ

2
j1 +σ

2
j2 ≡ 1 for all attributesAi andA j ,

here the value 1 is arbitrary (we just need to choose one fixed value).
Note that if we knew the valuesσi2, then these equalities would deter-
mine the values for theσi1 (that we kept variable so far) and by that
make the scales for all the attributes comparable. We can estimate the
σi2 from the scaled observed scale valuesσi1si j by taking the (biased)
estimator of the standard deviation, i.e., by√√√√ σ2

i1
ki −1

ki

∑
j=1

s2
i j , remember that

1
ki

ki

∑
j=1

si j = 0.

Using this estimate we can solveσ2
i1 +σ2

i2 = 1 for σi1 to estimateσi1
as

σi1 =
1√

1+ 1
ki−1 ∑ki

j=1s2
i j

.

That is, in order to make the scales for the different attributes com-
parable we need to rescale thesi j that we computed with Thurstone’s
method (with constant variance 1) by this estimate ofσi1.

Since now the scales of all the attributes are comparable we can get
the scale value for an item just as the sum of the scale values of the at-
tribute levels involved, i.e., the scale value of(a1 j1, . . . ,an jn),ai j i ∈ Ai
is given as∑n

i=1 σi1si j i . Note also that on comparable scales each value
σi2 can be interpreted as a measure of how important attributeAi is
(contributes larger values to the sum). But we have to be careful, ad-
ditivity only holds when the attributes are independent. For example



a black foreground and a black background might independently con-
tribute a lot to the perceived quality in visualization, but their com-
bined contribution is negative.

5.3 Error analysis

Analytic error estimate. Let us briefly describe our error analy-
sis. Our observed quantities are the relative frequenciesFi� j . We as-
sume that any comparison of itemsi and j is an independent Bernoulli
trial with success probabilityp (here “success” means thati is pre-
ferred over j). We want to estimatep by Fi� j . For Bernoulli trials,
Fi� j converges top when the number of trials goes to infinity, but
here we make only a finite numbermi j of comparisons which procures
some error. This error can be estimated by the standard deviation√

Fi� j
(
1−Fi� j

)
mi j

.

To compute errors of our scale values we use error propagation.

Resampling error estimates. We will also simulate errors by
randomly dividing the respondents into two groups. For each group
we can compute the scale values for all attribute levels (on compa-
rable) scales as described above. So we get for each attribute level
a scale value from each group. Averaging the absolute difference of
these two scale values over several random groupings of the respon-
dents provides us with an experimental error for the scale value of this
attribute level.

Similarly we also compute experimental errors by randomly divid-
ing the paired comparisons into two groups.

5.4 Testing the model

In our model of scale values we made two assumptions, one on the at-
tribute level and one on the item level. The assumption on the attribute
level is, that the scale values for all levels of a given attribute are un-
correlated and have the same variance, and the assumption on the item
level is, that the scale value of an item is the sum of the scale values
of its attribute levels. The latter is essentially the assumption that the
attributes are preferentially independent.

Preferential independence (additivity). Here we want to de-
scribe how to test the second assumption of our model, i.e., the ad-
ditivity (or preferential independence) assumption. LetA1 andA2 be
two attributes and letC = A1×A2 be the new attribute that results
from combiningA1 andA2 and letc1, . . . ,ck be its levels. We com-
pute scale values for the levels ofC in two different ways. First, for
every levelci = (ai1,ai2) with ai1 ∈ A1 andai2 ∈ A2 we add up the
comparable scale values forai1 andai2 that we compute as described
before. Lets1, . . . ,sk be the resulting scale values. Second, we apply
Thurstone’s method directly to the combined attributeC and make the
resulting scale values comparable with the scales values of all levels
of attributes different fromA1 and A2. This results in scale values
s′1, . . . ,s

′
k.

If additivity holds, then we expect thatsi ≈ s′i . Thus, our hypothesis
is thatsi = s′i for all 1≤ i ≤ k. As test statistic we use

χ
2 =

k

∑
i=1

(si −s′i)
2

σ2
i +σ ′2i

,

whereσi andσ ′i are computed by error propagation from the errors of
the observed frequencies. If the hypothesis is true then the test statistic
χ2 is approximatelyχ2-distributed withk−1 degrees of freedom. The
hypothesis is rejected at a significance level ofα if χ2 > χ2

1−α,k−1

whereχ2
1−α,k−1 is the 1−α quantile of theχ2-distribution withk−1

degrees of freedom.

Mosteller’s test. On the attribute level we make the assump-
tions that the scale values are uncorrelated and normally distributed
with equal variances. A test for this assumption was devised by
Mosteller [11] and is also described in [4]. Here we only briefly review
Mosteller’s test, which boils down to test if our model can explain the
observed frequenciesFi� j . To this end we compute

pi j =
1
2

∫ ∞

0
e−

(x−(si−sj ))
2

4 dx= Φ
(

si −sj√
2

)
,

where we usesi and sj as computed by Thurstone’s method with
σ = 1. Then we transform bothFi� j and pi j into anglesθi j andθ ′i j ,
respectively, using the arcsine transformation given by

θi j = arcsin
(
2Fi� j −1

)
and θ

′
i j = arcsin

(
2pi j −1

)
The arcsine transformation converts binomially distributed frequen-
cies into asymptotically normally distributed variables with variance
1/mi j , wheremi j is the number of comparisons of leveli with level
j for the given attribute. Our hypothesis is thatθi j is normally dis-
tributed with expectationθ ′i j and variance 1/mi j for all i < j. As test
statistic we use

χ
2 = ∑

i< j
mi j (θi j −θ

′
i j )

2.

If the hypothesis is true then the test statisticχ2 is approximatelyχ2-
distributed with

(n−1
2

)
degrees of freedom. Thus, at levelα we have to

compare our test statistic to the 1−α quantile of theχ2-distribution
with

(n−1
2

)
degrees of freedom.

6 DATA ANALYSIS : RESULTS

In this section we report on how we applied our data analysis method
that we described in Section 5 to obtain meaningful scale values for
our four conjoint studies. All subsequent results refer to respondents
that are more than 10 years old1 and have passed the Ishihara test for
color blindness. Among all respondents fulfilling these two criteria
317 respondents participated in the two studies with test question DE-
TAIL and 366 respondents participated in the other two studies with
test question AESTHETICS.

In a first step we computed scale values using the method described
in Section 5.2. These scale values need not be meaningful since model
assumptions that underlie these computations might not be met in our
studies. Hence we discuss in the following how to obtain meaningful
scale values from the initially computed ones.

6.1 Testing preferential independence

As pointed out earlier, if the parameters are preferentially independent,
then the scale values for different parameters are comparable and we
can determine the scale value of an image (rendering for a specific
choice of parameter values) by adding up the scale values for the pa-
rameter values used to render the image. The top ranked image that
we get this way for the FOOT data set and AESTHETICSquestion does
not look like a reasonable first choice, see Figure 1. The reason is not
surprising: the parameters COLOR and BACKGROUND are not prefer-
entially independent for this study.

We tested all pairs of parameters on interdependencies for all four
studies using the additivity test described in Section 5.4. Table 1 sum-
marizes the result of this test for all combinations of parameters.

Based on the outcome of the additivity test we decided to combine
the parameters RENDERING and STEPSIZE into a single new parame-
ter RENDERING-STEPSIZE for all four studies. For the FOOT data set
and both questions we also combined the parameters COLORMAP and
BACKGROUND into the new parameter COLORMAP-BACKGROUND2.

1We found no significant differences between respondents younger and
older than 17, respectively. See also Section 7.

2Note that though the top ranked image for the study [FOOT, DETAIL ] looks
reasonable, see Figure 1, it turns out that we have to combine the two color
parameters also for this study.



Fig. 1. The images with the highest scale values for the studies
[FOOT,AESTHETICS] (left) and [FOOT, DETAILS] (right) before taking
care of parameter dependencies.

FOOT
C R1 V R2 S B

Colormap C * 4 1
Rendering R1 2 * 5 3 2
Viewpoint V *
Resolution R2 *
StepSize S 4 * 6
Background B 1 3 *
ENGINE

C R1 V R2 S B
Colormap C *
Rendering R1 * 1
Viewpoint V *
Resolution R2 *
StepSize S 1 *
Background B 2 *

Table 1. Test for pairwise preferential independence of the parameters
with significance level α = 0.01. The shown numbers denote the rank or-
der of relevance (only for significant dependencies), i.e., smaller values
indicate more relevant dependencies. The values below the diagonal
are for the AESTHETICS question and the values above the diagonal are
for the DETAILS question.

That is, we compute new scale values for the combined parameters and
use them to replace the scale values for the original parameters. This
already gives our final scale values that we summarize in Table 3 and
Figure 2. The figure shows the best ten and the worst ten renderings
for each of the four studies.

6.2 Mosteller’s test

We also tested our model assumptions on the parameter (attribute)
level using Mosteller’s test, see Section 5.4, on all parameters (includ-
ing the combined ones). With a few exceptions all parameters passed
the test at theα = 0.01 significance level. All exceptions concerned
the RENDERING parameter. Possible reasons are unequal variances of
the distributions of the scale values for different levels, inappropriate-
ness of a one-dimensional scale or an underestimation of the error.

To further investigate the last point, underestimation of the error, we
compared the computed sample size error with the two experimental
errors described in Section 5.3. All computed theoretical sample size
errors are within 15% of the experimental errors, except for the pa-
rameter RENDERING which shows an underestimation of up to 40%.
This finding also puts the results on the preferential independence tests
involving the RENDERING parameter into a new perspective. Some of
the detected interdependencies in Table 1 are not significant anymore
if the error estimates for RENDERING are adjusted.

7 RESULTS

In this section we discuss the results obtained for our four visualization
case studies.

Relative importance of parameters. As we pointed out at the
end of Section 5.2 the standard deviationσi2 for attributeAi can be
interpreted as the relative importance of attributeAi . In our setting the
attributes are the parameters of the visualization algorithm. Using the
estimated standard deviation we get the rank ordering of the param-
eters as shown in Table 2. From these results it is safe to conclude
that overall the rendering mode (combined parameter RENDERING-
STEPSIZE) is the most important parameter. The importance of this
parameter is relatively higher for the DETAIL than for the AESTHET-
ICS question. A second important parameter is the color scheme used
(or the background), although this finding is not as pronounced. The
viewpoint is somewhat important (mostly for the FOOT), while the res-
olution is somewhat important for the ENGINE. The other parameters
are relatively unimportant, at least at the levels we have measured.

Most preferred levels. The results of Tables 2 and 3 as well as
Figure 2 reveal a good deal of useful information. We observe that
the algorithms XRAY and MIP are not considered useful by our re-
spondents (but note that these were non-expert viewers – doctors can
see a lot more in those renderings). The DVRGM algorithm performs
(slightly) better than DVR, which performs better than DVRNS. This
ranking shows that the more structure enhancement, the better.

There is also a clear preference for achromatic backgrounds. Only
blue is also found to be somewhat useful, possibly because blue is
a monocular depth cue in that colors very far away shift to the blue
spectrum, or because of the background shade of blue and the object.
Highly saturated backgrounds are generally disliked. Interestingly,
there are also differences between the two achromatic backgrounds: a
black background is considered more aesthetic, whereas white seems
to show detail better. This is particularly true for the ENGINE which
is overall a more complex dataset. It is most likely also an object that
is less familiar to the respondents. Therefore they require more detail;
higher resolution is also more important (than for the less complex
FOOT).

For the ENGINE, the color map applied does not seem to matter as
much, but for the DETAIL question, the FOOT (bone) is strongly pre-
ferred to be seen in a color resembling that of bright bone (skin grey).
This indicates that for object inspection, viewers like to see objects in
colors that are most natural and at the same time bright (when such a
color is generally agreed on), but for objects less defined in that respect
the color choice is a matter of taste (as is the case for the ENGINE), as
long as they are bright and define contrast well. In the AESTHETICS
category viewers still preferred a natural color (for the FOOT), but the
brightness condition was no longer so important (by definition of the
task criterion).

An interesting observation can also be made with respect to the
viewpoint. A common feature is that viewers prefer to see ob-
jects at oblique angles, which generally gives objects a more three-
dimensional appearance and also reveals more features (such views are
also used for product advertisements). But the engine was in general
preferred to be situated as standing on a surface — the views where
the engine was rotated at an arbitrary angle (and appeared as it were
flying towards the viewer) were rated low. On the other hand, the
foot was acceptable at most orientations. We believe that the ‘flying’
engine was deemed unrealistic, and perhaps even dangerous and there-
fore unappealing, while a foot is seen commonly at general orientation
in real life (just not as a bone).

Dependency on the respondent. We observed that the exper-
imental error, see Section 5.3, was larger when dividing respondents
into different sets than when dividing choice tasks into different sets.
This indicates that although the respondents answered only 20 choice
tasks for each data set, we can already detect a dependency on the in-
dividual’s preferences, i.e., preferences are not homogeneous over the
population.

We also analyzed preferential differences between different sub-
groups male vs. female and young vs. old, respectively) of our popu-
lation respondents3:

3We also collected preference data from 37 persons showing color deficien-
cies, but the sample size was not sufficient to detect significant differences to



AESTHETICS DETAIL

FOOT 1. RENDERING-STEPSIZE (0.31) RENDERING-STEPSIZE (0.52)
2. COLORMAP-BACKGROUND (0.3) COLORMAP-BACKGROUND (0.35)
3. V IEWPOINT (0.14) V IEWPOINT (0.12)
4. RESOLUTION (0.05) RESOLUTION (0.08)

ENGINE 1. RENDERING-STEPSIZE (0.56) RENDERING-STEPSIZE (0.77)
2. BACKGROUND (0.19) RESOLUTION (0.09)
3. RESOLUTION (0.12) V IEWPOINT (0.08)
4. V IEWPOINT (0.09) BACKGROUND (0.05)
5. COLORMAP (0.05) COLORMAP (0.01)

Table 2. Rank order of the parameters used in our four studies. the rank order is derived from estimated variances (shown in brackets).

We only found significant differences between male and female re-
spondents for the COLORMAP parameter in the [FOOT,AESTHETICS]
study: female respondents mostly prefer BLUECYAN (scale value:
0.07(3))4, which is also liked by the male respondents (0.07(2)) but
not as much as SKIN GRAY (0.99(2)), which is the least preferred color
of the females (-0.04(3)). Magenta is least preferred by the males (-
0.12(2)), whereas females (-0.03(3)) prefer it over SKIN GRAY.

In general we found no significant differences between the two
age classes 17 years or younger (teenagers) and older than 17 years
(adults). We only found two exceptions concerning the AESTHETICS
question. For adults the preferences within the RENDERING parame-
ter are more pronounced than for teenagers, though the rank order of
the individual levels is the same. On the other hand teenagers tend to
have more pronounced preferences concerning the background color,
again with basically the same order on the individual levels as for the
adults.

Altogether these findings have interesting consequences if one
wants to personalize visualization systems: it seems hard to do so
based on socio-demographic data (as age and gender) only.

Dependency on the data set. Preferences obtained for the
FOOT differ significantly from preferences for the ENGINE dataset.
This difference is most pronounced for the combined parameter
RENDERING-STEPSIZE5, which is much more important for the EN-
GINE dataset for both questions.

Dependency on the question. The observed preferences in the
DETAIL studies are significantly different from the preferences in the
AESTHETICSstudies. The question about detail separates the prefer-
ences for different parameter values better. This means that there is
more mutual consent in the test population about detail. We believe
this is due to the fact that the question about detail is more specific,
and less subject to personal taste. The question about details separates
the preferences on the ENGINE data set into two distinct preference
classes (DVRXX against XRAY/MIP). This separation does not show
in the [ENGINE,AESTHETICS] study.

Parameter interdependence. As discussed earlier, our additiv-
ity test shows that the independence assumption is not fulfilled for
the parameters COLORMAP and BACKGROUND for the FOOT data
set. This finding seems very reasonable since similar object and back-
ground color certainly should have a negative impact on the perceived
image appearance. Furthermore details are better visible if the contrast
between foreground and background color is high.

The additivity test also shows that the parameters RENDERING and
STEPSIZE are not independent. The observed interdependency is less
intuitive than the one between COLORMAP and BACKGROUND, but
can be explained also. The scale values for the combined parameter
show that the changes in STEPSIZE do not induce the same magnitude

the rest of the population.
4Numbers in parenthesis show the estimated standard deviation in units of

the last shown digit.
5The parameters VIEWPOINT and COLOR can not be compared directly for

the two datasets, because different colors and viewpoints were used as param-
eter levels.

of change for the scale values of the different RENDERING levels. In
particular for XRAY and MIP levels the changes in STEPSIZE seem
to have no or only marginal influence. This can be due to the fact that
MIP and XRAY algorithms lack coherency in structure and are mostly
used for quick survey modalities, but not for careful diagnosis. Our
study indicates that the visual system cannot detect all errors or even
inconsistencies, and thus viewers do not become aware of possible
errors,

8 DISCUSSION

We too first steps to demonstrate that conjoint analysis can be a useful
and efficient tool to gauge influences of a rich set of rendering param-
eters on human perception in visualization tasks. We believe that the
data analysis technique that we have developed here can even be used
to analyze data gathered in the first phase of the ’human-in-the-loop’
method of House, Bair and Ware [6]. Note that our analysis method
only needs paired comparisons between renderings that even can be
obtained from measurement of how well a test person performs a task
on different renderings.

We have tested the framework within a familiar visualization envi-
ronment, a parameterized volume renderer, where we have taken great
care to reduce the effects of competing adverse parameters, such as
image size and occlusion, without reducing the effects of the relevant
tested parameters, such as color schemes and rendering precision and
algorithm. In this process we verified a few known results, such as
the effect of rendering fidelity, but we also teased out some lesser-
known but important results, such as preferred object orientations,
color schemes, and the relationship of step size and rendering modal-
ity. Another interesting finding is that our conjoint analysis method
can help to resolve tradeoff decisions. In particular for the DVRGM
algorithm it is not necessary to go down to step size 0.2—step size 0.5
even gives perceptually better results. That is, it is often not worth-
while to spend the extra computing time required by smaller step size
(time-quality tradeoff). A second tradeoff concerns perceived quality
and file size, which is to a large extent determined by the resolution.
Our methods allow us to quantify this tradeoff, i.e., to answer the ques-
tion of how much quality gets sacrificed when the file size (resolution)
decreases.

With our careful error analysis we obtained insights beyond gaug-
ing of preferences by scale values: we were able to conclude from
the computed experimental errors that preferences depend on the indi-
vidual, which in itself is not so surprising, but we also found that one
cannot predict an individual’s preferences from the socio-demographic
data available to us (age and gender).

In future work we want to investigate limitations of the applicability
of conjoint analysis to visualization. Possible concerns are: the large
number of respondents needed (though the burden on each respon-
dent is low); need for more systematic ways to estimate the number
of required respondents; important parameters may over-shadow the
results for not so important ones (rendering statements about the latter
dubious); restrictiveness of the distribution assumptions; influence of
framing effects or the surrounding in general (we conducted our study
in a controlled environment and tried to control for framing effects by
alternating questions from two studies).
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Fig. 2. On top: Best ten renderings (ranking decreasing from left to right). On bottom: Worst ten renderings (ranking increasing from left to right)
for our four conjoint studies.

Our vision is to create a (web based) user study analysis suite that
can be used by researchers to conduct and analyze multi-parameter
user studies. Conjoint analysis should be an integral component of
such a suite.
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DATA SET: ENGINE DATA SET: FOOT

QUESTION: QUESTION:
PARAMETER PARAM . VALUE AESTHETICS DETAILS PARAM . VALUE AESTHETICS DETAILS

COLORMAP MagentaBlue -0.061(17) -0.006(18) SkinGrey 0.039(17) 0.146(18)
RedYellow 0.065(17) -0.001(18) BlueCyan 0.070(17) -0.079(18)
BlueGreen -0.004(17) 0.007(18) Magenta -0.109(17) -0.067(18)

BACKGROUND Black 0.378(26) 0.049(28) Black 0.419(27) 0.246(28)
White -0.034(26) 0.078(28) White -0.063(26) 0.047(27)
Green -0.162(26) -0.018(28) Green -0.105(26) -0.097(28)
Blue -0.063(26) -0.062(28) Blue 0.007(26) -0.103(28)
Yellow -0.120(26) -0.046(28) Yellow -0.258(26) -0.093(28)

RENDERING DVR 0.514(25) 0.719(28) DVR 0.095(26) 0.361(27)
DVRNS 0.353(24) 0.530(25) DVRNS -0.001(25) 0.058(26)
DVRGM 0.385(24) 0.629(26) DVRGM 0.484(26) 0.561(27)
XRAY -0.305(23) -1.005(31) XRAY -0.308(26) -0.758(28)
MIP -0.947(28) -0.872(28) MIP -0.270(25) -0.223(26)

STEPSIZE 0.5 0.028(17) 0.026(18) 0.5 0.035(17) 0.065(18)
0.2 0.051(17) 0.066(18) 0.2 0.061(17) 0.038(18)
1.0 -0.078(17) -0.093(18) 1.0 -0.096(17) -0.103(18)

V IEWPOINT side-front 0.132(30) 0.118(32) side-60 0.126(26) 0.174(28)
side-back 0.052(30) 0.071(33) top-90 -0.158(26) -0.118(28)
side-top 0.060(30) 0.027(32) top-0 -0.133(26) -0.151(28)
side-down -0.120(30) -0.041(32) side-30 0.208(27) 0.098(28)
front -0.007(30) -0.073(32) top-135 -0.044(26) -0.003(28)
side -0.117(29) -0.101(32)

RESOLUTION high 0.115(10) 0.091(11) high 0.045(10) 0.080(11)
low -0.115(10) -0.091(11) low -0.045(10) -0.080(11)

RENDERING DVR, 0.5 0.60(5) 0.81(7) DVR, 0.5 0.00(5) 0.17(5)
-STEPSIZE DVR, 0.2 0.51(5) 0.86(6) DVR, 0.2 0.29(5) 0.64(5)

DVR, 1.0 0.41(5) 0.49(5) DVR, 1.0 0.02(5) 0.26(5)
DVRNS, 0.5 0.18(4) 0.41(5) DVRNS, 0.5 0.08(5) 0.17(5)
DVRNS, 0.2 0.44(4) 0.64(5) DVRNS, 0.2 -0.01(5) -0.03(5)
DVRNS, 1.0 0.40(4) 0.49(5) DVRNS, 1.0 -0.09(5) 0.02(5)
DVRGM, 0.5 0.63(5) 0.85(6) DVRGM, 0.5 0.67(5) 1.07(6)
DVRGM, 0.2 0.48(5) 0.71(5) DVRGM, 0.2 0.60(5) 0.64(5)
DVRGM, 1.0 0.07(4) 0.32(4) DVRGM, 1.0 0.16(5) 0.04(5)
XRAY, 0.5 -0.29(4) -0.95(5) XRAY, 0.5 -0.31(5) -0.80(5)
XRAY, 0.2 -0.32(4) -1.00(6) XRAY, 0.2 -0.36(5) -0.77(5)
XRAY, 1.0 -0.29(4) -1.05(8) XRAY, 1.0 -0.25(5) -0.73(6)
MIP, 0.5 -0.89(5) -0.89(5) MIP, 0.5 -0.24(5) -0.26(5)
MIP, 0.2 -0.93(5) -0.86(5) MIP, 0.2 -0.26(5) -0.23(5)
MIP, 1.0 -1.03(6) -0.83(6) MIP, 1.0 -0.31(5) -0.19(5)

COLORMAP MagBlu-BBlk 0.29(5) -0.05(5) SkinGray-BBlk 0.73(5) 0.74(6)
-BACKGROUND MagBlu-BWht -0.12(5) 0.05(5) SkinGray, Wht -0.29(5) -0.30(5)

MagBlu-BGrn -0.22(5) 0.07(5) SkinGray, Grn -0.11(5) 0.11(5)
MagBlu-BBlu -0.10(5) -0.11(5) SkinGray, Blu 0.24(5) 0.47(5)
MagBlu-BYel -0.17(5) 0.01(5) SkinGray, Yel -0.40(5) -0.24(5)
RedYel-BBlk 0.44(5) 0.20(5) BluCya, Blk 0.30(5) -0.13(5)
RedYel-BWht -0.08(5) 0.11(5) BluCya, Wht 0.26(5) 0.36(5)
RedYel-BGrn -0.06(5) -0.13(5) BluCya, Grn 0.02(5) -0.11(5)
RedYel-BBlu 0.07(5) -0.01(5) BluCya, Blu -0.26(5) -0.75(6)
RedYel-BYel -0.04(5) -0.17(5) BluCya, Yel 0.04(5) 0.17(5)
BluGrn-BBlk 0.40(5) -0.00(5) Mag, Blk 0.20(5) 0.16(5)
BluGrn-BWht 0.10(5) 0.06(5) Mag, Wht -0.14(5) 0.08(5)
BluGrn-BGrn -0.20(5) 0.01(5) Mag, Grn -0.19(5) -0.29(5)
BluGrn-BBlu -0.17(5) -0.06(5) Mag, Blu 0.03(5) -0.07(5)
BluGrn-BYel -0.15(5) 0.02(5) Mag, Yel -0.42(5) -0.19(5)

Table 3. Scale values for all parameter levels (also combined ones) of the four conjoint studies (ENGINE studies on the right and FOOT studies on
the left). Numbers in parenthesis show the estimated standard deviation in units of the last shown digit.


