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Expectation Maximization (EM) and the Simultaneous Iterative Reconstruction Technique

(SIRT) are two iterative computed tomography reconstruction algorithms often used when

the data contain a high amount of statistical noise, have been acquired from a limited angu-

lar range, or have a limited number of views. A popular mechanism to increase the rate of

convergence of these types of algorithms has been to perform the correctional updates

within subsets of the projection data. This has given rise to the method of Ordered Subsets

EM (OS-EM) and the Simultaneous Algebraic Reconstruction Technique (SART). Commod-

ity graphics hardware (GPUs) has shown great promise to combat the high computational

demands incurred by iterative reconstruction algorithms. However, we find that the spe-

cial architecture and programming model of GPUs add extra constraints on the real-time

performance of ordered subsets algorithms, counteracting the speedup benefits of smaller

subsets observed on CPUs. This gives rise to new relationships governing the optimal num-
ber of subsets as well as relaxation factor settings for obtaining the smallest wall-clock time

for reconstruction—a factor that is likely application-dependent. In this paper we study the

generalization of SIRT into Ordered Subsets SIRT and show that this allows one to opti-

mize the computational performance of GPU-accelerated iterative algebraic reconstruction

methods.

sive gains originate in the highly parallel Same Instruction
. Introduction

he rapid growth in speed and capabilities of programmable
ommodity graphics hardware boards (GPUs) has propelled
igh performance computing to the desktop, spawning appli-
ations far beyond those used in interactive computer games.
Please cite this article in press as: F. Xu, et al., On the efficiency of iterative
Comput. Methods Programs Biomed. (2009), doi:10.1016/j.cmpb.2009.09.00

igh-end graphics boards, such as the NVIDIA 8800 GTX
nd their successors, featuring 500 G Flops and more, are
ow available for less than $500, and their performance is
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consistently growing at a triple of Moore’s law that governs
the growth of CPUs. Speedups of 1–2 orders of magnitude
have been reported by many researchers when mapping CPU-
based algorithms onto the GPU, in a wide variety of domains
[10,18], including medical imaging [8,11,13,16]. These impres-
ordered subset reconstruction algorithms for acceleration on GPUs,
3

Multiple Data (SIMD) architecture of the GPU and its high-
bandwidth memory access. For example, the NIVIDIA 8800
GTX has 128 such SIMD pipelines while the most recent

erved.
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In the following discussion, we have only considered algebraic
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NVIDIA card, the GTX 295, has 2 × 240 processors to yield a
peak performance of 1.7 T Flops.

It is important to note, however, that the high speedup
rates facilitated by GPUs do not come easy. They require one to
carefully map the target algorithm from the single-threaded
programming model of the CPU to the multi-threaded SIMD
programming model of the GPU where each such thread
is dedicated to computing one element of the (final or
intermediate) result vector. Here, special attention must
be paid to keep all of these pipelines busy. While there
are 100s of SIMD processors on the GPU, many more
threads need to be created to hide data fetch latencies.
It is important to avoid both thread congestion (too many
threads waiting for execution) and thread starvation (not
enough threads available to hide latencies). These condi-
tions are in addition to avoiding possible contingencies in
local registers and caches that will limit the overall num-
ber of threads permitted to run simultaneously. For example,
in [13], it was shown that a careful mapping of Feld-
kamp’s filtered backprojection algorithm to the GPU yielded
a 20× speedup over an optimized CPU implementation,
enabling cone-beam reconstructions of 5123 volumes from
360 projections at a rate of 52 projections/s, greatly exceed-
ing the data production rates of modern flat-panel X-ray
scanners that have become popular in fully 3D medical imag-
ing.

The compute-intensive nature of iterative reconstruction
algorithms motivated their acceleration via commodity graph-
ics hardware early on, first using graphics workstations [9]
and later GPU boards [14]. We now refine these works by ana-
lyzing the acceleration of iterative reconstruction algorithms
more closely in terms of the underlying GPU programming
model and architecture. Iterative algorithms are different
from analytical algorithms in that they require frequent syn-
chronization which interrupts the stream of data, requires
context switches, and limits the number of threads available
for thread management. Iterative algorithms, such as Expec-
tation Maximization (EM) [12] or the Simultaneous Iterative
Reconstruction Technique (SIRT) [5] consist of three phases,
executed in an iterative fashion: (1) projection of the object
estimate, (2) correction factor computation (the updates), and
(3) backprojection of the object estimate updates. Each phase
requires a separate pass. Flexibility comes from the concept
of ordered subsets, which have been originally devised mostly
because they accelerated convergence. The projection data is
divided into groups, the subsets, and the data within each
of these groups undergo each of the three phases simulta-
neously. Here, it was found that the larger the number of
subsets (that is, the smaller the groups) the faster is typi-
cally the convergence, but adversely also the higher the noise
since there is more potential for over-correction. In EM, the
method of Ordered Subsets (OS-EM) has become widely pop-
ular. OS-EM conceptually allows for any number of subsets,
but the limit with respect to noise has been noted already
in the original work by Hudson and Larkin [7]. For the alge-
braic scheme, embodied by SIRT, the Simultaneous Algebraic
Please cite this article in press as: F. Xu, et al., On the efficiency of iterative
Comput. Methods Programs Biomed. (2009), doi:10.1016/j.cmpb.2009.09.00

Reconstruction Technique (SART) [2] is also an OS scheme, but
with each set only consisting of a single projection. In SART,
the over-correction noise is kept low by scaling the updates
by a relaxation factor � < 1. Block-iterative schemes for alge-
 PRESS
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braic techniques have been proposed as well [3]. In fact, the
original ART [6] is the algorithm with the smallest subset
size possible: a single data point (that is, ray or projection
pixel).

It is well known that SART converges much faster than SIRT,
and a well-chosen � can overcome the problems with streak
artifacts and reconstruction noise, allowing it produce good
reconstruction results [1]. On the CPU, faster rate of conver-
gence is directly related to faster time performance. But, as
we previously demonstrated [15], when it comes to acceler-
ation on a streaming architecture such as the GPU, SART is
not the fastest algorithm in terms of time performance. In
fact, the time performance is inversely related to the num-
ber subsets, making SIRT the faster scheme. This is due to the
overhead incurred by the frequent context switching when
repeatedly moving through the three iterative phases: pro-
jection, correction, and backprojection. In the same work, we
also demonstrated that specific subset sizes can optimize both
reconstruction quality and performance. However, the influ-
ence of the relaxation factor � had not been considered in
these experiments.

In the research reported here we now complete the study
of [15] and also investigate the role of � on GPU reconstruction
speed performance, in relation to subset size. Here we find
that an optimal choice of � can have a great impact. Despite
the fact that SART is slower than SIRT per iteration, an opti-
mized �-setting can reduce the number of required iterations
for convergence to a greater extent than the extra per-iteration
cost incurred by GPU data streaming and context switching.
This reinstates SART and the lower subset versions of SIRT
as the fastest iterative CT reconstruction schemes also on
GPUs.

We shall note, however, that the optimal setting is
likely application-dependent, which is not unique to the
GPU setting alone. Here we make the reasonable assump-
tion that a certain application will always incur similar
types of data and thus an optimal parameter setting,
once found, will likely be close to optimal for all data
within that application setting. In that sense, our aim for
this paper is not to provide optimal subset and relax-
ation factor settings for all types of data, but rather to
raise awareness to this phenomenon and offer an explana-
tion.

Our paper is structured as follows. First, in Section 2, we
discuss iterative algorithms in the context of ordered sub-
sets, present a generalization of SIRT to OS-SIRT, and describe
their acceleration on the GPU. Then, in Section 3, we study
the impacts of both subset size and relaxation factor on GPU
reconstruction performance and present the results of our
studies. Finally, Section 4 ends with conclusions.

2. Iterative reconstruction and its
acceleration on GPUs
ordered subset reconstruction algorithms for acceleration on GPUs,
3

reconstruction algorithms (SART, SIRT), but our arguments
and conclusions readily extend to Expectation Maximization
(EM) algorithms as well since they are very similar with respect
to their mapping to GPUs [14].
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.1. Iterative algebraic reconstruction: decomposition
nto subsets

ost iterative CT techniques use a projection operator to
odel the underlying image generation process at a certain

iewing configuration (angle) ϕ. The result of this projection
imulation is then compared to the acquired image obtained
t the same viewing configuration. If scattering or diffraction
ffects are ignored, the modeling consists of tracing a straight
ay ri from each image element (pixel) and summing the con-
ributions of the (reconstruction) volume elements (voxels) vj.
ere, the weight factor wij determines the contribution of a vj

o ri and is given by the interpolation kernel used for sampling
he volume. The projection operator is given as

i =
N∑

j=1

vjwij i = 1, 2, . . . , M (1)

here M and N are the number of rays (one per pixel) and
oxels, respectively. Since GPUs are heavily optimized for com-
uting and less for memory bandwidth, computing the wij

n the fly, via bilinear interpolation, is by far more efficient
han storing the weights in memory. The correction update
or projection-based algebraic methods is computed with the
ollowing equation:

(k+1)
j

= v
(k)
j

+ �
∑

pi ∈ OSs

pi − ri∑N

l=1wil

ri =
N∑

l=1

wilv
(k)
l

(2)

or the purpose of this paper, we have written this equation
s a generalization of the original SART and SIRT equations to
upport any number of subsets. Here, the pi are the pixels in
he M/S acquired images that form a specific (ordered) subset
Ss where 1 ≤ s ≤ S and S is the number of subsets. The fac-

or � is the relaxation factor, as mentioned above, which will
e subject to optimization. The factor k is the iteration count,
here k is incremented each time all M projections have been
rocessed. In essence, all voxels vj on the path of a ray ri are
pdated (corrected) by the difference of the projection ray ri

nd the acquired pixel pi, where this correction factor is first
ormalized by the sum of weights encountered by the (back-
rojection) ray ri. Since a number of backprojection rays will
pdate a given vj, these corrections need also be normalized by
he sum of (correction) weights. For SIRT, these normalization
eights are trivial.

.2. GPU-accelerated reconstruction: threads and
asses

s mentioned, the NVIDIA 8800 GTX board has 128 general-
zed SIMD processors. Up to very recently, the only way to
nterface with GPU hardware was via a suitable graphics API,
uch as OpenGL or DirectX, and using CG [4] (or GLSL or HLSL)
or coding shader programs to be loaded and run on the SIMD

file on the last author's website for an updated version
tion.
Please cite this article in press as: F. Xu, et al., On the efficiency of iterative
Comput. Methods Programs Biomed. (2009), doi:10.1016/j.cmpb.2009.09.00

ragment processors. With the introduction of a new API, Com-
ute Unified Device Architecture (CUDA) [19], the GPU can
ow directly be perceived as a multi-processor. With CUDA,
he CG fragments become the CUDA (SIMD) computing threads
 PRESS
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and the shader programs become the computing kernels. With
the CUDA specifications, much more information about the
overall GPU architecture is now available, which helps pro-
grammers to fine-tune thread and memory management to
optimize performance, viewing GPUs as the multi-processor
architecture it really is. Reflecting this General Programming
on GPUs (GPGPU) trend, new GPU platforms have now become
available that do not even have graphics display capabili-
ties, such as the NVIDIA Tesla board. Although we used GLSL
shaders to obtain the results presented in this paper, similar
symptoms also occur in CUDA where synchronization oper-
ations have to be formally called to finish executions of all
threads within a thread block to resume the pipeline. After
all, the underlying hardware and its architecture remain the
same just the API is different.

The GPU memory model differentiates itself significantly
from its CPU counterpart, posing greater restrictions on mem-
ory access operations in order to reduce latency and increase
bandwidth. Here not only registers and local memory are
reduced or even completely eliminated—the global memory
also allows only read instructions during the computation.
Further, the write operator can be executed only at the end
of a computation, when the thread (or fragment) is released
from the pipeline, to be blended with the target. Therefore,
in general-purpose computing using GPUs, computations are
triggered by initializing a “pass”. A pass includes setting up the
computation region and attaching a kernel program to simul-
taneously apply specific operations on every thread generated.
The data is then streamed into the pipeline, where the mod-
ification can be done only at the end of the pass. Cycles and
loops within a program can be implemented either inside the
kernel or by running multiple passes. The former is generally
faster since evoking a rendering pass and storing intermediate
results in memory are costly, but there exists a register count
limit in the current hardware which prevents unconstrained
use of loops in the kernel.

2.3. GPU-accelerated iterative reconstruction:
implementation details

To illustrate the significance of our generalization of SART
and SIRT into OS-SIRT, in context of GPU-accelerated comput-
ing, we shall now describe our specific GPU implementation
in closer detail. As mentioned, iterative algorithms consist
of three passes which are repeatedly executed until con-
vergence: forward projection, corrective update computation,
and backprojection. Of these, only the first and third pass are
computationally challenging as they involve the reconstruc-
tion volume. We note that in SART each such pass involves
only one projection, while in SART it involves the entire set of
projections. In OS-SIRT the number of projections involved is
determined by the size of the subset.

The high performance of GPUs stems from the parallel
execution of a sufficiently large number of SIMD computing
threads. Each such thread must have a target which eventu-
ally receives the outcome of the thread’s computation. In the
ordered subset reconstruction algorithms for acceleration on GPUs,
3

forward projection the targets are the pixels on the projection
images receiving the outcome of the ray integrations (Eq. (1)),
while in the backprojection the targets are the reconstructed
volume voxels receiving the corrective updates (Eq. (2)). Thus
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Fig. 1 – Time per iteration (in s) as a function of number of

to the integration result of the corresponding acquisition ray
which then determines the corrective update.

Fig. 2 – Reconstructions obtained with the linear
ARTICLE
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the forward projection is inherently pixel-driven, while the
backprojection is voxel-driven. These two mechanisms (or
pipelines) are mainly distinguished by their interpolation
scheme: the former interpolates (ray) samples in reconstruc-
tion volume space, while the latter interpolates (correction
update) samples in projection image space. This constitutes
an unmatched projector/backprojector pair, which has been
successfully used in the past in other contexts [17].

In the work considered here, the 3D object estimate is
represented as a three-dimensional texture contained in a
bounding box of six polygons. The resolution of the texture
is that of the volume to be reconstructed. The forward pro-
jector casts rays across this texture, and the backprojector
updates the texture. Both observe the viewing geometry of
the detector that is associated with the acquired data. We shall
now describe the GPU implementations of these two pipelines
more closely. For further detail the reader is referred to a num-
ber of available papers (see, for example [13,14]).

Forward projector: given the viewing geometry and position
of the detector associated with the data, we first require for
each of its rays the 3D coordinates of their entry and exit
points into the volume texture’s bounding box. These can
be efficiently obtained with the GPU via OpenGL commands.
We first transform the bounding box by the viewing geom-
etry’s transformation matrix and then render the bounding
box polygons into the depth buffer. Here the viewport is cho-
sen such that its resolution matches that of the projection
data image. The entry points are computed by projecting the
bounding box polygons and setting the GL depth buffer test
to GL LESS, which will only retain the depth coordinates of
the front-facing polygons, and the exit points are computed
by setting the GL depth buffer test to GL GREATER, which will
only retain the depth coordinates of the back-facing polygons.
The ray direction vector for each ray (pixel) is then calculated
by subtracting the ray’s entry point 3D coordinates from the
exit point 3D coordinates and normalizing this vector. Given
a certain pre-defined ray step size (we use 1.0) each thread
can then compute the number of sample points along its ray
to initialize a volume traversal loop. Beginning at the volume
entry point, it interpolates the volume texture (using the GPU’s
hardwired trilinear interpolation facility), adds this value to
its ray integral (initialized to zero), and then advances the ray
by adding the direction vector scaled by the step size to its
current volume position. All rays advance in lock step and in
parallel, each on a different parallel GPU processor. The result
of this forward projection procedure is a texture of the same
resolution than the input data.

Corrective update computation: this simple thread subtracts
the texture obtained in the forward projection step from the
input data texture and normalizes the result by a texture
storing the sum of weights for each ray (computed in a prepro-
cessing step with the volume texture set to unity). The result
is stored in another 2D texture we call corrective update texture.

Backprojector: now the 3D volume texture becomes the ren-
dering target. A thread is spawned for each voxel and the
mapping from the voxel’s 3D coordinate to the detector is
Please cite this article in press as: F. Xu, et al., On the efficiency of iterative
Comput. Methods Programs Biomed. (2009), doi:10.1016/j.cmpb.2009.09.00

determined via projective geometry calculations. Then the
GPU’s bilinear interpolation facility is called to compute the
voxel update from the corrective update texture. The resulting
value is then added to the 3D texture at that voxel position.
subsets.

We observe that since the forward projector uses a fairly
good interpolation filter (trilinear) and a ray step size indepen-
dent of the viewing angle, it produces a ray integral estimate
that is a reasonably close approximation to an analytical inte-
gration (assuming ideal ray physics). The corrective updates of
the backprojector, on the other hand, are not spread into the
voxel grid via a trilinear function at regular intervals along the
ray. Rather, the ray interval varies between 1 and

√
2 and the

spreading only occurs in-slice via bilinear interpolation. Since
the spreading (scattering) of thread results into multiple tar-
gets (the voxels in the trilinear neighborhood) is not supported
on GPUs (and can also lead to hazards in parallel computation)
this restriction is difficult to overcome. Fortunately, having a
high-quality forward projector is of much higher importance
in CT reconstruction since its integration result is compared
ordered subset reconstruction algorithms for acceleration on GPUs,
3

�-selection schedule for various subset sizes for a fixed
CC = 0.95 and 180 projections in an angular range of 180◦.
We observe that OS-SIRT with 10 subsets of 18 projections
each reaches this fixed CC value 12% faster than SIRT and
50% faster than SART.
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Fig. 3 – Optimal relaxation factor � as a function of number
of subsets for the optimal �-selection scheme.

Fig. 4 – Reconstructions with the optimized �-selection
scheme obtained with various subset sizes for a fixed
CC = 0.95 and 180 projections in an angular range of 180◦.
We observe that now the number of subsets is directly
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Fig. 5 – CC vs. wall-clock time for the linear �-selection
scheme. We observe that OS-SIRT achieves the

is what has been adopted in OS-EM. In contrast, we use a ran-
domized approach to fill the subsets, which we find yields
better results than the regular subset population approach.
elated to wall-clock computation time, with SART being
he fastest.

.4. GPU-accelerated iterative reconstruction:
xtension to ordered subsets

rom what has been discussed above we observe that ordered
ubsets (with the extreme case being SIRT) allow better control
ver the number of threads per kernel invocation. The more
rojections are grouped into a subset, the more pixel rays (and
herefore threads) are spawned. This allows a better hiding of

emory latencies since the threads waiting for memory can
e (temporarily) replaced by other non-waiting threads not yet
rocessed for the current program operation. An inherent lim-

tation on the number of threads that can be managed this
ay is the available GPU (shared) memory. On the other hand,
Please cite this article in press as: F. Xu, et al., On the efficiency of iterative
Comput. Methods Programs Biomed. (2009), doi:10.1016/j.cmpb.2009.09.00

n the backprojection there are typically a sufficient number
f threads since the number of voxels is an order of mag-
itude greater than the number of pixels in the projection

mages. However, backprojection threads are typically short
reconstruction it in the smallest amount of time, within our
GPU-accelerated framework.

which makes them less efficient. Since ordered subsets map
each voxel to a set of projections this sequence of mappings
increases the length of the kernel program and improves effi-
ciency. A final advantage of ordered subsets is that they reduce
the number of passes and the context switches that occur
between the three repetitive phases of the iterative algorithm.

In the following we shall present our OS-SIRT algorithm
in further detail. Eq. (2) above described the generalization of
algebraic reconstruction into the OS configuration. What is left
to define is how the subsets OSs are composed and how � is
chosen for given number of subsets S. As specified above, OSs

is the set of projections contained in each subset, to be used
in a pair of simultaneous forward projections and simultane-
ous backward projections. In our application, each subset has
the same number of projections, that is |OSs| = |OS|, which is
typical. Thus, the total number of projections M = |OS|S. The
traditional way of filling a certain subset OSs is to select pro-
jections whose indices m (1 ≤ m ≤ M) satisfy m mod S = s. This
ordered subset reconstruction algorithms for acceleration on GPUs,
3

Fig. 6 – CC vs. wall-clock time for the optimized �-selection
scheme. We observe that there is now a clear ordering in
terms of reconstruction time from small subsets to larger
ones.
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Fig. 7 – Line profiles of the image background for SART,
SIRT, and the original Barbara image.

For this, we simply generate a projection index list in random
order and sequentially divide this list into S subsets.

In [15] we proposed the following linear equation for the
relaxation factor � to be used for an arbitrary S, setting � = 1
for SIRT and � = �SART = 0.1 for SART:

� = (�SART − 1)
(

S − 1
N − 1

)
+ 1 1 ≤ S ≤ N (3)

This scheme sought to balance the smoothing effect achieved
by the application of a larger set of simultaneous projections
(employed in SIRT) with that obtained by a lower relaxation
factor (when a smaller set of projections is applied with SART
Please cite this article in press as: F. Xu, et al., On the efficiency of iterative
Comput. Methods Programs Biomed. (2009), doi:10.1016/j.cmpb.2009.09.00

or SIRT with smaller subsets). That is, the lesser projections in
a subset, the lower the �.

In our current work, we collected results for all possible
integer-subsets, each for a representative set of �-levels, and

Fig. 8 – Reconstructed baby head using high-quality simulated p
obtained with the linear �-selection scheme with various subset
angular range of 180◦. OS-SIRT with 10 subsets of 18 projections
and 86% faster than SART.
 PRESS
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used it to produce a more accurate �(S) function than the lin-
ear function in Eq. (3). In the following, we shall call the first
scheme the linear �-selection scheme, and the second method
the optimal �-selection scheme.

The arguments presented thus far as well as our prior
observations in [15] justify the lower speed obtained with
single iterations of SART or OS-SIRT with a large number of
subsets, over single iterations with basic SIRT or OS-SIRT with
a small number of subsets. The results we shall present below
will show, however, that these extra costs incurred by SART
and OS-SIRT with a large number of subsets are more than
compensated by the faster convergence rates they can achieve,
given the proper �-settings obtained with a more informed
�-selection scheme.

3. Experiments and results

All our experiments were conducted on an NVIDIA 8800 GTX
GPU, programmed with GLSL. For the first set of experiments
we used the 2D Barbara test image to evaluate the performance
of the different reconstruction schemes described above. We
used this image, popular in the image processing literature,
since it has several coherent regions with high-frequency
detail, which present a well observable test for the fidelity of a
given reconstruction scheme. The target 2D image is obtained
by cropping the original image to an area of 256 × 256 pixels
resolution. We obtained 180 projections at uniform angu-
lar spacing of [−90◦, +90◦] in a parallel projection viewing
ordered subset reconstruction algorithms for acceleration on GPUs,
3

geometry. We also simulated a limited-angle scenario, where
iterative algorithms are often employed. Here, we produced
140 projections in the interval [−70◦, +70◦]. All reconstructions
used linear interpolation.

rojection data of the volume labeled ‘Original’. Results were
sizes for a fixed R-factor = 0.007 and 180 projections in an
each reaches this set R-factor value 26% faster than SIRT
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Fig. 9 – Reconstruction results of the baby head obtained with the optimized �-selection scheme with various subset sizes
for a fixed R-factor = 0.007 and 180 projections in an angular range of 180◦. Using the �-selections shown above, OS-SIRT
with 20 subsets of 9 projections each is the fastest in this case. It reaches this set R-factor value 91% faster than SIRT and
72% faster than SART. We also note that the time is about 7 times faster than with the linear selection scheme since the
o

m
n

C

w
i
�

t

ptimal �-factor is higher.

We will use the cross-correlation coefficient (CC) as the
etric to measure the degree of similarity between the origi-

al image and its reconstruction:

C =
∑

j
(rj − �r)(oj − �o)√∑

j
(rj − �r)

2∑
j
(oj − �o)2

(4)

here j counts the number of image pixels, r and o are pixels
Please cite this article in press as: F. Xu, et al., On the efficiency of iterative
Comput. Methods Programs Biomed. (2009), doi:10.1016/j.cmpb.2009.09.00

j j

n the reconstruction and original image, respectively, and the
factors are their mean values.
We shall now explore if there is an optimum in terms of

he number of subsets. Such an optimal subset size could
then be used to generate the best reconstruction in the small-
est amount of (wall-clock) time. First, we evaluated the time
per iteration for each configuration. Fig. 1 plots the time
per iteration for each subset configuration, for the full-angle
case of 180 projections. We observe a roughly linear rela-
tionship between the number of subsets and the time per
iteration, with SIRT requiring the smallest and SART the
longest time (about 5 times more than SIRT which is signif-
icant). This was to be expected given the arguments provided
ordered subset reconstruction algorithms for acceleration on GPUs,
3

above.
However, in practice we are not interested in time per

iteration but in time for convergence. Next, we test the two
strategies presented (the linear and the optimal �-selection
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Fig. 10 – Reconstruction of the baby head from a limited set of 64 projections in an angular range of 180◦ and the optimized
�-selection scheme shown above with various subset sizes for a fixed R-factor = 0.007. We observe that OS-SIRT with 16

ches
subsets of 4 projections each is the fastest in this case. It rea
than SART.

schemes) to choose the relaxation factor � for each possible
integer-subset configuration.

Fig. 2 shows the reconstruction results obtained with
the linear �-selection schemes, for a fixed CC (comparing
reconstruction with the original) which means that all recon-
structed images are nearly identical to each other (in terms of
statistical error). We observe that the smaller the number of
subsets, the greater the number of iterations that are required
to reach the set convergence threshold. We measured that
with the linear �-selection scheme SART on the GPU takes
nearly twice as long as SIRT and using 10 subsets (5 for the
limited-angle case with fewer projections) achieves the best
Please cite this article in press as: F. Xu, et al., On the efficiency of iterative
Comput. Methods Programs Biomed. (2009), doi:10.1016/j.cmpb.2009.09.00

timing performance compared to the other subset configura-
tions. For a CPU implementation, where the wall-clock time
is directly related to the number of iterations, SIRT would be
roughly 87/6 = 14 times slower than SART. However, due to the
this set R-factor value 84% faster than SIRT and 56% faster

mentioned overhead involved in the GPU-based framework,
different wall-clock times are produced with a GPU implemen-
tation and the ratio is not that severe.

We next evaluate the optimal �-selection scheme. Fig. 3
shows the plot of the optimal � found for each subset con-
figuration for a CC = 0.95. We observe that the relationship is
far from linear, with � being relatively stable at around 0.95
until OS = 45 and then falling off to around 0.6 for SART. Thus,
the linear curve underestimates � most of the time, leading to
unnecessarily small corrective updates. Fig. 4 shows the cor-
responding reconstruction results for the Barbara dataset. We
see that SART now is the fastest algorithm, roughly 20 times
ordered subset reconstruction algorithms for acceleration on GPUs,
3

faster than SIRT.
Figs. 5 and 6 compare the reconstruction quality vs. wall-

clock time for both �-schedules, respectively. We clearly
observe that SIRT behaves very similarly, due to the simi-



 INCOMM-2967; No. of Pages 10

i n b

l
m
r
b

t
s
w
a
r

s

R

w
g
r
b
o
0

f
p
S
t
�

t
2
i
s
r
j
�

i
a
G
m

4

W
m
w
t
b
c
v
t
L
k
i
T
p
i

b
i

r

ARTICLE
c o m p u t e r m e t h o d s a n d p r o g r a m s

ar �-factor chosen, while the other subsets converge much
ore expediently for the optimal selection scheme, with SART

eaching convergence after just one iteration, closely followed
y OS-SIRT 60.

The tendency of SART to produce reconstructions noisier
han the original and that of SIRT to produce reconstructions
moother than the original is also demonstrated in Fig. 7,
here we show the renditions of a line profile across another

rea of the Barbara image (only for the original image and
econstructions with SART and SIRT).

We also studied a medical dataset, a slice of a baby head of
ize 2562. To assess the error we used the R-factor:

=
∑

j
(|SOj| − |SCj|)∑

j
|SOj|

(5)

here the SO and SC are the acquired and simulated sino-
rams, respectively. The R-factor is more practical for real
econstruction scenarios because it measures convergence
ased on the acquired data and not the (typically unavailable)
bject. All reconstructions were stopped once an R-factor of
.007 was reached.

Fig. 8 shows the results obtained with the linear �-selection
ramework. We observe that OS-SIRT with 10 subsets of 18
rojections each reaches the preset R-factor 26% faster than
IRT and 86% faster than SART. Fig. 9 shows the reconstruc-
ion results of the baby head obtained with the optimized
-selection scheme (shown above the table) from 180 projec-
ions in an angular range of 180◦. We see that OS-SIRT with
0 subsets is fastest in this case. We also note that the time
s about 7 times faster than with the linear selection scheme
ince the optimal �-factor is higher. Finally, Fig. 10 presents
econstructions of the baby head from a limited set of 64 pro-
ections in an angular range of 180◦ again using the optimized
-selection scheme. We observe that OS-SIRT with 16 subsets
s the fastest in this case. The reconstruction time is close to
mere 10th of a second which demonstrates the capability of
PUs to also facilitate iterative reconstructions in interactive
odes (10 frames/s).

. Conclusions

e have shown that iterative reconstruction methods used in
edical imaging, such as EM or SIRT, have special properties
hen it comes to their acceleration on GPUs. While splitting

he data used within each iterative update into a larger num-
er of smaller subsets has long been known to offer greater
onvergence and computation speed on the CPU, it can be
astly slower on the GPU. This is a direct consequence of the
hread fill rate in the projection and backprojection phase.
arger subsets spawn a greater number of threads, which
eeps the pipelines busier and also reduces the latencies

ncurred by a greater number of passes and context switches.
his is different from the behavior on CPUs where this decom-
osition is less relevant in terms of computation overhead per
Please cite this article in press as: F. Xu, et al., On the efficiency of iterative
Comput. Methods Programs Biomed. (2009), doi:10.1016/j.cmpb.2009.09.00

teration.
We have also shown that these effects can be mitigated

y optimizing the relaxation factor �, restoring the theoret-
cal advantage of data decompositions into smaller ordered
 PRESS
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subsets. In this paper we were mainly concerned with demon-
strating that the poor per-iteration GPU performance for
iterative CT with small subsets (in the limit SART) can be
compensated for by choosing an appropriate �-factor for
the reconstruction. This leads to fast convergence of the
small subset methods and thus provides a good amortiza-
tion of the high per-iteration cost. Doing so in many cases
allows even iterative reconstruction procedures to be run at
near-interactive speeds, making them more applicable for
mainstream CT reconstruction.

The question now remains how one chooses such an opti-
mal �-value in a practical setting. While this was not the
topic of this paper, preliminary results have shown that the
optimal number of subsets seems to vary depending on the
domain application, the general reconstruction scenario, and
also the level of noise present in the data. Thus, in order
to identify the optimal subset number, as well as �, for a
new application setting and noise level, to be used later for
repeated reconstructions within these scenarios, one may
simply run a series of experiments with different numbers
of subsets and �-settings, and then use the setting com-
bination with the shortest wall-clock time required for the
desired reconstruction quality. In fact, such strategies are
typical for GPU-accelerated general-purpose computing appli-
cations (GPGPUs). For example, the GPU bench was designed to
run a vast benchmark suite [20] to determine the capabilities
of the tested hardware.

We also believe that our findings with SIRT readily extend to
EM since the two methods have, as far as the computations are
concerned, similar operations and overhead, and we intend to
study these dependencies more closely in future work. Finally,
although we have used GLSL shaders to obtain the results pre-
sented in this paper, similar symptoms also occur in CUDA
where synchronization operations have to be formally called
to finish executions of all threads within a thread block to
resume the pipeline. In general, the underlying hardware, its
architecture, and the overall thread management remain the
same—just the API is different, enabling a tighter control over
the threads and also memory. In future work, we plan to study
the reported effects to a more detailed extent in CUDA, to
determine if a shift in the performance-optimal subset con-
figuration occurs. But in fact, this is likely to happen for every
new generation of the hardware.
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