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Abstract —Visualization algorithms can have a large number of parameters, making the space of possible rendering results rather
high-dimensional. Only a systematic analysis of the perceived quality can truly reveal the optimal setting for each such parameter.
However, an exhaustive search in which all possible parameter permutations are presented to each user within a study group would
be infeasible to conduct. Additional complications may result from possible parameter co-dependencies. Here, we will introduce an
efficient user study design and analysis strategy that is geared to cope with this problem. The user feedback is fast and easy to
obtain and does not require exhaustive parameter testing. To enable such a framework we have modified a preference measuring
methodology, conjoint analysis, that originated in psychology and is now also widely used in market research. We demonstrate our
framework by a study that measures the perceived quality in volume rendering within the context of large parameter spaces.

Index Terms —Conjoint Analysis, Parameterized Algorithms, Volume Visualization
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1 INTRODUCTION

The main purpose of visualization is to produce images that alldvese studies must be conducted as thoroughly as possible, in order to
users to gain more insight into the illustrated data. This is a complexaximize the outcome, but they also must be conducted as efficiently
issue, depending on many factors of the visualization system, startagypossible in order to minimize the time, burden put on the partici-
from human-computer interaction, to rendering speed, to renderipgnts in the study and samples needed to explore the vast parameter
style and algorithm, and finally human perception and cognition. Witpace in a statistically significant manner. A technique caedgoint

the exception of the last component all of these factors have been dealysis[5] is the answer to all of these design goals, and this paper
signed by humans and many diverse technologies have emerged, ma#ies this technique accessible to visualization researchers and their
are still emerging, over the years. But in the end, human perceptispecific domain setting. Visualization researchers are faced with the
is the ultimate judge that determines which of these are the most &fsk that a large number of algorithms need to be compared. However,
fective. A popular focus of the field of visualization is the modelinghe number of algorithms is too large for a single user to compare/rank
and optimization via engineering and mathematics tools and franadl of them in reasonable time (and with reasonable accuracy). Fortu-
works, and often the designer/engineer him/herself judges the sucaeaely, in many visualization areas, such as volume visualization, the
of the method. Here, the easiest parameters to measure are rendexiggrithms are not strictly arbitrary but to some extent related; that is,
speed and memory consumption and others, which are all engindbey are all different incarnations of one parameterized algorithm and
ing quantities. However, in light of the importance of the last elemeate obtained by fixing the parameter values. A comparison of the al-
in the chain, the human observer, a more recent focus has becomgaothms then leads to a ranking of the algorithms/parameter settings.
also conduct adequate user studies to measure the success of aTgis-is essentially the same problem that market researchers face when
posed method. This practice is already common place in the fiedticiting consumers’ preferences on substitute goods that can be de-
of human-computer interaction, and to a more limited extent also $tribed in terms of attributes and attribute levels. Conjoint analysis, as
information visualization, but less so in scientific and medical visuntroduced above, is a well established family of questionnaire based
alization. In essence, user studies are always considered burdenstaaleniques to elicit consumer’s preferences. It frees the evaluator from
since in many cases there are a large number of parameters and algg-daunting burden of presenting the effects of all attribute levels to
rithmic alternatives, requiring many trials, that is, human subjects aad users for evaluation but nevertheless allows statistically significant
experiments, to produce statistically significant results. This has beesults.

a major obstacle in assessing a method’s success in terms of the huyx main contribution of this paper is the development of our own
man perceptive and cognitive system. The pressing question is: ¢@fjoint analysis technique as an extension of Thurstone's method of
we make this task easier by introducing a more methodical and @smparative judgment [14]. Like most techniques it is based on some
ganized approach. For this it pays to look at other fields, especiafi¥sumptions (model), but it has the advantage that all assumptions can
those driven by heavy monetary investments. One then finds that usgrtested, which is not the case with off-the-shelf conjoint analysis
studies play a major and dominant role in product marketing, wheggftware like Sawtooth’ software [1]. The model assumptions allow

it is important to tune the various parameters of a product before i to derive robust preference estimates from sparse data, i.e., every
is being launched to market (or determine its launch at all). Clearlyser needs to ‘explore’ only a small fraction of the large parameter
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rendering parameters [3], perceived salience [9], and others. All D54 x 263x 222. For the BOT data set we had 2250 different pa-
these use mostly mathematical, engineering, but also sometimes aasieter settings resulting in 2250 different renderings (images) and
thetics and perception-motivated arguments to devise their methoids.the ENGINE data set we had 2700 different parameter settings.
Controlled user studies need to eventually decide which strategy isPerceived quality itself can be measured along different directions.
most effective and relevant for the human observer, especially in cafte made this more explicit by asking two different questionich
junctive terms. Furthermore, these user studies can also be helffuhge do you like bestand Which image shows more detail®/e

to fine tune the parameters of these methods, which may also be tadlklater refer to the first question asesTHETICSand the second as
and domain dependent. In the following sections we first overview tiEETAIL. Note that the second question is more specific than the first,
theory of our framework in accessible terms, and then apply it withimhich is fairly general.

a typical multi-parameter volume rendering scenario to demonstrateEach combination of data set and question is considered as a dif-
the analysis path. While the results are in fact insightful in their owferent study, i.e., we conducted the four different conjoint studies
right, they should also and perhaps predominantly be valued as in@nGINE, AESTHETICY, [ENGINE, DETAIL], [FOOT, AESTHETICY
cators for the analytical power of our framework as a more geneehd [FooT, DETAIL].

user assessment tool and as a guideline on how to conduct and ana/e elicited data for our studies from visitors at an exhibition that
lyze a conjoint study in the context of visualization algorithms evaluook place to celebrate the 25th anniversary of the computer science

ation/comparison. department at ETH @rich. Our survey took place in a room at the
exhibition that was darkened using light-impermeable black curtains.
2 CHOICE BASED CONJOINT ANALYSIS The room had six work places each having a computer with mouse and

A class of items has a conjoint structure if it can be described by th&€D screen with resolution 1280x1024 pixels. During the survey the
Cartesian producd; x ... x A, of attribute set#y. The elements of lightin the room was switched off.
the attribute sets are called attribute levels. An iis then repre- 786 visitors of the exhibition participated in our study. From the
sented by a vectdiay, ..., an) with g € A, i.e., by fixing the attribute participants we collected the following data: age, gender and color de-
levels. Conjoint analysis is a family of techniques for eliciting from dicient (yes or no). To test for color deficiencies we used the Ishihara
population of people their ranking (on some scale) of the elementst@st [7]. Every respondent took part in exactly two of our conjoint stud-
A1 x...x A, i.e., on the items. Conjoint analysis techniques can hies, i.e., a respondent always had to answer the same randomly chosen
distinguished by two (not independent) parameters: firstly the elicitguestion on both data sets. That is, each respondent participated in
tion procedure, i.e., the way preference data are obtained from respone study for each data sebBT and ENGINE, respectively. We did
dents, and secondly the way the elicited data are processed in ofefeirconduct the two studies one after the other, but interleaved them:
to derive a representation of individual or aggregated preference infalternately a respondent was showRdENE image pairs and GoOT
mation (typically in form of a value or utility function). image pairs to choose from, altogether 20 pairs for each data set. The
In recent years choice based conjoint analysis has become the niége pairs for the comparisons were determined as follows: the first
popular conjoint analysis technique. It got its name from the methd®age was drawn uniformly at random from the set of all images. The
employed for elicitation, namely, preferences are elicited in a sequers&ond image was then drawn uniformly at random from the set of im-
of choice tasks. In a choice task a small number of items (typicaldges having for each parameter a different value than the first image.
between two and four) is presented to a respondent who has to siEhe images were presented side by side on the screen with a black
which one out of these she/he prefers most. Choice tasks are pop@tspe separating them. The background of the screen was set to black.
in market research since they resemble real buying situations and tAlldmages had a resolution of 5X512 pixels. Respondents chose an
tend to provide the most reliable information. image by clicking on it, after a click the next image pair was shown.
There are many different ways to analyze the data obtained frofyipically the respondents needed three to five minutes to complete the
several respondents and several choice tasks each, but any ana$jsi¢ey.
method defines acaleon which the items are compared. A scale as-
signs to each item a number. In conjoint analysis there are essentidily RENDERING ALGORITHM

two types of scales used: amdinal scalesthe numbers assigned to\ye have chosen a relatively standard volume visualization scenario to
the items are their ranks in a linear order. Note that the nominal dfemonstrate our user study framework. Using GPU-accelerated ray
ference between ranks has no meaning.ir@erval scalesan item is  casting rendering, the visualization of each object can be described
preferred over another if it gets assigned a larger number. DifferenggSerms of the parametersaCORMAP, RENDERING, VIEWPOINT,
of the assigned numbers have a meaning on interval scales, but thg,ggowT,ON, STEP sizeand BACKGROUND. The parameter GL-
scales have noatural zero Note that translating all scale values onggryap has three levels which correspond to different color maps
an interval scale has no effect. - i _that are applied for transfer function design. For all transfer func-
Another difference in analysis methods is whether they definetigns, the alpha channel has been set to always reveal most of the
scale for each respondent, or just a scale for a population of respgBect’s structures, in order to suppress ‘occlusion’ to act as an in-
dents (aggregated scale). Our analysis method defines an interval sggjfandent variable. The parameteN®ERING describes the applied

for a population of respondents. rendering mode and has five levels: DVR (Direct Volume Render-
ing), DVRNS (Direct Volume Rendering with No Shading, just com-
3 DATA COLLECTION positing), DVRGM (Direct Volume Rendering with Gradient Modu-

As mentioned several times our goal was to measure the perceilaiibn to highlight surfaces), XRAY (Colored X-Ray) and MIP (Col-
quality of a visualization algorithm for different parameter settings thared Maximum Intensity Projection). The parameteEWPOINT has
we describe in Section 4. We chose choice based conjoint analysisislevels for the RGINE and five levels for the 60T data set. It
our elicitation procedure, where each choice task was a paired camescribes the viewpoint under which the observer sees the object. Dif-
parison between two renderings, i.e., between two parameter settirfgeent viewpoints are chosen in such a way that most structures are
Note that the cognitive burden increases with the number of items fraiways kept visible, again to prevent ‘occlusion’ from playing a sig-
which to choose. Higher cognitive burden should result in poorer dati#icant role in the study. The parameteESOLUTION describes the
quality. We decided to use choice tasks with the least cognitive burdeoreen resolution used for rendering. We render at the resolution of the
namely paired comparisons. dataset and twice that. Note that in the end the image size was always
For our study we used two data sets. The first data setTF 512x 512 (the image rendered at reduced resolution, that is, at volume
is meant to cover the medical application domain, whereas the seesolution, was scaled up with bilinear filtering)Tes> sizeis the ray
ond data set EGINE covers the engineering applications area. Seeaversal increment (measured in voxel size), which has three levels,
Figure 2 for various images rendered for these two data sets. Th2, 0.5 and 10. Finally the parameter 8KGROUND describes the
ENGINE data size is 256 256 x 256, and the BoT data size is color of the background and has five levela:ACK, WHITE, DARK



GREEN, DARK BLUE andYELLOW. Combining these parameters re-5.2 Conjoint structure case

sults in the 2700 BGINE images and in the 2250d40T images. Recall that in conjoint analysis we assume that the items come from
setA with conjoint structure, i.e A= A; x ... x Ay. Thus we have
5 DATA ANALYSIS: THEORY choice data (from paired comparisons), where the elemesiiere

In this section we describe a method to define an interval scale fof@mpared. The seA is typically fairly large and we do not have
population of respondents from their choices in paired compariso@§lough choice information to apply Thurstone’s method directly.
Note that in general any 1 out-&f choice task provides informa- Instead we take a decompositional approach and first order the levels
tion aboutk — 1 paired comparisons. Our method extends Thurstondfs each of the attributesy,i = 1,...,n on interval scales. For that
method of comparative judgement [14], which does not assume a cBHPOSe, whenever in a choice tagk;,...,an) € A was preferred
joint structure. In a nutshell, our method works as follows: At firsever (b,...,bn) € A, we consider this as was preferred over
we estimate scale values for all levels of a single attribute. To this efid provideda # bi. That is, we derive choice information on the
we interpret any paired comparison as a comparison of just the tatribute level from choice information on the item level. We then can
levels of the given attribute that are present in this comparison, ign@PPply Thurstone’s method to the choice data on attribute level to get a
ing differences in the levels of all other attributes. We can apply thisale for each attribute. When applying Thurstone’s method we set all
method to all attributes to obtain scale values for all their levels. Not@riances to 1, which fixes the scales for all the attributes but does not
that the scale values for levels of different attributes need not be cof@cessarily make these scales comparable. For any attAbutith
parable yet. To make them comparable we design a rescaling metHgyelsai1. ..., ai; let sy, ..., sy be the scale values that we get from
It builds on the fact that for the computation of the scale values f@Pplying Thurstone’'s method on the attribute level. The next step is
any attribute, always the same stated preferences are used, nameljoifggregate these scales. We make the following assumption that
outcomes of all paired comparisons. Finally, the scale value of an gktends the distribution assumption needed for Thurstone’s method
gorithm, i.e., complete parameter set, is just the sum of the scale valffs2 single attribute:
of the parameter values.

Assumption. For any attributeA; the scale valuesy,...,Sy, are
5.1 Thurstone’s method all normally distributed with variances; and expectations drawn
A good introduction into Thurstone’s work is given in [4]. Here Wefror_n anotger norr_nal distribution which itself has expectation 0 and
summarize it only briefly. Our goal is to define a meaningful schen@"21ce0i: Thatis, we assume that the scale values for the levels of
to assign scale values on an interval scale items that we label d trlbuteAi arezdrawzn froma ”0”“"’." distributidd with expeptapon_o
by L...,n. Thurstone’s intuition was that the relative frequefgy; and variances] + o5 (the convolution of the two normal distribution

thati was preferred ovej by the respondents is an indirect measurgmmIons introduced before).
for the distance betweérandj. He derived an interval scale from this
intuition under the assumption that the scale valied the itemd are

uncorrelated normally distributed random variables with expectatiohcjé‘r5

. 2 _ 2 . .
i and variances“ = o4, i.e., all the variances are the same. . A
Hi ! valuesoi1sj will be comparable. Now remember that we derived the

The idea is to assign to each itérthe valueu;, on an interval scale : . . .
. . h ' . "~ scales on the attribute level from paired comparisons on the item level.
which still has to be defined. To do so we need to estimate aflithe Tl—g)at is, all the distributions\.i = 1.....n should describe the dis-

from the paired comparison data that we have available. It turns QH ution of scale values on the item level, i.e., the item scale values

that it is easier to estimate the differenggs- uj. We use the latter i L
and assign to each itenhe value fr:lé)zgjrgce)llci)vev thel; distributions and all these distributions should be

As when applying Thurstone’s method the vahq% is the same
all the Sj, but not necessarily 1. Later it will be chosen such that
scales for all attributes become comparable, i.e., the scaled scale

n
(i — 1)) = i — 1 S wj =i oh+05=0f+05p=1 forallattributes; andAj,

=1

A

M=

n -
i
here the value 1 is arbitrary (we just need to choose one fixed value).
That is, we only shift the scale that assigngto itemi by the value Note that if we knew the values, then these equalities would deter-
u, i.e., as interval scales both scales are the same. Note that by rtise the values for thej; (that we kept variable so far) and by that
properties of normal distributions, the differen&s- Sj are normally make the scales for all the attributes comparable. We can estimate the
distributed with expectations; — uj and variance @2. This yields 0z from the scaled observed scale valegs; by taking the (biased)
estimator of the standard deviation, i.e., by

1 0 (><*(Hi*ﬂj))2 Mi — U]
P[S—S]>O]:\/ﬁ 0 e 402 dX:(D(W),

%, remember thaf(? Y sj=0.
where® is the cumulative distribution function J=1

O(x) = 1 X e’édy Using this estimate we can sole + 63 = 1 for oj; to estimateoiy
/27 J—o as 1
o1=————.
N T
of the standard normal distribution. Hence, 1+ e zj:ﬁzj
Wi—uj = (ﬁ >cp*1(P[S, -S;>0). That is, in order to make the scales for the different attributes com-

parable we need to rescale thgthat we computed with Thurstone’s

method (with constant variance 1) by this estimate;ef

the relative frequency that iteinwas preferred ovej and thus es- Since now the scale_s of gll the attributes are comparable we can get

timate 1 — 1 by v2o®-(F,.;) and the scale value of iteinby the scale value for an item just as the sum of the scale values of the at-
! I =] tribute levels involved, i.e., the scale value(ai;j,,. .., anj,), aij, €A

S = @ Y d)*l(F.H-). The choice obs essentially fixes the scale, is given asy ! ; 6i15;j,. Note also that on comparable scales each value

but the ratio of differences of scale values is not affected by the choieg can be interpreted as a measure of how important attriduie

of o, i.e., any fixed choice of would work. A natural but arbitrary (contributes larger values to the sum). But we have to be careful, ad-

choice isc = 1. ditivity only holds when the attributes are independent. For example

We can estimat®[§ — S; > 0] by the observed quantitl. j, i.e.,



a black foreground and a black background might independently con-Mosteller’s test. On the attribute level we make the assump-

tribute a lot to the perceived quality in visualization, but their contions that the scale values are uncorrelated and normally distributed

bined contribution is negative. with equal variances. A test for this assumption was devised by
Mosteller [11] and is also described in [4]. Here we only briefly review

53 Error analysis Mosteller’s test, wh_ich boils do_wn to test if our model can explain the
observed frequencid..j. To this end we compute

Analytic error estimate. Let us briefly describe our error analy-

sis. Our observed quantities are the relative frequerigigs We as- 1 elss)? S —Sj

sume that any comparison of itefinsnd j is an independent Bernoulli Pij =5 (/0 e dx= q;( 2 ) ,

trial with success probabilityp (here “success” means thiats pre-

ferred overj). We want to estimate by F._j. For Bernoulli trials, where we uses ands; as computed by Thurstone’s method with

Fij converges tap when the number of trials goes to infinity, butg — 1. Then we transform both, ; and pjj into angless;j and ey,

here we make c_)nly afinite numhe_r,- of comparisons which Procures raspectively, using the arcsine transformation given by

some error. This error can be estimated by the standard deviation

6;j = arcsin(2F.j—1) and 6/ = arcsin(2p;j —1)

Firj (1-Fivj) . . o
-7 The arcsine transformation converts binomially distributed frequen-
mj cies into asymptotically normally distributed variables with variance
1/mij, wheremj is the number of comparisons of levewith level
To compute errors of our scale values we use error propagation. j for the given attribute. Our hypothesis is theat is normally dis-
tributed with expectatio;; and variance Anj for all i < j. As test
Resampling error estimates. We will also simulate errors by statistic we use
randomly dividing the respondents into two groups. For each group ZZ — Z m;j (6 — 9{)2.
we can compute the scale values for all attribute levels (on compa- i< !
rable) scales as described above. So we get for each attribute level
a scale value from each group. Averaging the absolute differencelbthe hypothesis is true then the test statigtfcis approximatelyy2-
these two scale values over several random groupings of the respdigtributed with(”;l) degrees of freedom. Thus, at leveive have to
dents provides us with an experimental error for the scale value of t@émpare our test statistic to the-lo quantile of they2-distribution

attribute level. el
o . .. Wwith degrees of freedom.
Similarly we also compute experimental errors by randomly d|V|dv-v ( 2 ) g

ing the paired comparisons into two groups. 6 DATA ANALYSIS: RESULTS
_ In this section we report on how we applied our data analysis method
5.4 Testing the model that we described in Section 5 to obtain meaningful scale values for

In our model of scale values we made two assumptions, one on the® r four conjoint studies. All subsequent results refer to respondents

tribute level and one on the item level. The assumption on the attribt‘i & éf[jirr:j%r:stshag r%]%r{eaezlsl ?édsn%:ggﬁtsijﬁﬁﬁ nth?hlggéhflv;% tgrsigﬁ;
level is, that the scale values for all levels of a given attribute are u% ’ 9 P g

correlated and have the same variance, and the assumption on the %K]respondents participated in the two studies with test questian D

level is, that the scale value of an item is the sum of the scale vall{gé" and 366 respondents participated in the other two studies with

of its attribute levels. The latter is essentially the assumption that t eSILq;ﬁrsstlosTeESvIeHglrﬁsute d scale values using the method described
attributes are preferentially independent. P P 9

in Section 5.2. These scale values need not be meaningful since model
assumptions that underlie these computations might not be met in our

P_referentlal independence (add|t|V|ty_). Here we want 1o de- studies. Hence we discuss in the following how to obtain meaningful
scribe how to test the second assumption of our model, i.e., the §9Hale values from the initially computed ones

ditivity (or preferential independence) assumption. AgetandA, be
two attributes and le€ = Ay x Ay be the new attribute that resultsg 1  Testing preferential independence
from combiningA; and A, and letcy, ..., ¢ be its levels. We com-
pute scale values for the levels ©fin two different ways. First, for
every levelc; = (aj1,a2) with a1 € A; andaj € A, we add up the
comparable scale values far anda;, that we compute as described

As pointed out earlier, if the parameters are preferentially independent,
then the scale values for different parameters are comparable and we
can determine the scale value of an image (rendering for a specific
- oice of parameter values) by adding up the scale values for the pa-
before. Lets,,.... S be the resulting scale values. Second, we app meter values used to render the image. The top ranked image that

Thurstone’s method directly to the combined attribDtend make the ot this wav for the BoT data set and ASTHETICSauestion does
resulting scale values comparable with the scales values of all levdi§ Y IS way h A . quest >
not look like a reasonable first choice, see Figure 1. The reason is not

of attributes different fromA; and A,. This results in scale values surprising: the parametersoCor and BACKGROUND are not prefer-

gl"“’slk,', . . entially independent for this study.
~ Ifadditivity holds, then we expect that~ 5. Thus, our hypothesis e tested all pairs of parameters on interdependencies for all four
is thats = g for all 1 <i < k. As test statistic we use studies using the additivity test described in Section 5.4. Table 1 sum-
marizes the result of this test for all combinations of parameters.
5 k (s— 5'1)2 Based on the outcome of the additivity test we decided to combine
x = 21 o2’ the parameters BNDERING and STEPSIZE into a single new parame-
I= | I

ter RENDERING-STEPSIZE for all four studies. For the 0T data set
and both questions we also combined the parameter©&MAP and
whereo; ando; are computed by error propagation from the errors giackGROUND into the new parameterdLORMAP-BACKGROUND?.
the observed frequencies. If the hypothesis is true then the test statistic _._ i
22 is approximatelyy2-distributed withk— 1 degrees of freedom. The Iwe found no significant differences between respondents younger and

hypothesis is rejected at a significance levelboff x2 > x2 older than 17, respectively. See also Section 7.
yp ) g x K- k-1 2Note that though the top ranked image for the studygf, DETAIL] looks

wherey? ,\ ; is the 1— o quantile of they-distribution withk— 1 reasonable, see Figure 1, it turns out that we have to combine the two color
degrees of freedom. parameters also for this study.




Relative importance of parameters. As we pointed out at the
end of Section 5.2 the standard deviatigg for attribute A; can be
interpreted as the relative importance of attribdteln our setting the
attributes are the parameters of the visualization algorithm. Using the
estimated standard deviation we get the rank ordering of the param-
eters as shown in Table 2. From these results it is safe to conclude
that overall the rendering mode (combined parameteKBERING-
STEPSIZE) is the most important parameter. The importance of this
parameter is relatively higher for theeDaiL than for the ASTHET
ICS question. A second important parameter is the color scheme used
(or the background), although this finding is not as pronounced. The
Fig. 1. The images with the highest scale values for the studies vieV\_/poi_nt is somewhatimportant (mostly for the&T), while the res-
[FooT,AESTHETICS] (left) and [FooT, DETAILS] (right) before taking ~olution is somewhat important for theNi§INE. The other parameters

care of parameter dependencies. are relatively unimportant, at least at the levels we have measured.
Most preferred levels. The results of Tables 2 and 3 as well as
FooTt Figure 2 reveal a good deal of useful information. We observe that
C Rl V R2 S B the algorithms XAy and MIP are not considered useful by our re-
Colormap Cl* 4 1 spondents (but note that these were non-expert viewers — doctors can
Rendering R1 2 * 5 3 2 see a lot more in those renderings). The DVRGM algorithm performs
Viewpoint vV * (slightly) better than DVR, which performs better than DVRNS. This
Resolution R2 * ranking shows that the more structure enhancement, the better.
StepSize S 4 * 6 There is also a clear preference for achromatic backgrounds. Only
Background B |1 3 * blue is also found to be somewhat useful, possibly because blue is
ENGINE a monocular depth cue in that colors very far away shift to the bIl_Je
C RL V R2 S B spectrum, or because of the background shade_ o_f blue and the _obJect.
Highly saturated backgrounds are generally disliked. Interestingly,
Colormap C |~ there are also differences between the two achromatic backgrounds: a
Rendering ~ R1 * 1 black background is considered more aesthetic, whereas white seems
Viewpoint  V * to show detail better. This is particularly true for the&NE which
Resolution  R2 * is overall a more complex dataset. It is most likely also an object that
StepSize S 1 * is less familiar to the respondents. Therefore they require more detail;
Background B 2 ¥ higher resolution is also more important (than for the less complex
Table 1. Test for pairwise preferential independence of the parameters FOFOOTr)'the ENGINE, the color map applied does not seem to matter as

with significance level o = 0.01. The shown numbers denote the rank or-
der of relevance (only for significant dependencies), i.e., smaller values
indicate more relevant dependencies. The values below the diagonal
are for the AESTHETICS question and the values above the diagonal are
for the DETAILS question.

much, but for the BTAIL question, the BoT (bone) is strongly pre-
ferred to be seen in a color resembling that of bright bone (skin grey).
This indicates that for object inspection, viewers like to see objects in
colors that are most natural and at the same time bright (when such a
color is generally agreed on), but for objects less defined in that respect
the color choice is a matter of taste (as is the case for @ =), as

) ) long as they are bright and define contrast well. In trESAHETICS
Thatis, we compute new scale values for the combined parameters @gtggory viewers still preferred a natural color (for thed¥), but the
use them to replace the scale values for the original parameters. Tlightness condition was no longer so important (by definition of the
already gives our final scale values that we summarize in Table 3 ggdi criterion).

Figure 2. The figure shows the best ten and the worst ten rendering$\n interesting observation can also be made with respect to the

for each of the four studies. viewpoint. A common feature is that viewers prefer to see ob-
jects at oblique angles, which generally gives objects a more three-
6.2 Mosteller's test dimensional appearance and also reveals more features (such views are

We also tested our model assumptions on the parameter (attrib P Used for product advertisements). But the engine was in general
level using Mosteller’s test, see Section 5.4, on all parameters (inclljéferred to be situated as standing on a surface — the views where
ing the combined ones). With a few exceptions all parameters pas§ag €ngine was rotated at an arbitrary angle (and appeared as it were
the test at thex = 0.01 significance level. All exceptions concerned!Ying towards the viewer) were rated low. On the other hand, the
the RENDERING parameter. Possible reasons are unequal varianced@it Was acceptable at most orientations. We believe that the “flying
the distributions of the scale values for different levels, inappropriatg?9ine was deemed unrealistic, and perhaps even dangerous and there-
ness of a one-dimensional scale or an underestimation of the error.fore unappealing, while a foot is seen commonly at general orientation
To further investigate the last point, underestimation of the error, Wa €@l life (just not as a bone).
compared the computed sample size error with the two experimentabependency on the respondent. We observed that the exper-
errors described in Section 5.3. All computed theoretical sample sirgental error, see Section 5.3, was larger when dividing respondents
errors are within 15% of the experimental errors, except for the piarto different sets than when dividing choice tasks into different sets.
rameter FENDERING which shows an underestimation of up to 40%This indicates that although the respondents answered only 20 choice
Thls fllndmg also puts the results on the preferential |ndependence teatks for each data set, we can already detect a dependency on the in-
involving the RENDERING parameter into a new perspective. Some afividual’s preferences, i.e., preferences are not homogeneous over the
the detected interdependencies in Table 1 are not significant anympegulation.

if the error estimates for RNDERING are adjusted. We also analyzed preferential differences between different sub-
groups male vs. female and young vs. old, respectively) of our popu-
7 RESULTS lation responden

In this section we discuss the results obtained for our four visualization 3we also collected preference data from 37 persons showing color deficien-
case studies. cies, but the sample size was not sufficient to detect significant differences to



| AESTHETICS | DETAIL
FooT 1. | RENDERING-STEPSIZE (0.31) | RENDERING-STEPSIZE (0.52)
2. | COLORMAP-BACKGROUND (0.3) | COLORMAP-BACKGROUND (0.35)
3. | VIEWPOINT (0.14) | VIEWPOINT (0.12)
4. | RESOLUTION (0.05) | RESOLUTION (0.08)
ENGINE 1. | RENDERING-STEPSIZE (0.56) | RENDERING-STEPSIZE (0.77)
2. | BACKGROUND (0.19) | RESOLUTION (0.09)
3. | RESOLUTION (0.12) | VIEWPOINT (0.08)
4. | VIEWPOINT (0.09) | BACKGROUND (0.05)
5. | COLORMAP (0.05) | COLORMAP (0.01)

Table 2. Rank order of the parameters used in our four studies. the rank order is derived from estimated variances (shown in brackets).

We only found significant differences between male and female ref change for the scale values of the differerHN®ERING levels. In
spondents for the @LORMAP parameter in the [BOT,AESTHETICY particular for XRay and MIP levels the changes imSpPSIZE seem
study: female respondents mostly prefertd8 CYAN (scale value: to have no or only marginal influence. This can be due to the fact that
0.07(3)¥, which is also liked by the male respondents (0.07(2)) buMIP and XRay algorithms lack coherency in structure and are mostly
not as much as8N GRAY (0.99(2)), which is the least preferred colorused for quick survey modalities, but not for careful diagnosis. Our
of the females (-0.04(3)). Magenta is least preferred by the maless{udy indicates that the visual system cannot detect all errors or even
0.12(2)), whereas females (-0.03(3)) prefer it ovRmBGRAY. inconsistencies, and thus viewers do not become aware of possible

In general we found no significant differences between the twarors,
age classes 17 years or younger (teenagers) and older than 17 years
(adults). We only found two exceptions concerning thesAHeETICS 8 DISCUSSION
question. For adults the preferences within tHENBERING parame- \We too first steps to demonstrate that conjoint analysis can be a useful
ter are more pronounced than for teenagers, though the rank ordegg efficient tool to gauge influences of a rich set of rendering param-
the individual levels is the same. On the other hand teenagers tengfgrs on human perception in visualization tasks. We believe that the
have more pronounced preferences concerning the background cqlgga analysis technique that we have developed here can even be used
again with basically the same order on the individual levels as for the analyze data gathered in the first phase of the ’human-in-the-loop’
adults. method of House, Bair and Ware [6]. Note that our analysis method

Altogether these findings have interesting consequences if affly needs paired comparisons between renderings that even can be
wants to personalize visualization systems: it seems hard to dogiftained from measurement of how well a test person performs a task
based on socio-demographic data (as age and gender) only. on different renderings.

We have tested the framework within a familiar visualization envi-
ronment, a parameterized volume renderer, where we have taken great

re to reduce the effects of competing adverse parameters, such as
Image size and occlusion, without reducing the effects of the relevant
tested parameters, such as color schemes and rendering precision and
algorithm. In this process we verified a few known results, such as

Dependency on the question. The observed preferences in thethe effect of rendering fidelity, but we also teased out some lesser-
DEeTAIL studies are significantly different from the preferences in thenown but important results, such as preferred object orientations,
AESTHETICSstudies. The question about detail separates the prefeclor schemes, and the relationship of step size and rendering modal-
ences for different parameter values better. This means that theréyis Another interesting finding is that our conjoint analysis method
more mutual consent in the test population about detail. We beliewan help to resolve tradeoff decisions. In particular for the DVRGM
this is due to the fact that the question about detail is more specifadgorithm it is not necessary to go down to step size 0.2—step size 0.5
and less subject to personal taste. The question about details sepamies gives perceptually better results. That is, it is often not worth-
the preferences on theNEINE data set into two distinct preferencewhile to spend the extra computing time required by smaller step size
classes (DVRX against XRAY/MIP). This separation does not showtime-quality tradeoff). A second tradeoff concerns perceived quality
in the [ENGINE,AESTHETICY study. and file size, which is to a large extent determined by the resolution.
Our methods allow us to quantify this tradeoff, i.e., to answer the ques-

Parameter interdependence. As discussed earlier, our additiv- ; . o i A
ity test shows that the independence assumption is not fulfilled ftlon of how much quality gets sacrificed when the file size (resolution)

dEcreases.
the parameters GLORMAP and EACKGROL.JND fqr Fhe FO.OT data With our careful error analysis we obtained insights beyond gaug-
set. This finding seems very reasonable since similar object and b

y of preferences by scale values: we were able to conclude from

ground color certainly should have a negative impact on the PErceIv computed experimental errors that preferences depend on the indi-
image appearance. Furthermore details are better visible if the Cont(ﬁahal, which in itself is not so surprising, but we also found that one

between foreground and background color is high. . S . o .
The additivity test also shows that the parametegs/RERING and 32?; gt,gﬂi%'lcet %ndgigéiugﬁ %reerfg:r?.ces from the socio-demographic

STEPSIZE are not independent. The observed interdependency is 1€sg, future work we want to investigate limitations of the applicability

intuitive than the one betweendLORMAP and BACKGROUND, but of conjoint analysis to visualization. Possible concerns are: the large

C‘;‘m bctehe;(?kllainﬁd also. Tgesscalg Va“:?s dfor tfgﬁ combined pa{a?ﬁ%ber of respondents needed (though the burden on each respon-
showthatthe changes IMePsIZE do notinduce the same magnitudeyq g low); need for more systematic ways to estimate the number

Dependency on the data set. Preferences obtained for the
FoorT differ significantly from preferences for theNEINE dataset.
This difference is most pronounced for the combined parame
RENDERING-STEPSIZE®, which is much more important for thenE
GINE dataset for both questions.

the rest of the population. of required respondents; important parameters may over-shadow the
4Numbers in parenthesis show the estimated standard deviation in unit§@$ults for not so important ones (rendering statements about the latter
the last shown digit. dubious); restrictiveness of the distribution assumptions; influence of

5The parameters H:wPOINT and GLOR can not be compared directly for framing effects or the surrounding in general (we conducted our study
the two datasets, because different colors and viewpoints were used as pafing-controlled environment and tried to control for framing effects by
eter levels. alternating questions from two studies).
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Fig. 2. On top: Best ten renderings (ranking decreasing from left to right). On bottom: Worst ten renderings (ranking increasing from left to right)
for our four conjoint studies.

Our vision is to create a (web based) user study analysis suite thi@] D. H. House, A. Bair, and C. Ware. An approach to the perceptual op-
can be used by researchers to conduct and analyze multi-parameter timization of complex visualizationdEEE Trans. Vis. Comput. Graph.
user studies. Conjoint analysis should be an integral component of 12(4):509-521, 2006.

such a suite.

[7]
(8]
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|| DATA SET: | ENGINE | DATA SET: | Foort
QUESTION: QUESTION:
PARAMETER PARAM. VALUE | AESTHETICS DETAILS || PARAM. VALUE | AESTHETICS DETAILS
COLORMAP MagentaBlue -0.061(17) -0.006(18)| SkinGrey 0.039(17) 0.146(18)
RedYellow 0.065(17) -0.001(18)| BlueCyan 0.070(17) -0.079(18)
BlueGreen -0.004(17) 0.007(18)| Magenta -0.109(17) -0.067(18)
BACKGROUND Black 0.378(26) 0.049(28)| Black 0.419(27) 0.246(28)
White -0.034(26)  0.078(28)| White -0.063(26)  0.047(27)
Green -0.162(26) -0.018(28)| Green -0.105(26) -0.097(28)
Blue -0.063(26) -0.062(28)| Blue 0.007(26) -0.103(28)
Yellow -0.120(26) -0.046(28)| Yellow -0.258(26) -0.093(28)
RENDERING DVR 0.514(25) 0.719(28)| DVR 0.095(26) 0.361(27)
DVRNS 0.353(24) 0.530(25)| DVRNS -0.001(25)  0.058(26)
DVRGM 0.385(24) 0.629(26)| DVRGM 0.484(26) 0.561(27)
XRAY -0.305(23) -1.005(31)| XRAY -0.308(26) -0.758(28)
MIP -0.947(28) -0.872(28)| MIP -0.270(25) -0.223(26)
STEPSIZE 0.5 0.028(17) 0.026(18)| 0.5 0.035(17) 0.065(18)
0.2 0.051(17) 0.066(18)| 0.2 0.061(17) 0.038(18)
1.0 -0.078(17) -0.093(18)| 1.0 -0.096(17) -0.103(18)
VIEWPOINT side-front 0.132(30) 0.118(32)| side-60 0.126(26) 0.174(28)
side-back 0.052(30) 0.071(33)| top-90 -0.158(26) -0.118(28)
side-top 0.060(30) 0.027(32)| top-0 -0.133(26) -0.151(28)
side-down -0.120(30) -0.041(32)| side-30 0.208(27)  0.098(28)
front -0.007(30) -0.073(32)| top-135 -0.044(26) -0.003(28)
side -0.117(29) -0.101(32
RESOLUTION high 0.115(10) 0.091(11)| high 0.045(10) 0.080(11)
low -0.115(10) -0.091(11)| low -0.045(10) -0.080(11)
RENDERING DVR, 0.5 0.60(5) 0.81(7)|| DVR, 0.5 0.00(5) 0.17(5)
-STEPSIZE DVR, 0.2 0.51(5) 0.86(6)|| DVR, 0.2 0.29(5) 0.64(5)
DVR, 1.0 0.41(5) 0.49(5)|| DVR, 1.0 0.02(5) 0.26(5)
DVRNS, 0.5 0.18(4) 0.41(5)|| DVRNS, 0.5 0.08(5) 0.17(5)
DVRNS, 0.2 0.44(4) 0.64(5)|| DVRNS, 0.2 -0.01(5) -0.03(5)
DVRNS, 1.0 0.40(4) 0.49(5)|| DVRNS, 1.0 -0.09(5) 0.02(5)
DVRGM, 0.5 0.63(5) 0.85(6)|| DVRGM, 0.5 0.67(5) 1.07(6)
DVRGM, 0.2 0.48(5) 0.71(5)|| DVRGM, 0.2 0.60(5) 0.64(5)
DVRGM, 1.0 0.07(4) 0.32(4)|| DVRGM, 1.0 0.16(5) 0.04(5)
XRAY, 0.5 -0.29(4) -0.95(5)|| XRAY, 0.5 -0.31(5) -0.80(5)
XRAY, 0.2 -0.32(4) -1.00(6)|| XRAY, 0.2 -0.36(5) -0.77(5)
XRAY, 1.0 -0.29(4) -1.05(8)|| XRAY, 1.0 -0.25(5) -0.73(6)
MIP, 0.5 -0.89(5) -0.89(5)|| MIP, 0.5 -0.24(5) -0.26(5)
MIP, 0.2 -0.93(5) -0.86(5)|| MIP, 0.2 -0.26(5) -0.23(5)
MIP, 1.0 -1.03(6) -0.83(6)|| MIP, 1.0 -0.31(5) -0.19(5)
COLORMAP MagBIlu-BBIlk 0.29(5) -0.05(5)|| SkinGray-BBIlk 0.73(5) 0.74(6)
-BACKGROUND || MagBIlu-BWht -0.12(5) 0.05(5)|| SkinGray, Wht -0.29(5) -0.30(5)
MagBlu-BGrn -0.22(5) 0.07(5)|| SkinGray, Grn -0.11(5) 0.11(5)
MagBIlu-BBIlu -0.10(5) -0.11(5)|| SkinGray, Blu 0.24(5) 0.47(5)
MagBIlu-BYel -0.17(5) 0.01(5)|| SkinGray, Yel -0.40(5) -0.24(5)
RedYel-BBIk 0.44(5) 0.20(5)|| BluCya, Blk 0.30(5) -0.13(5)
RedYel-BWht -0.08(5) 0.11(5)|| BluCya, Wht 0.26(5) 0.36(5)
RedYel-BGrn -0.06(5) -0.13(5)|| BluCya, Grn 0.02(5) -0.11(5)
RedYel-BBlu 0.07(5) -0.01(5)|| BluCya, Blu -0.26(5) -0.75(6)
RedYel-BYel -0.04(5) -0.17(5)|| BluCya, Yel 0.04(5) 0.17(5)
BluGrn-BBIlk 0.40(5) -0.00(5)|| Mag, Blk 0.20(5) 0.16(5)
BluGrn-BWht 0.10(5) 0.06(5)|| Mag, Wht -0.14(5) 0.08(5)
BluGrn-BGrn -0.20(5) 0.01(5)|| Mag, Grn -0.19(5) -0.29(5)
BluGrn-BBIlu -0.17(5) -0.06(5)|| Mag, Blu 0.03(5) -0.07(5)
BluGrn-BYel -0.15(5) 0.02(5)|| Mag, Yel -0.42(5) -0.19(5)

Table 3. Scale values for all parameter levels (also combined ones) of the four conjoint studies (ENGINE studies on the right and FOOT studies on
the left). Numbers in parenthesis show the estimated standard deviation in units of the last shown digit.



