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ABSTRACT

Expectation Maximization (EM) and the Simultaneous Iterative Reconstruction Technique
(SIRT) are two iterative computed tomography reconstruction algorithms often used when
the data contain a high amount of statistical noise, have been acquired from a limited angu-
lar range, or have a limited number of views. A popular mechanism to increase the rate of
convergence of these types of algorithms has been to perform the correctional updates
within subsets of the projection data. This has given rise to the method of Ordered Subsets
EM (OS-EM) and the Simultaneous Algebraic Reconstruction Technique (SART). Commod-
ity graphics hardware (GPUs) has shown great promise to combat the high computational
demands incurred by iterative reconstruction algorithms. However, we find that the spe-
cial architecture and programming model of GPUs add extra constraints on the real-time
performance of ordered subsets algorithms, counteracting the speedup benefits of smaller
subsets observed on CPUs. This gives rise to new relationships governing the optimal num-
ber of subsets as well as relaxation factor settings for obtaining the smallest wall-clock time
for reconstruction—a factor that is likely application-dependent. In this paper we study the
generalization of SIRT into Ordered Subsets SIRT and show that this allows one to opti-
mize the computational performance of GPU-accelerated iterative algebraic reconstruction
methods.

© 2009 Elsevier Ireland Ltd. All rights reserved.

1. Introduction

consistently growing at a triple of Moore’s law that governs
the growth of CPUs. Speedups of 1-2 orders of magnitude

The rapid growth in speed and capabilities of programmable
commodity graphics hardware boards (GPUs) has propelled
high performance computing to the desktop, spawning appli-
cations far beyond those used in interactive computer games.
High-end graphics boards, such as the NVIDIA 8800 GTX
and their successors, featuring 500 G Flops and more, are
now available for less than $500, and their performance is

* Corresponding author. Tel.: +1 631 632 1524.
E-mail address: mueller@cs.sunysb.edu (K. Mueller).

have been reported by many researchers when mapping CPU-
based algorithms onto the GPU, in a wide variety of domains
[10,18], including medical imaging [8,11,13,16]. These impres-
sive gains originate in the highly parallel Same Instruction
Multiple Data (SIMD) architecture of the GPU and its high-
bandwidth memory access. For example, the NIVIDIA 8800
GTX has 128 such SIMD pipelines while the most recent
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NVIDIA card, the GTX 295, has 2 x 240 processors to yield a
peak performance of 1.7 T Flops.

It is important to note, however, that the high speedup
rates facilitated by GPUs do not come easy. They require one to
carefully map the target algorithm from the single-threaded
programming model of the CPU to the multi-threaded SIMD
programming model of the GPU where each such thread
is dedicated to computing one element of the (final or
intermediate) result vector. Here, special attention must
be paid to keep all of these pipelines busy. While there
are 100s of SIMD processors on the GPU, many more
threads need to be created to hide data fetch latencies.
It is important to avoid both thread congestion (too many
threads waiting for execution) and thread starvation (not
enough threads available to hide latencies). These condi-
tions are in addition to avoiding possible contingencies in
local registers and caches that will limit the overall num-
ber of threads permitted to run simultaneously. For example,
in [13], it was shown that a careful mapping of Feld-
kamp’s filtered backprojection algorithm to the GPU yielded
a 20x speedup over an optimized CPU implementation,
enabling cone-beam reconstructions of 512 volumes from
360 projections at a rate of 52 projections/s, greatly exceed-
ing the data production rates of modern flat-panel X-ray
scanners that have become popular in fully 3D medical imag-
ing.

The compute-intensive nature of iterative reconstruction
algorithms motivated their acceleration via commodity graph-
ics hardware early on, first using graphics workstations [9]
and later GPU boards [14]. We now refine these works by ana-
lyzing the acceleration of iterative reconstruction algorithms
more closely in terms of the underlying GPU programming
model and architecture. Iterative algorithms are different
from analytical algorithms in that they require frequent syn-
chronization which interrupts the stream of data, requires
context switches, and limits the number of threads available
for thread management. Iterative algorithms, such as Expec-
tation Maximization (EM) [12] or the Simultaneous Iterative
Reconstruction Technique (SIRT) [5] consist of three phases,
executed in an iterative fashion: (1) projection of the object
estimate, (2) correction factor computation (the updates), and
(3) backprojection of the object estimate updates. Each phase
requires a separate pass. Flexibility comes from the concept
of ordered subsets, which have been originally devised mostly
because they accelerated convergence. The projection data is
divided into groups, the subsets, and the data within each
of these groups undergo each of the three phases simulta-
neously. Here, it was found that the larger the number of
subsets (that is, the smaller the groups) the faster is typi-
cally the convergence, but adversely also the higher the noise
since there is more potential for over-correction. In EM, the
method of Ordered Subsets (OS-EM) has become widely pop-
ular. OS-EM conceptually allows for any number of subsets,
but the limit with respect to noise has been noted already
in the original work by Hudson and Larkin [7]. For the alge-
braic scheme, embodied by SIRT, the Simultaneous Algebraic
Reconstruction Technique (SART) [2] is also an OS scheme, but
with each set only consisting of a single projection. In SART,
the over-correction noise is kept low by scaling the updates
by a relaxation factor A <1. Block-iterative schemes for alge-

braic techniques have been proposed as well [3]. In fact, the
original ART [6] is the algorithm with the smallest subset
size possible: a single data point (that is, ray or projection
pixel).

Itis well known that SART converges much faster than SIRT,
and a well-chosen A can overcome the problems with streak
artifacts and reconstruction noise, allowing it produce good
reconstruction results [1]. On the CPU, faster rate of conver-
gence is directly related to faster time performance. But, as
we previously demonstrated [15], when it comes to acceler-
ation on a streaming architecture such as the GPU, SART is
not the fastest algorithm in terms of time performance. In
fact, the time performance is inversely related to the num-
ber subsets, making SIRT the faster scheme. This is due to the
overhead incurred by the frequent context switching when
repeatedly moving through the three iterative phases: pro-
jection, correction, and backprojection. In the same work, we
also demonstrated that specific subset sizes can optimize both
reconstruction quality and performance. However, the influ-
ence of the relaxation factor » had not been considered in
these experiments.

In the research reported here we now complete the study
of [15] and also investigate the role of » on GPU reconstruction
speed performance, in relation to subset size. Here we find
that an optimal choice of A can have a great impact. Despite
the fact that SART is slower than SIRT per iteration, an opti-
mized A-setting can reduce the number of required iterations
for convergence to a greater extent than the extra per-iteration
cost incurred by GPU data streaming and context switching.
This reinstates SART and the lower subset versions of SIRT
as the fastest iterative CT reconstruction schemes also on
GPUs.

We shall note, however, that the optimal setting is
likely application-dependent, which is not unique to the
GPU setting alone. Here we make the reasonable assump-
tion that a certain application will always incur similar
types of data and thus an optimal parameter setting,
once found, will likely be close to optimal for all data
within that application setting. In that sense, our aim for
this paper is not to provide optimal subset and relax-
ation factor settings for all types of data, but rather to
raise awareness to this phenomenon and offer an explana-
tion.

Our paper is structured as follows. First, in Section 2, we
discuss iterative algorithms in the context of ordered sub-
sets, present a generalization of SIRT to OS-SIRT, and describe
their acceleration on the GPU. Then, in Section 3, we study
the impacts of both subset size and relaxation factor on GPU
reconstruction performance and present the results of our
studies. Finally, Section 4 ends with conclusions.

2. Iterative reconstruction and its
acceleration on GPUs

In the following discussion, we have only considered algebraic
reconstruction algorithms (SART, SIRT), but our arguments
and conclusions readily extend to Expectation Maximization
(EM) algorithms as well since they are very similar with respect
to their mapping to GPUs [14].
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2.1.  [Iterative algebraic reconstruction: decomposition
into subsets

Most iterative CT techniques use a projection operator to
model the underlying image generation process at a certain
viewing configuration (angle) ¢. The result of this projection
simulation is then compared to the acquired image obtained
at the same viewing configuration. If scattering or diffraction
effects are ignored, the modeling consists of tracing a straight
ray r; from each image element (pixel) and summing the con-
tributions of the (reconstruction) volume elements (voxels) v;.
Here, the weight factor wj; determines the contribution of a v;
to r; and is given by the interpolation kernel used for sampling
the volume. The projection operator is given as

N
TiZZU}‘wU i=1,2,...,M (1)
j=1

where M and N are the number of rays (one per pixel) and
voxels, respectively. Since GPUs are heavily optimized for com-
puting and less for memory bandwidth, computing the w;
on the fly, via bilinear interpolation, is by far more efficient
than storing the weights in memory. The correction update
for projection-based algebraic methods is computed with the
following equation:

See erratum file on the last author's website for an updated version
of this equation.
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For the purpose of this paper, we have written this equation
as a generalization of the original SART and SIRT equations to
support any number of subsets. Here, the p; are the pixels in
the M/S acquired images that form a specific (ordered) subset
0S; where 1<s<S and S is the number of subsets. The fac-
tor A is the relaxation factor, as mentioned above, which will
be subject to optimization. The factor k is the iteration count,
where k is incremented each time all M projections have been
processed. In essence, all voxels v; on the path of a ray r; are
updated (corrected) by the difference of the projection ray r;
and the acquired pixel p;, where this correction factor is first
normalized by the sum of weights encountered by the (back-
projection) ray r;. Since a number of backprojection rays will
update a given vj, these corrections need also be normalized by
the sum of (correction) weights. For SIRT, these normalization
weights are trivial.

2.2. GPU-accelerated reconstruction: threads and
passes

As mentioned, the NVIDIA 8800 GTX board has 128 general-
ized SIMD processors. Up to very recently, the only way to
interface with GPU hardware was via a suitable graphics API,
such as OpenGL or DirectX, and using CG [4] (or GLSL or HLSL)
for coding shader programs to be loaded and run on the SIMD
fragment processors. With the introduction of a new API, Com-
pute Unified Device Architecture (CUDA) [19], the GPU can
now directly be perceived as a multi-processor. With CUDA,
the CG fragments become the CUDA (SIMD) computing threads

and the shader programs become the computing kernels. With
the CUDA specifications, much more information about the
overall GPU architecture is now available, which helps pro-
grammers to fine-tune thread and memory management to
optimize performance, viewing GPUs as the multi-processor
architecture it really is. Reflecting this General Programming
on GPUs (GPGPU) trend, new GPU platforms have now become
available that do not even have graphics display capabili-
ties, such as the NVIDIA Tesla board. Although we used GLSL
shaders to obtain the results presented in this paper, similar
symptoms also occur in CUDA where synchronization oper-
ations have to be formally called to finish executions of all
threads within a thread block to resume the pipeline. After
all, the underlying hardware and its architecture remain the
same just the API is different.

The GPU memory model differentiates itself significantly
from its CPU counterpart, posing greater restrictions on mem-
ory access operations in order to reduce latency and increase
bandwidth. Here not only registers and local memory are
reduced or even completely eliminated—the global memory
also allows only read instructions during the computation.
Further, the write operator can be executed only at the end
of a computation, when the thread (or fragment) is released
from the pipeline, to be blended with the target. Therefore,
in general-purpose computing using GPUs, computations are
triggered by initializing a “pass”. A pass includes setting up the
computation region and attaching a kernel program to simul-
taneously apply specific operations on every thread generated.
The data is then streamed into the pipeline, where the mod-
ification can be done only at the end of the pass. Cycles and
loops within a program can be implemented either inside the
kernel or by running multiple passes. The former is generally
faster since evoking a rendering pass and storing intermediate
results in memory are costly, but there exists a register count
limit in the current hardware which prevents unconstrained
use of loops in the kernel.

2.3. GPU-accelerated iterative reconstruction:
implementation details

To illustrate the significance of our generalization of SART
and SIRT into OS-SIRT, in context of GPU-accelerated comput-
ing, we shall now describe our specific GPU implementation
in closer detail. As mentioned, iterative algorithms consist
of three passes which are repeatedly executed until con-
vergence: forward projection, corrective update computation,
and backprojection. Of these, only the first and third pass are
computationally challenging as they involve the reconstruc-
tion volume. We note that in SART each such pass involves
only one projection, while in SART it involves the entire set of
projections. In OS-SIRT the number of projections involved is
determined by the size of the subset.

The high performance of GPUs stems from the parallel
execution of a sufficiently large number of SIMD computing
threads. Each such thread must have a target which eventu-
ally receives the outcome of the thread’s computation. In the
forward projection the targets are the pixels on the projection
images receiving the outcome of the ray integrations (Eq. (1)),
while in the backprojection the targets are the reconstructed
volume voxels receiving the corrective updates (Eq. (2)). Thus
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the forward projection is inherently pixel-driven, while the
backprojection is voxel-driven. These two mechanisms (or
pipelines) are mainly distinguished by their interpolation
scheme: the former interpolates (ray) samples in reconstruc-
tion volume space, while the latter interpolates (correction
update) samples in projection image space. This constitutes
an unmatched projector/backprojector pair, which has been
successfully used in the past in other contexts [17].

In the work considered here, the 3D object estimate is
represented as a three-dimensional texture contained in a
bounding box of six polygons. The resolution of the texture
is that of the volume to be reconstructed. The forward pro-
jector casts rays across this texture, and the backprojector
updates the texture. Both observe the viewing geometry of
the detector that is associated with the acquired data. We shall
now describe the GPU implementations of these two pipelines
more closely. For further detail the reader is referred to a num-
ber of available papers (see, for example [13,14]).

Forward projector: given the viewing geometry and position
of the detector associated with the data, we first require for
each of its rays the 3D coordinates of their entry and exit
points into the volume texture’s bounding box. These can
be efficiently obtained with the GPU via OpenGL commands.
We first transform the bounding box by the viewing geom-
etry’s transformation matrix and then render the bounding
box polygons into the depth buffer. Here the viewport is cho-
sen such that its resolution matches that of the projection
data image. The entry points are computed by projecting the
bounding box polygons and setting the GL depth buffer test
to GL_LESS, which will only retain the depth coordinates of
the front-facing polygons, and the exit points are computed
by setting the GL depth buffer test to GL_.GREATER, which will
only retain the depth coordinates of the back-facing polygons.
The ray direction vector for each ray (pixel) is then calculated
by subtracting the ray’s entry point 3D coordinates from the
exit point 3D coordinates and normalizing this vector. Given
a certain pre-defined ray step size (we use 1.0) each thread
can then compute the number of sample points along its ray
to initialize a volume traversal loop. Beginning at the volume
entry point, itinterpolates the volume texture (using the GPU’s
hardwired trilinear interpolation facility), adds this value to
its ray integral (initialized to zero), and then advances the ray
by adding the direction vector scaled by the step size to its
current volume position. All rays advance in lock step and in
parallel, each on a different parallel GPU processor. The result
of this forward projection procedure is a texture of the same
resolution than the input data.

Corrective update computation: this simple thread subtracts
the texture obtained in the forward projection step from the
input data texture and normalizes the result by a texture
storing the sum of weights for each ray (computed in a prepro-
cessing step with the volume texture set to unity). The result
is stored in another 2D texture we call corrective update texture.

Backprojector: now the 3D volume texture becomes the ren-
dering target. A thread is spawned for each voxel and the
mapping from the voxel’s 3D coordinate to the detector is
determined via projective geometry calculations. Then the
GPU'’s bilinear interpolation facility is called to compute the
voxel update from the corrective update texture. The resulting
value is then added to the 3D texture at that voxel position.
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Fig. 1 - Time per iteration (in s) as a function of number of
subsets.

We observe that since the forward projector uses a fairly
good interpolation filter (trilinear) and a ray step size indepen-
dent of the viewing angle, it produces a ray integral estimate
that is a reasonably close approximation to an analytical inte-
gration (assuming ideal ray physics). The corrective updates of
the backprojector, on the other hand, are not spread into the
voxel grid via a trilinear function at regular intervals along the
ray. Rather, the ray interval varies between 1 and +/2 and the
spreading only occurs in-slice via bilinear interpolation. Since
the spreading (scattering) of thread results into multiple tar-
gets (the voxels in the trilinear neighborhood) is not supported
on GPUs (and can also lead to hazards in parallel computation)
this restriction is difficult to overcome. Fortunately, having a
high-quality forward projector is of much higher importance
in CT reconstruction since its integration result is compared
to the integration result of the corresponding acquisition ray
which then determines the corrective update.

riginal 0S SIRT 10

# iterations 87 47
time (s) 517

OS SIRT 20 SART

OS SIRT 60
32 15 6
11.28 9.9 10.28

Fig. 2 — Reconstructions obtained with the linear
A-selection schedule for various subset sizes for a fixed
CC=0.95 and 180 projections in an angular range of 180°.
We observe that OS-SIRT with 10 subsets of 18 projections
each reaches this fixed CC value 12% faster than SIRT and
50% faster than SART.
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Fig. 3 — Optimal relaxation factor A as a function of number
of subsets for the optimal A-selection scheme.

r]ginal SIRT
# iterations 95 10
time (s)
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Fig. 4 - Reconstructions with the optimized A-selection
scheme obtained with various subset sizes for a fixed
CC=0.95 and 180 projections in an angular range of 180°.
We observe that now the number of subsets is directly
related to wall-clock computation time, with SART being
the fastest.

2.4. GPU-accelerated iterative reconstruction:
extension to ordered subsets

From what has been discussed above we observe that ordered
subsets (with the extreme case being SIRT) allow better control
over the number of threads per kernel invocation. The more
projections are grouped into a subset, the more pixel rays (and
therefore threads) are spawned. This allows a better hiding of
memory latencies since the threads waiting for memory can
be (temporarily) replaced by other non-waiting threads not yet
processed for the current program operation. An inherent lim-
itation on the number of threads that can be managed this
way is the available GPU (shared) memory. On the other hand,
in the backprojection there are typically a sufficient number
of threads since the number of voxels is an order of mag-
nitude greater than the number of pixels in the projection
images. However, backprojection threads are typically short
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Fig. 5 — CC vs. wall-clock time for the linear A-selection
scheme. We observe that OS-SIRT achieves the
reconstruction it in the smallest amount of time, within our
GPU-accelerated framework.

which makes them less efficient. Since ordered subsets map
each voxel to a set of projections this sequence of mappings
increases the length of the kernel program and improves effi-
ciency. A final advantage of ordered subsets is that they reduce
the number of passes and the context switches that occur
between the three repetitive phases of the iterative algorithm.

In the following we shall present our OS-SIRT algorithm
in further detail. Eq. (2) above described the generalization of
algebraic reconstruction into the OS configuration. What is left
to define is how the subsets OSs are composed and how A is
chosen for given number of subsets S. As specified above, OS;
is the set of projections contained in each subset, to be used
in a pair of simultaneous forward projections and simultane-
ous backward projections. In our application, each subset has
the same number of projections, that is |0S;| =|0S|, which is
typical. Thus, the total number of projections M=|0S|S. The
traditional way of filling a certain subset OS;s is to select pro-
jections whose indices m (1 <m <M) satisfy m mod S=s. This
is what has been adopted in OS-EM. In contrast, we use a ran-
domized approach to fill the subsets, which we find yields
better results than the regular subset population approach.

0.98
0.96
0.94
0.92
6]
o 9 ——SIRT
0.88 =——05-5IRT 5
0.86 ——05-SIRT 10
’ ——0S-SIRT 20
0.84 ——0S$-SIRT 60
08 :
0 1 2 3 4 5 6

Reconstruction time (s)

Fig. 6 — CC vs. wall-clock time for the optimized A-selection
scheme. We observe that there is now a clear ordering in
terms of reconstruction time from small subsets to larger
ones.
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Fig. 7 - Line profiles of the image background for SART,
SIRT, and the original Barbara image.

For this, we simply generate a projection index list in random
order and sequentially divide this list into S subsets.

In [15] we proposed the following linear equation for the
relaxation factor A to be used for an arbitrary S, setting A=1
for SIRT and A =AgarT =0.1 for SART:

S—-1
A= ()\,SART — 1) (m

) +1 1<S<N (3)
This scheme sought to balance the smoothing effect achieved
by the application of a larger set of simultaneous projections
(employed in SIRT) with that obtained by a lower relaxation
factor (when a smaller set of projections is applied with SART
or SIRT with smaller subsets). That is, the lesser projections in
a subset, the lower the A.

In our current work, we collected results for all possible
integer-subsets, each for a representative set of 1-levels, and

Original

used it to produce a more accurate A(S) function than the lin-
ear function in Eq. (3). In the following, we shall call the first
scheme the linear A-selection scheme, and the second method
the optimal A-selection scheme.

The arguments presented thus far as well as our prior
observations in [15] justify the lower speed obtained with
single iterations of SART or OS-SIRT with a large number of
subsets, over single iterations with basic SIRT or OS-SIRT with
a small number of subsets. The results we shall present below
will show, however, that these extra costs incurred by SART
and OS-SIRT with a large number of subsets are more than
compensated by the faster convergence rates they can achieve,
given the proper A-settings obtained with a more informed
A-selection scheme.

3. Experiments and results

All our experiments were conducted on an NVIDIA 8300 GTX
GPU, programmed with GLSL. For the first set of experiments
we used the 2D Barbara test image to evaluate the performance
of the different reconstruction schemes described above. We
used this image, popular in the image processing literature,
since it has several coherent regions with high-frequency
detail, which present a well observable test for the fidelity of a
given reconstruction scheme. The target 2D image is obtained
by cropping the original image to an area of 256 x 256 pixels
resolution. We obtained 180 projections at uniform angu-
lar spacing of [-90°, +90°] in a parallel projection viewing
geometry. We also simulated a limited-angle scenario, where
iterative algorithms are often employed. Here, we produced
140 projections in the interval [-70°, +70°]. All reconstructions
used linear interpolation.

OS-SIRT 3

# iterations / time (s)

OS-SIRT 10

OS-SIRT 60

85/1.77

SART

54/1.40

16/7.99

6/10.28

Fig. 8 - Reconstructed baby head using high-quality simulated projection data of the volume labeled ‘Original’. Results were
obtained with the linear A-selection scheme with various subset sizes for a fixed R-factor=0.007 and 180 projections in an
angular range of 180°. OS-SIRT with 10 subsets of 18 projections each reaches this set R-factor value 26% faster than SIRT

and 86% faster than SART.
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Fig. 9 - Reconstruction results of the baby head obtained with the optimized A-selection scheme with various subset sizes
for a fixed R-factor =0.007 and 180 projections in an angular range of 180°. Using the A-selections shown above, OS-SIRT
with 20 subsets of 9 projections each is the fastest in this case. It reaches this set R-factor value 91% faster than SIRT and
72% faster than SART. We also note that the time is about 7 times faster than with the linear selection scheme since the

optimal A-factor is higher.

We will use the cross-correlation coefficient (CC) as the
metric to measure the degree of similarity between the origi-
nal image and its reconstruction:

e 220 = )0 — po) @
V20— )50 )?

where j counts the number of image pixels, r; and o; are pixels
in the reconstruction and original image, respectively, and the
u factors are their mean values.

We shall now explore if there is an optimum in terms of
the number of subsets. Such an optimal subset size could

then be used to generate the best reconstruction in the small-
est amount of (wall-clock) time. First, we evaluated the time
per iteration for each configuration. Fig. 1 plots the time
per iteration for each subset configuration, for the full-angle
case of 180 projections. We observe a roughly linear rela-
tionship between the number of subsets and the time per
iteration, with SIRT requiring the smallest and SART the
longest time (about 5 times more than SIRT which is signif-
icant). This was to be expected given the arguments provided
above.

However, in practice we are not interested in time per
iteration but in time for convergence. Next, we test the two
strategies presented (the linear and the optimal A-selection
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Fig. 10 — Reconstruction of the baby head from a limited set of 64 projections in an angular range of 180° and the optimized
A-selection scheme shown above with various subset sizes for a fixed R-factor =0.007. We observe that OS-SIRT with 16
subsets of 4 projections each is the fastest in this case. It reaches this set R-factor value 84% faster than SIRT and 56% faster

than SART.

schemes) to choose the relaxation factor A for each possible
integer-subset configuration.

Fig. 2 shows the reconstruction results obtained with
the linear A-selection schemes, for a fixed CC (comparing
reconstruction with the original) which means that all recon-
structed images are nearly identical to each other (in terms of
statistical error). We observe that the smaller the number of
subsets, the greater the number of iterations that are required
to reach the set convergence threshold. We measured that
with the linear A-selection scheme SART on the GPU takes
nearly twice as long as SIRT and using 10 subsets (5 for the
limited-angle case with fewer projections) achieves the best
timing performance compared to the other subset configura-
tions. For a CPU implementation, where the wall-clock time
is directly related to the number of iterations, SIRT would be
roughly 87/6 = 14 times slower than SART. However, due to the

mentioned overhead involved in the GPU-based framework,
different wall-clock times are produced with a GPU implemen-
tation and the ratio is not that severe.

We next evaluate the optimal A-selection scheme. Fig. 3
shows the plot of the optimal A found for each subset con-
figuration for a CC=0.95. We observe that the relationship is
far from linear, with 1 being relatively stable at around 0.95
until OS =45 and then falling off to around 0.6 for SART. Thus,
the linear curve underestimates A most of the time, leading to
unnecessarily small corrective updates. Fig. 4 shows the cor-
responding reconstruction results for the Barbara dataset. We
see that SART now is the fastest algorithm, roughly 20 times
faster than SIRT.

Figs. 5 and 6 compare the reconstruction quality vs. wall-
clock time for both Ai-schedules, respectively. We clearly
observe that SIRT behaves very similarly, due to the simi-
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lar A-factor chosen, while the other subsets converge much
more expediently for the optimal selection scheme, with SART
reaching convergence after just one iteration, closely followed
by OS-SIRT 60.

The tendency of SART to produce reconstructions noisier
than the original and that of SIRT to produce reconstructions
smoother than the original is also demonstrated in Fig. 7,
where we show the renditions of a line profile across another
area of the Barbara image (only for the original image and
reconstructions with SART and SIRT).

We also studied a medical dataset, a slice of a baby head of
size 2562. To assess the error we used the R-factor:

(18051 - 1SGj1)

where the SO and SC are the acquired and simulated sino-
grams, respectively. The R-factor is more practical for real
reconstruction scenarios because it measures convergence
based on the acquired data and not the (typically unavailable)
object. All reconstructions were stopped once an R-factor of
0.007 was reached.

Fig. 8 shows the results obtained with the linear A-selection
framework. We observe that OS-SIRT with 10 subsets of 18
projections each reaches the preset R-factor 26% faster than
SIRT and 86% faster than SART. Fig. 9 shows the reconstruc-
tion results of the baby head obtained with the optimized
A-selection scheme (shown above the table) from 180 projec-
tions in an angular range of 180°. We see that OS-SIRT with
20 subsets is fastest in this case. We also note that the time
is about 7 times faster than with the linear selection scheme
since the optimal A-factor is higher. Finally, Fig. 10 presents
reconstructions of the baby head from a limited set of 64 pro-
jections in an angular range of 180° again using the optimized
A-selection scheme. We observe that OS-SIRT with 16 subsets
is the fastest in this case. The reconstruction time is close to
a mere 10th of a second which demonstrates the capability of
GPUs to also facilitate iterative reconstructions in interactive
modes (10 frames/s).

4, Conclusions

We have shown that iterative reconstruction methods used in
medical imaging, such as EM or SIRT, have special properties
when it comes to their acceleration on GPUs. While splitting
the data used within each iterative update into a larger num-
ber of smaller subsets has long been known to offer greater
convergence and computation speed on the CPU, it can be
vastly slower on the GPU. This is a direct consequence of the
thread fill rate in the projection and backprojection phase.
Larger subsets spawn a greater number of threads, which
keeps the pipelines busier and also reduces the latencies
incurred by a greater number of passes and context switches.
This is different from the behavior on CPUs where this decom-
position is less relevant in terms of computation overhead per
iteration.

We have also shown that these effects can be mitigated
by optimizing the relaxation factor A, restoring the theoret-
ical advantage of data decompositions into smaller ordered

subsets. In this paper we were mainly concerned with demon-
strating that the poor per-iteration GPU performance for
iterative CT with small subsets (in the limit SART) can be
compensated for by choosing an appropriate i-factor for
the reconstruction. This leads to fast convergence of the
small subset methods and thus provides a good amortiza-
tion of the high per-iteration cost. Doing so in many cases
allows even iterative reconstruction procedures to be run at
near-interactive speeds, making them more applicable for
mainstream CT reconstruction.

The question now remains how one chooses such an opti-
mal A-value in a practical setting. While this was not the
topic of this paper, preliminary results have shown that the
optimal number of subsets seems to vary depending on the
domain application, the general reconstruction scenario, and
also the level of noise present in the data. Thus, in order
to identify the optimal subset number, as well as 1, for a
new application setting and noise level, to be used later for
repeated reconstructions within these scenarios, one may
simply run a series of experiments with different numbers
of subsets and A-settings, and then use the setting com-
bination with the shortest wall-clock time required for the
desired reconstruction quality. In fact, such strategies are
typical for GPU-accelerated general-purpose computing appli-
cations (GPGPUs). For example, the GPU bench was designed to
run a vast benchmark suite [20] to determine the capabilities
of the tested hardware.

We also believe that our findings with SIRT readily extend to
EM since the two methods have, as far as the computations are
concerned, similar operations and overhead, and we intend to
study these dependencies more closely in future work. Finally,
although we have used GLSL shaders to obtain the results pre-
sented in this paper, similar symptoms also occur in CUDA
where synchronization operations have to be formally called
to finish executions of all threads within a thread block to
resume the pipeline. In general, the underlying hardware, its
architecture, and the overall thread management remain the
same—just the APIis different, enabling a tighter control over
the threads and also memory. In future work, we plan to study
the reported effects to a more detailed extent in CUDA, to
determine if a shift in the performance-optimal subset con-
figuration occurs. But in fact, this is likely to happen for every
new generation of the hardware.
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