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Abstract�Professional designers and artists are quite cognizant of the rules that guide the design of effective color palettes, 
from both aesthetic and attention-guiding points of view. In the field of visualization, however, the use of systematic rules 
embracing these aspects has received less attention. The situation is further complicated by the fact that visualization often uses 
semi-transparencies to reveal occluded objects, in which case the resulting color mixing effects add additional constraints to the 
choice of the color palette. Color design forms a crucial part in visual aesthetics. Thus, the consideration of these issues can be of 
great value in the emerging field of illustrative visualization. We describe a knowledge-based system that captures established 
color design rules into a comprehensive interactive framework, aimed to aid users in the selection of colors for scene objects and 
incorporating individual preferences, importance functions, and overall scene composition. Our framework also offers new 
knowledge and solutions for the mixing, ordering and choice of colors in the rendering of semi-transparent layers and surfaces. All 
design rules are evaluated via user studies, for which we extend the method of conjoint analysis to task-based testing scenarios. 
Our framework�s use of principles rooted in color design with application for the illustration of features in pre-classified data 
distinguishes it from existing systems which target the exploration of continuous-range density data via perceptual color maps.  

Index Terms�Color design, volume rendering, transparency, user study evaluation, conjoint analysis, illustrative visualization

 

1 INTRODUCTION

Recent years have seen multifarious efforts to better integrate and 
exploit properties of human visual perception into visualization de-
sign. Illustrative rendering techniques have been developed that ren-
der the scene at different levels of abstractions [30] and detail [32] or 
in different rendering styles [5], with applications ranging from in-
formation visualization [20] to full-scale volume rendering. In these 
approaches, the levels of abstraction are most often controlled by a 
task- or object-dependent importance parameter [31]. Another per-
ception-motivated strategy is to guide viewer attention to salient 
features [16]. Color can play a major role in these particular efforts. 
However, there is no illustrative rendering system so far that incor-
porates rules from color design directly into the visualization engine. 
Yet, the working scenario of graphics designers is quite similar to 
that of illustrative rendering. Like in graphics design, pre-classified 
or segmented objects typically constitute the working set. It thus 
seems beneficial to learn from the well-developed rules used by 
graphics designers, working in highly profit-oriented fields such as 
advertising, and adapt and modify these rules for the special needs of 
illustrative data visualization.    

The study of color for data visualization tasks is not new, yet it 
has traditionally focused on the design of transfer functions (also 
called color scales or color palettes) intended for the mapping of 
scientific or cartographic scalar data to RGB attributes. Well known 
for the former is the PRAVDA system [2], and for the latter the 
Color Brewer [4], which has been recently generalized in [35]. 

We address a different data scenario � one in which a volume or 
image has been divided into a set of coherent regions, e.g., specific 
organs in a volumetric medical dataset, cells in a microscopic image, 
or graphical objects in an information display. Further, any of these 
regions may bear interesting intensity variations which need to be 
visually represented in a faithful manner.   

Professional designers and artists are quite cognizant of rules that 
guide the design of color palettes, not only from an aesthetic point of 
view but also from an attention-guiding, salient one. Likewise, visu-
alization is not only concerned with providing a pleasing image � it 
also has a mission, that is, to help users gain quick and accurate in-
sight into the visualized data [34]. Our framework captures these 
known color design rules into a knowledge-based system, which then 
combines them with scene analysis, user preferences, and importance 
functions to derive appropriate colorizations. These latter considera-
tions are typically not embodied in currently existing frameworks.  

The scope of our system is image-centric as well as volume visu-
alization. Both often use semi-transparencies to reveal occluded ob-
jects. Here, color mixing effects and the perceived depth-ordering of 
the semi-transparent layers pose additional constraints on the color 
choices. Since illustrative rendering is not always physically correct, 
proper user studies are crucial for the parameterization of the models 
underlying our system. We are particularly interested in the effec-
tiveness of a given colorization to solve certain perceptual tasks and 
to derive knowledge that is then applicable for practical visualization 
tasks. For this, we extended the method of conjoint analysis [11] 
from choice-based testing to task-based testing.     

We note that in this paper we only consider the effects of color, 
and not those of illustrative style and the combination of these. We 
believe that a decoupling of these visualization parameters is neces-
sary to develop a rudimentary framework, which can then later be 
applied in the context of stylistically more advanced systems.  

Our paper is structured as follows. Section 2 presents related 
work, Section 3 gives a system overview, and Section 4 provides 
theoretical considerations. Section 5 focuses on the color design 
aspects, and Section 6 discusses the color mixing. Section 7 extends 
conjoint analysis to task-based testing, applies it to derive models for 
color mixing in an illustrative rendering context, and demonstrates 
their use in a specific application. Section 8 ends with conclusions. 

2 RELATED WORK 
Good visual aesthetics make a visualization task an enjoyable one 
and therefore reduces stress, which is a significant factor in today�s 
fast paced data analysis scenarios. As [25] suggests, it is essential 
that products designed for use under stress follow good human-
centered (pleasant, aesthetic) design, since stress makes people less 
able to cope with difficulties, less flexible, and less creative in prob-
lem solving tasks. In fact, it has been shown that objects considered 

 
• Lujin Wang and Klaus Mueller are with the Center for Visual Computing, 

Stony Brook University , E-Mail:{lujin, mueller}@cs.sunysb.edu 
• Kevin McDonnell is with Dowling College,                                                   

E-Mail: mcdonnek@dowling.edu 
• Joachim Giesen is with the Friedrich-Schiller-Universität Jena,              

E-Mail: giesen@minet.uni-jena.de 
• Peter Zolliker is with EMPA Dübendorf, E-mail: peter.zolliker@empa.ch 
 
Manuscript received 31 March 2008; accepted 1 August 2008; posted online 
19 October 2008; mailed on 13 October 2008. 
For information on obtaining reprints of this article, please send e-mail to: 
tvcg@computer.org. 

1739

         1077-2626/08/$25.00 © 2008 IEEE        Published by the IEEE Computer Society

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 14, NO. 6, NOVEMBER/DECEMBER 2008



 

beautiful stimulate different areas in the brain than those considered 
unattractive [14]. The role of color as a means to increase image 
aesthetics has been studied for a long time in the arts and design 
literature. The landmark texts by Itten [13] and Wong [36] provide 
great insight on the human perception of color and its aesthetic as-
pects. Much information is also available in the books by Stone [29] 
and Ware [34]. One popular design aspect is color harmony, which is 
a fairly old concept, and a quantitative representation was described 
by [23]. It consists of three perceptional coordinates: hue, value 
(lightness/brightness), and chroma (colorfulness). In search of an 
intuitive 2D representation for visual designers, Itten then arranged 
the harmonic colors into a color wheel, which reduced (flattened) 
this color space to mostly variations in hue. Later, [18] employed 
Itten�s wheel, in conjunction with extensive psycho-physical studies, 
to introduce a set of 80 harmonic colors schemes. This system was 
used in the automated image color harmonization framework of [8].  

Another important use of color is to focus attention [1], known as 
pop-out. Pop-out exploits the low-level mechanisms of the visual 
system, which enable humans to detect visual properties very rapidly 
(although they may not so do consciously). Pop-out is strongly re-
lated to the vividness of a color patch, as well as its size and the de-
gree to which it differs from the vividness of other colors in the 
scene [7] (and local brightness contrast).  

Color is generally used to label graphical objects. But how many 
distinct colors (labels) are reasonable? User studies [12] explored 
colored target identification capabilities and found that users did 
quite well when the number of colors was 5 or less. These deficien-
cies are partially rooted in the limitations of human working mem-
ory. Also limiting the maximal numbers of colors is the phenomenon 
of simultaneous contrast which changes the appearance of a color 
based on its surround [34]. It widens the required �safety margin� of 
a given color and limits the number of these. Pop-out is attractive 
since no extra colors (hues) are required to generate attention effects. 

In [27] it was demonstrated that color maps should preserve a 
monotonic mapping in luminance, and [17] suggested that the best 
mapping results from a straight line through a perceptual color space 
such as CIE L*a*b* (also called CIELAB or, for short, Lab color 
space). All of these approaches involve all three perceptual compo-
nents of color: hue, saturation, and brightness. Our system also 
makes use of all three color components, but in a more intuitive yet 
free-form fashion, where users only pick the most intuitive compo-
nent, the hue, and the system optimizes the other two.  

Relevant is also the interactive color palette tool proposed by 
[21], designed to support creative interactions for graphics designers. 
This user group typically demands ample artistic freedom for pro-
ducing their artwork. But, in contrast to computational scene render-
ing typically used in visualization, graphics designers tend to only 
produce a few sheets of artwork a day. Our system replaces the ad-
hoc, manual scene analysis of graphics designers by computational 
scene analysis, followed by automated rule-based parameter settings. 

Finally, there has been a substantial amount of work on color 
transparency [9] in the perception literature, with the goal to define 
accurate models for the prediction of perceived transparency.  Physi-
cal models were shown to be best suited for this task [10], which use 
subtractive color mixing (spectral filtering). These types of spectral 
models are also widely employed in computer graphics rendering of 
photo-realistic participating media [19]. On the other hand, the goal 
of visualization, and in particular illustrative visualization, is not 
necessarily physical realism, but rather effective information depic-
tion, and user studies must be conducted for tuning these illustrations 
to ensure proper information communication. In previous work [11] 
we have shown that conjoint analysis is an effective method for this.   

3 SYSTEM OVERVIEW 
Inherent to our system is a feature-based approach. It assumes that 
the data have been segmented or grouped into coherent structures, 
which may be spatially distributed and only logically assigned to 
classes. This and further information, such as importance or uncer-

tainty, is then used in the semi-interactive colorization procedure that 
is the subject of this paper. Thus, it is classification followed by col-
orization, not classification via a continuous value-color mapping 
with color scales and transfer functions, which has been amply ad-
dressed in the past. In our visualizations, pixels of the same density 
might receive different colors if they belong to different classified 
structures. The structures presented for colorization could even 
originate from a fusion of a multi-modal dataset. Thus, our frame-
work applies to any pre-classified rendering pipeline, such as 2-level 
volume rendering [15] and nearly all illustrative rendering systems. 

Our system is geared towards a wide range of visualization re-
searchers and practitioners who would like to inject their personal 
color preferences into their visualization designs or rendering en-
gines, but who are not experts in graphic design or do not have the 
time for lengthy parameter tweaking. First, the user is free to choose 
the hue of the features in the scene, bringing to bear personal prefer-
ences, while the system assists by making suggestions on aesthetic 
rules, such as color harmony. We chose Itten�s color wheel paradigm 
as the user interface, since it is convenient and intuitive. Following 
this manual hue specification, the system then calculates and opti-
mizes the harder-to-choose parameters (saturation, luminance), ap-
plying its encoded color design rules in conjunction with provided 
importance and computed scene parameters, such as feature size, 
density ranges, and interactions. All of these calculations are done in 
a perceptual color space, we use CIELAB. 

As is well known, contrast is important for distinguishing both 
local and global features. Our system provides two layers of contrast, 
in an organized and methodical way. It uses hue for inter-class con-
trast, vividness to tag class importance (for highlighting), and light-
ness to provide intra-class contrast. Further, it also captures the pos-
sibly important local density dynamics of the data in the lightness 
channel. In scanned and simulated datasets the scalar densities usu-
ally map to certain material properties, and it is desirable to preserve 
these variations as lightness modulations. 

As mentioned, both volume and information visualization often 
use semi-transparencies to reveal occluded objects, and the color 
mixing that can occur when two or more overlapping semi-
transparent surfaces are composited can result in radically different 
colors. This can be disturbing, distracting, and also confusing, espe-
cially if this mixed color has already been reserved for another scene 
object. We propose a set of rules designed to avoid undesired color 
mixing. Further, in semi-transparent volume rendering there are po-
tential ambiguities with respect to visual depth-ordering, that is, de-
tecting which object is in front and which in the back. We also pro-
pose a set of rules that resolve and avoid these occlusion ambiguities. 
The rules formulated in our system are then tested in a set of targeted 
user studies, based on the conjoint analysis framework described in 
[11], which we formally extend here to task-based testing.     

4 THEORETICAL CONSIDERATIONS 
As mentioned, our aim is to combine known color design rules with 
scene analysis at various levels, user preferences, and importance 
functions to colorize scalar data in information displays. For this, we 
seek to incorporate various principles of vision psychology, such as 
low-level visual processing, emotion, and aesthetics, in order to bet-
ter control the specific visualization task at hand. In cognitive sci-
ence, color is a psychological experience (that is, we can also imag-
ine it) of three orthogonal components: quality (the hue), quantity 
(the lightness, which is perceived brightness), and purity (the chroma 
or saturation). To conceive our automated color design system, we 
can take advantage of a well established body of knowledge in color 
design and perceptual science. Next, we briefly enumerate the set of 
rules relevant for our goals. These rules are given in addition to those 
of color harmony, which we extend in a companion paper [33]. 

R1: Vivid colors (bright, saturated colors) stand out. They guide 
attention to a particular feature, generating the pop-out effect.  

R2: An excessive amount of vivid colors is perceived as unpleas-
ant and overwhelming; use them between duller background tones. 
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Fig. 1: Color spaces in our system.

R3: Foreground-background separation works best if the fore-
ground color is bright and highly saturated, while the background is 
de-saturated. 

R4: Colors can be better discriminated if they differ simultane-
ously in hue, saturation and lightness.  

R5: The low end lightness steps should be very small, while the 
high end requires larger steps (Weber�s Law).  

R6: Discrimination is poorer for small objects. Hue, saturation 
and lightness discrimination all decrease.  

R7: Complementary (opponent) colors are located opposite on 
the color wheel and have the highest chromatic contrast. When mix-
ing opponent colors they may cancel each other, giving neutral grey.  

R8: Some hues appear inherently more saturated than others. 
Yellow has the least number of perceived saturation steps (10). For 
hues on both sides of yellow, the saturation steps increase linearly.  

R9: An opposite effect of R8 is that the brightest lights fall in the 
yellow range, while 
blues, violets (purples) 
and reds are least bright.  

R10: For labeling, 
apart from black, white, 
grey, there are 4 primary 
colors (red, green, blue, 
yellow) and 4 secondary 
colors (brown, orange, 
purple, pink), Also, the 
number of color labels 
should be  6-7.  

R11: Warm colors 
(red, orange, yellow) 
excite emotions, grab 
attention. Cold colors 
(green to violet) create 
openness and distance. 

R12: Important for hue-based labeling is the fact that increasing 
the lightness (and saturation) does not change the perceived hue.  

R13: Also important for labeling is that objects of similar hue are 
perceived as a group, while objects of different hues are perceived as 
belonging to different groupings.  

We note that R10 refers to the naming of colors, as in human lan-
guage. This is different from the color hierarchy generated by addi-
tive color mixing where the primary colors (red, green, blue) gener-
ate the secondary colors (yellow, cyan, magenta) and mixing a pri-
mary with a secondary color generates a tertiary color. Also, brown 
as well as pink are special colors. Brown is only perceived amid 
brighter color contrasts, while pink is in fact a de-saturated red.  

An implication of rule R8 is that viewers will find small differ-
ences in saturation for blue, violet and red highly discriminable, 
while small differences in yellow saturation will be hard to detect. 
Green and orange are in the middle. R13 implies that color can be 
used to organize the display into perceptual chunks, viewed pre-
attentively. The color layout indicates that parts of the image form 
distinct areas, and if the same color appears in different parts of the 
image, these areas appear linked together, suggesting that they have 
something in common. On the other hand, variations in a basic color 
can convey variations within the class data. Similar colors, adjacent 
on the color wheel, suggest a similarity relationship, while different 
colors, located on more opposite sides of the color wheel, suggest a 
difference relationship between objects and areas of the screen. 

We have incorporated these rules and guidelines into the follow-
ing three steps of our color section framework. Section 5 will then 
outline in detail how this framework is used in image generation: 

Step 1 (assisted hue selection via color wheel for inter-class con-
trast): R3 (for background selection), R7 (for semi-transparent ren-
dering), R8 and R9 (when highlighting), R10, R11, R13.  

Step 2 (automatic vividness selection for class and class compo-
nent highlighting): R1, R2, R6, R8. 

Step 3 (automatic lightness selection for intra-class contrast): R4, 
R5, R12.  

5 COLOR SELECTION FRAMEWORK 
The user selects the hue via the color wheel popularized by Itten and 
also used by [8], which is a composite of the conventions for color 
naming and mixing. It consists of twelve hues, including red, orange, 
yellow, green, cyan, blue, purple, and magenta, arranged over the 
hue channel of the HSV color space (hence the name HSV color 
wheel). We define similar hues as either being in the same named 
category (R10) or located adjacently on this HSV color wheel (R13).  
After hue selection, the system calculates vividness and lightness in 
CIELAB (Lab) color space. Since at this stage we only have a HSV 
color, this requires a number of conversion operations, which are 
described next. A reverse procedure then produces the RGB triple for 
rendering. In the following, we shall use the HSV space for the illus-
tration of all relationships since it is the most intuitive space when 
hue is the fixed variable. We also could have used the CIE LCH(ab) 
space [6] which separates lightness, chroma, and hue, but we chose 
HSV since this is the color space of our user interface.  

5.1 Conversion algorithms for vividness and lightness  
In order to calculate the lightness L and vividness V of a HSV color, 
it is first transferred to sRGB space, then to CIE XYZ space, and 
finally to Lab color space (see Figure 1 to the left). The value range 
of L is [0,100], with 0 for black and 100 for white. We define V as a 
color�s relative purity (or chroma). The absolute chroma of a color 
can be computed in Lab space as follows (L is orthogonal to a, b): 

  
( , , )chroma h s v a a b b= ⋅ + ⋅  (1) 

Although the maximum chroma values for different hues are 
quite different, the value range for vividness is always [0, 1]: 
  ( , , ) ( , , ) / ( ,1,1)vividness h s v chroma h s v chroma h=  (2) 

There are various non-linear relationships when transforming an 
(h,s,v) triple to Lab space (L, V) and  back. The conversion to (r,g,b) 
is only piecewise linear, and the conversion to Lab space is strictly 
non-linear. Consequently the colors of equi-lightness (and equi-
vividness) in HSV space reside on non-linear trajectories. Figure 2a 
shows an equi-lightness curve, which is comprised of all colors from 
A to B that have the same L on this hue slice. Likewise, Figure 2b 
shows all colors with the same V on this hue slice, giving rise to the 
equi-vividness curve, which is also the equi-chroma curve. 

 

Fig. 2: Illustration of equi-lightness and equi-vividness curves in HSV 
color space: (a) an equi-lightness curve, (b) an equi-vividness curve. 

The monotonic relationships enable efficient binary search pro-
cedures for the mapping. Figure 3 shows examples of equi-lightness 
curves on two different HSV hue slices. Some curves have been 
labeled with their lightness value. From the bottom curve to the top 
curve, the lightness increases linearly. For different hues, the light-
ness values of the most vivid colors (the top-most outside points on 
the hue slices) are quite different. We observe that vivid cyan has a 
much higher lightness than vivid red (this can also be observed in the 
Munsell color tree [24]). Next, Figure 4 shows examples of equi-
vividness curves on these hue slices. Some curves have been labeled 
with their chroma values. Note that the chroma interval between 
adjacent curves is the same. From the right-most curve to the left-
most curve, the vividness decreases from 1 to 0. We see that the 
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Fig. 6. Colorizations of Transmission Electron Microscopy (TEM) 
data. From left to right, classes A, B, or C (the small oblong, 
elliptical cells) were most important.  

Fig. 3: Examples of equi-lightness curves in HSV color 
space. (a) Hue slice with h = 0, (b) Hue slice with h = 180. 

Fig. 4: Examples of equi-vividness curves in HSV color 
space. (a) Hue slice with h = 0, (b) Hue slice with h = 180.

Fig. 5. Illustration of the lightness selection. The class in red 
with highest importance has higher vividness, and the class in 
cyan with less importance has lower vividness. Lmost1 is the 
lightness selected for the class in red. All other classes 
(including the one colored in cyan) will receive the other 
lightness levels shown. The lightness range levels, Llow and Lhigh, 

absolute chroma varies substantially for the different hues. Cyan has 
considerably fewer distinguishable saturation steps than red (see R8). 

To obtain the s and v values from a given h, L, V we intersect, on 
this h slice, the equi-lightness curve for L (Figure 2a) with the equi-
vividness curve for V (Figure 2b) to obtain the color with the (de-
sired) L and V. However, no two equi-lightness curves and equi-
vividness curves will intersect � in some cases it is impossible to 
obtain a color with both the desired lightness and the desired vivid-
ness. To compensate, we have to either sacrifice L or V. In order to 
obtain the desired lightness, the vividness of the color may have to 
be sacrificed, or vice versa. Since lightness contrast is crucial to help 
distinguish features on the local level, we prefer to keep lightness, or 
avoid this problem by optimization in the selection procedure. 

5.2 Color selection algorithm  
As mentioned, the data should be available in segmented form. The 
smallest unit is defined as Object, and several objects with the same 
properties belong to one Class. Each object has attributes, such as its 
area, and each class has an importance value. A class computes its 
total area from its member objects. Each class may have a user-
specified importance value. Currently, our framework supports three 
importance levels: most (3), less (2), and least (1) important, but this 
can be easily extended. The color selection process is as follows: 

Step 1 (Hue selection): Starting from the most important class, 
for each class, the hue wheel is activated with the proper hue catego-
ries from which users may select the class hue. The system suggests 
hues of warm colors for the most important classes and hues of cool 
or neutral colors for the least important classes (R11). For objects or 
classes with high importance but small area our system suggests hues 
where high vividness is associated with high lightness, such as cyan 
(Figure 3 and 4). All objects in one class will be assigned the same 
main hue. A harmonic color template [8] provides guidelines on 
harmonic hue selections.  

Step 2 (Vividness selection): Next, the vividness of each class is 
computed based on class importance and class area. For the former, 
we may assign a vividness of 1 for the highest importance, 0.7 for 
less, and 0.3 for the least. The relative area (class area vs. image size) 
is then used to adjust the vividness in order to avoid a large area to 
receive a very high vividness, and a global weighting parameter can 
be tuned to account for the real image size. Thus, important classes 
will be colored with a higher vividness, and for the same importance 
level, a class with smaller area will also be colored with a higher 
vividness, while a class with larger area (and the same importance) 
will receive a color with lower vividness. Importance variations 
among the objects within a class can also be brought out, by varying 

their vividness. So, if there is a large range of importance variations 
within a class, our system will suggest a hue (in step 1) that supports 
this granularity, such as red or blue (recall Figure 4 and R8). 

Step 3 (Lightness selection): Good global lightness contrast is 
very important to help discriminate different features (R4, R12). 
Further, sufficient local lightness contrast is also required to visually 
convey small feature detail. Our lightness selection framework 
achieves both. We first compute the lightness for the most important 
classes, according to their hue and vividness, and then assign the less 
important classes lightness values a pre-defined distance away from 
the lightness values already used (see Figure 5). We only choose 
values within a user-specified range [Llow, Lhigh,], which determines 
the overall lightness of the visualization. For each less or least im-
portant class, our algorithm starts from (Lhigh + Llow)/2 and then uses a 
randomized algorithm [22] for generating lightness values at both the 
lighter and darker sides to find a lightness which has a pre-defined 
minimal distance Ldis from all lightness values used so far. This light-
ness value generator makes use of the equi-lightness curves (Figure 
3) to ensure that the assigned vividness can be maintained. We ini-
tialize Ldis to a certain value, for example 10, and then gradually de-
crease this value if the selection process does not succeed after a few 
iterations. Once the hue, lightness, and vividness have been selected, 
we convert these (h, L, V) triples to their (h, s, v) equivalents and 
finally to RGB for display.  

Figure 6 illustrates our color design algorithm using a 2D colori-
zation of an image of biological cells, generated via Transmission 
Electron Tomography (TEM). This colorization also demonstrates 
how the original image grey-level intensities modulate the lightness 
of the assigned object colors (here the cells). In this figure, the labels 
denote the object classes, colored according to their respective im-
portance.  
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Fig. 7. Two color mixing examples. (a) and (c) Red and green 
are mixed with red in front or green in front. (b) and (d) Red and 
cyan are mixed with red in front or cyan in front. 

Fig. 8. Color mixing in a volume rendered body. (a) Cyan and 
yellow are mixed, (b) Blue and yellow are mixed, 
Corresponding hue wheels are placed below each rendering, 
the left hue wheel is for transfer function, and the right is for 
the rendering. 

Fig 9: Revealing the color of an inside object by decreasing 
the saturation of outside objects. Left to right: the yellow hue 
shows when the blue becomes less saturated.

6 COLOR MIXING FRAMEWORK 
Let us assume two semi-transparent overlapping objects (layers), that 
is, object 1 in front and object 2 in the back, with colors (C1, C2) and 
opacities (α1, α2). Then, using front-to-back color compositing, the 
mixed color C = C1a1 + C2α2 (1  α1). Thus the weights for the two 
colors are given as W1 = α1, and W2 = α2(1  α1). This mixed color C 
will have higher lightness than either C1W1 or C2W2. If the opacity 
values for two objects are the same, then the front color contributes 
more than the back color. Figure 7 shows two color mixing exam-
ples. The opacity is 0.4 for all objects. We observe that new hues 
between red and green are generated in Figure 7a (red circle in front 
gives orange) and 7c (green circle in front gives yellow). The color 
wheels to the left of the figures explain that when red is more heavily 
weighted than green, the average color is orange, while in the oppo-
site case the average color is yellow. On the other hand, as indicated 
by Figure 7b and 7d, when two opposite hues are mixed, no false 
colors are generated, and the mixed color is either neutral or with a 
hint of the front object�s hue. Thus, this color choice helps prevent 
potential problems resulting from color mislabeling. 

Figure 8 demonstrates the color mixing problem for semitrans-
parent volume renderings. There we see that when cyan and yellow 
are mixed, green hues will be generated. In contrast, a blue and yel-
low opposite-color combination will keep the original hues. 

The opposite-color method just described will generate neutral 
colors, with possibly just a hint of the front color, in the overlap 
regions. However, sometimes it is important to reveal the color of the 
back (interior) object, especially when it is fully enclosed. We ac-
complish this by decreasing the saturation of the exterior (outside) 
object. This reveals the interior object�s real color, without having to 
change the alpha channel of the transfer function. As Figure 9 shows, 
the color of the inside feature is disclosed increasingly more as the 
color of the outside feature becomes less saturated. The center setting 
appears to represent a good compromise, still keeping some of the 
outside object�s hue, while allowing the interior object�s hue (the 
yellowish skeleton) to show through with minimal color distortion.  

When two or even more features are embedded, the color of an 
interior feature will always be occluded or changed. In this case, at 
least one hue category will fall between the two others on the hue 
wheel and a new hue will necessarily be generated. To minimize 
these adverse effects, we propose to assign two opposite hues for the 
two most important objects and more neutral colors for the lesser 
important object. To be safe, however, we should avoid using any 
hue which can be generated by mixing two hues already chosen. 
Figure 10a shows a three-color mixing example, with three objects 
A, B, and C. We observe that by reducing the vividness (saturation) 
of object C, while keeping its lightness, we can reduce the false color 
in the B, C overlap region. 

Sometimes other constraints dictate the choice of certain colors, 
preventing the selection of opposite hues for partially overlapping 
objects. To provide a solution even in these cases, we devised what 

we refer to as local solution, aimed at reducing false colors in the 
overlap regions. Our scheme is demonstrated in Figure 10b. It works 
by reducing the saturation of the color in the rear object only in the 
overlap region A B, while keeping its lightness (we can detect such 
regions efficiently with a depth-peeling algorithm). fter the color 
mixing, this region clearly has more hint of the front-object color. In 
fact, this local solution is very general � it can also be used to reduce 
the false-color effect in areas in which more than two objects overlap 
(an example is given later in this paper, in Figure 12).  

Considering again Figure 7, we also observe that the ordering of 
objects can not be visually preserved all the time. While Figures 7c 
and 7d show the correct ordering without any doubt, Figures 7a and 
7b are less convincing. We hypothesized that unsaturated colors will 
not preserve the ordering very well, and we also hypothesized that 
vivid colors with high lightness should be chosen for the front object. 
However, the relationship between colors and perceived orderings 
brings complications. For example, if the user already assigned red 
in front of cyan, either increasing the lightness of red, which will 
reduce its saturation, or decreasing the lightness of cyan, which 
makes it look more transparent, will not help provide the correct 
ordering. Only increasing the opacity (weight) of the front object will 
yield the correct ordering. This is shown in Figure 10c, where the 
opacities of red and cyan are 0.6 and 0.4 respectively. However, at 
the same time, in Figure 10b, we observe that our local solution also 
seems to visually preserve the correct ordering. Therefore, in order to 
obtain more insight into these phenomena and parameterize our vari-
ous solutions, we conducted a thorough user study. For this we ex-
tended the method of conjoint analysis from comparative to task-
based testing. Both are discussed next, in Section 7. 
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Fig. 10: Mixing problem scenarios and solutions:  
(a) Three-color mixing examples. (left) Object labels, (center) A and B are assigned opposite hues: 
yellow and blue, C is red and thus the overlapping region of B and C gives a false color, which can be 
observed from the hue wheel as well. (right) The saturation of C is reduced, but its lightness is kept, 
which reduces the false color. 
(b) Local solution to reduce false color. (left) Object labels, A is in front of B. (center) A false color is 
generated when mixing red and blue. (right) The false color is reduced by our local solution.  
(c) Ordering-preserving color mixing example, using a higher weight for the object in front. Red and 
cyan are mixed � red is in front. 

(a) (b) 

(c) 

7 TEST AND APPLICATION OF THE COLOR MIXING FRAMEWORK 
We conducted our user study with a fairly simple experimental set-
up. The participants, all graphics-educated users, were presented a 
sequence of 24 images showing two colored, overlapping disks on a 
LCD computer screen with black background (such as the one in 
Figure 10c). For all disk pairs we had an intended depth order. The 
participants were asked to choose for each image the disk they per-
ceived to be in front by clicking with a mouse on a label next to the 
disks. The participants were tested for color deficiencies via a stan-
dard Ishihara test, and data collected from color-deficient partici-
pants were discarded from our analysis. We had 72 persons without 
color deficiencies participating, providing a total of 1728 data points.  

Each task, i.e., choosing in an image the disk perceived to be in 
front, provides a binary answer, namely, �correct� (ground truth) if 
the choice coincides with the intended ordering, or �incorrect� other-
wise. This is a conjoint measurement with respect to the ground truth 
in the sense that not just one, but many parameters can jointly con-
tribute to the outcome. Statistically isolating the effect of each of 
these parameters is one of the main strengths of conjoint analysis.  

Thus far, conjoint analysis has been applied mainly to measure 
preferences, where the raw data are assessed in choice experiments. 
Participants in such studies are asked to choose the preferred object 
from a selection of a few objects, which are drawn from of a larger 
collection of objects. In our previous work [11] these �objects� were 
visualizations (images). In this current work, we aim for a different 
goal, namely, we seek to test for the ability of a given visualization 
to elicit, in a user, the desired cognitive response. More concretely, a 
user�s correct (incorrect) choice of the front disk can be directly at-
tributed to the success (failure) of the employed (multi-parametric) 
visualization method chosen to convey this relation. We therefore 
devised an extension of conjoint analysis from choice-based to this 
new task-based setting, where we observe binary (correct/incorrect) 
labels on a single image instead of preferences among different im-
ages. Choice data and task data cannot be analyzed in exactly the 
same way, which requires adapting the statistical framework pre-
sented in [11] to task-based conjoint analysis data. 

7.1 Studied visualization parameters and their analysis 
In our analysis, we studied the following visualization parameters: 

Foreground Color: The hue of the disk intended to be in the 
foreground. This parameter has the values red (Red), yellow (Yel), 
green (Grn), cyan (Cyan), blue (Blu) and magenta (Mag). 

Background Color: The hue of the disk intended to be in the 
back. This parameter also has the values red (Red), yellow (Yel), 
green (Grn), cyan (Cyan), blue (Blu) and magenta (Mag). No images 
with identical foreground and background colors were used. 

Mixing Weights: These specify the α-values for front (αf) and 
back (αb) disk when compositing the colors of the overlapping disks. 
We used the standard compositing equation. The four levels (w0, w1, 
w2, w3) were (αf , αb) = (0.5, 0.4), (0.4,0.4), (0.4. 0.667), (0.4, 0.75). 
We note that the third-level net compositing weights are identical.  

Saturation/Lightness: The vividness V is always 1, which de-
termines the full lightness that can be obtained. In the following, 'avg 
L' is the average lightness of the disk intended to be in front and the 
one in the back. The four levels are: (LV0, LV1, LV1, LV3) = (Full 
L for both disks), (Full L for front, avg L for back disk), (avg L for 
front, full L for back disk), (avg L for both disks).  

Position: Describes where the disk intended to be in front is pre-
sented. Possibilities are on left (Left) or right (Right) of the image. 

Algorithm: Two algorithms were tested for color mixing. Hence, 
the algorithm parameter has two levels: (Global) and (Local). We 
also analyzed our data by either considering only images rendered 
using the local color mixing algorithm or only images using global 
mixing. Thus, in these cases we only analyzed parts of the data.  

Each image is uniquely identified by the parameter levels (or val-
ues) set for foreground / background color, mixing weight, saturation 
/ lightness, position, and algorithm. As mentioned, we observe, from 
each user the binary values �correct� or �incorrect� for each presented 
image. In each such image, all parameters, or better, their set levels, 
jointly contribute to the success or failure in the user�s task of detect-
ing the disk in front � some more and some less. Our goal is to quan-
tify each parameter level�s contribution to this outcome, that is, the 
foreground/background separation. This contribution is called the 
part-worth of the parameter level. The variance of the part-worths of 
one parameter is a measure for this parameter�s importance. When 
this variance is large, then we can improve the quality of an image 
significantly (in terms of our objective) by changing from a parame-
ter value with low part-worth to one with high part-worth. Thus, 
parameters with large variance are more promising for design im-
provement, as it matters (much) more to move from an unimportant 
to an important level (value) than for parameters with small variance  

We adapted the statistical model for choice-based conjoint analy-
sis [11] to analyze also task-based conjoint analysis data. The model 
assumes that the value of an image can be computed as the sum of 
the part-worth values of its parameter levels. We statistically verified 
the validity of this linearity assumption using χ2 tests (see [11]). The 
tests supported this assumption for all pairs of parameters, except 
when we used all data in the analysis, that is, all images rendered 
using either local or global color mixing. In the latter case the com-
bination of the parameter �algorithm� with the parameter �back-
ground color� has a significant non-linear behavior. Figure 11 sum-
marizes the calculated part-worths along with their estimated stan-
dard errors (see [11]) for all parameters and levels listed above.  
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Fig. 11. Part-worths for all parameters and all their levels. The 
associated error (bracketed bars) is expressed in standard deviations. 
Shown are the results of  three analyses: only global algorithm images 
(rendered via global mixing), only local algorithm images, and all 
images (using both local and global algorithm images). 
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Fig. 12: Illustrative visualizations of a six-dimensional dataset using illustrative parallel coordinates. (a) Ideal visualization with appropriate 
weightings and color choices, and the use of the local model in overlapping areas. (b) Improper weightings are employed. The blue cluster 
no longer seems to be in front. (c) The use of improper weightings and the disabling of the local model results in a confusing visualization. 
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We found the relative importance (variance) of the parameters to 
be ranked as follows: (1) weighting: 0.323; (2) global-local: 0.231; 
(3) foreground color: 0.186, (4) background color: 0.131, L/V: 0.109, 
position (L/R): 0.02. Hence, the most profitable parameters are 
weight and local/global enhancement, followed by the remaining 
parameters. Position was found not be a factor, which was expected.  

To interpret our conjoint analysis study, a disk intended to be in 
front is easier to identify if it has been rendered with a parameter 
value that has a large positive assigned part-worth, and it is more 
difficult to identify if a parameter value with an assigned large nega-
tive part-worth is present. Following our statistical model [11] the 
value for an image is the sum of the normally distributed part-worths 
of the parameter levels that were used when rendering the image. 
The sum of normally distributed random variables is itself normally 
distributed. Using the cumulative distribution function of a normal 
distribution we can compute, from the value of an image, the prob-
ability that a test person (from a population similar to the one from 
which we collected our data) will correctly identify the disk intended 
to be in front. Obviously this success probability is greater for larger 
values. In that sense, the value of an image is a measure for the prob-
ability that a test person will correctly identify the disk in front. The 
part-worth value for the local (global) level of the �algorithm� pa-
rameter in the local (global) analysis is exactly the offset needed to 
recover the observed success probability. In the analysis that consid-
ers all images this offset is added to both the local and the global 
level of the �algorithm� parameter. The results in Figure 11 indicate: 

Algorithm: We observe that our local mixing strategy signifi-
cantly aids in correctly identifying the disk intended to be in front (in 
fact, this parameter is marked by the greatest positive part-worth). 

Mixing weights: Weighting the color of the disk intended to be 
in front more heavily (that is, increasing its opacity) helps to identify 

the ordering, whereas more weight on the color of the disk in the 
back is counter to this ability. This can be expected from prior work.   

Background / foreground color: Our analysis indicates a trend 
that cold colors, such as green, blue or cyan in front, and warm col-
ors, such as red, yellow or magenta in the back enhance fore-
ground/background separation. Blue tends to be seen in front even if 
its opacity is low and the mixed color is basically that of the disk in 
the back. It was expected that warm/cold or cold/warm colors had to 
be used to encode the front/back relation. But we unexpectedly ob-
served that cold/warm (for front/back) is a much more effective than 
warm/cold. The latter relationship would have been explained by 
chromostereopsis (lens refraction causes red objects to be perceived 
closer than blue objects), but we note that chromostereopsis is gener-
ally stated for objects viewed side by side, but not overlapping and 
mixed in color. We therefore believe that the color mixing has a 
decisive effect on this unexpected study outcome and is probably the 
key to explain the deviation from what was expected. Another inter-
esting observation is that the part-worth values for foreground and 
background color parameters sort the colors around a color wheel 
(most pronounced for the foreground color in the global analysis). In 
fact, we consider these findings as the most interesting of our study, 
and we plan to analyze them in more detail in subsequent research. 

Saturation/lightness: We find that increasing the lightness for 
front-objects and decreasing the lightness for back-objects also helps 
in the depth-ordering task.  

Position: We do not observe a presentation bias (which is ex-
pected), that is, it is irrelevant if the disk intended to be in front is 
shown on the left or on the right. This can also be noted from the 
small variance (importance) of the position parameter.   

7.2 Practical application: Illustrative Parallel Coordinates 
We incorporated the rules and parameter settings derived in this user 
study into our knowledge base. We now demonstrate a practical 
application of our system in the context of our illustrative parallel 
coordinate system [20]. These examples also show that our findings 
are directly applicable to situations where objects of three different 
colors overlap one another. Figure 12 shows several visualizations of 
just six dimensions of the eight-dimensional, 1,356-point scan bio 
dataset (courtesy of http://davis.wpi.edu/~xmdv). The curved bands 
illustrate 6-dimensional clusters obtained by a k-means clustering of 
the dataset. Figure 12a presents these clusters with the assignment of 
a highly-weighted, cool (blue) color to the cluster in front. It is easy 
to perceive that the blue-colored cluster, with an opacity of 0.7, is in 
front of the red cluster (α=0.55), which is in turn in front of the green 
cluster (α=0.4). The use of a warm color in the middle also helps to 
visually separate the middle cluster from the cool-colored bands on 
either side of it. In regions where two or three clusters overlap we 
employ the local model and de-saturate the background color by 
50%. We can see that de-saturating the background in these areas 
preserves the foreground colors and avoids the creation of false hues. 
Figure 12b shows the same clusters, rendered with the same hues and 
in the same compositing order, but with opacities assigned in the 
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Fig. 13: Effects of cold/warm colors for the perception of 
front/back ordering. (a) blue layer in front, (b) red layer in front. 
Opacity α=0.5 for all layers. The green layer is always in the 
far back, and the local model is used in the overlap regions.

(a) (b) 

reverse order (i.e., 0.4, 0.55 and 0.7 going front-to-back). We find 
that it is now virtually impossible to tell that the blue cluster is in 
front of the others. The visualization further degrades when we no 
longer employ the local model, which results in the generation of 
many false hues (Figure 12c). These new shades of purple and 
greens introduced by mixing are very different from the original 
cluster colors and could very easily confuse the viewer. They seem 
to break the clusters into sub-clusters or sub-regions that are not part 
of the original dataset. Figure 13 compares the effects of cold/warm 
colors for the perception of front/back ordering. Figure 13a has the 
blue cluster in front, while in Figure 13b the red cluster is in front. 
The green cluster is always in the far back. In both cases the opacity 
was set to 0.5 for all clusters. The local model was employed to 
avoid false colors. We see that the colorization in Figure 13a gives a 
more obvious depth ordering that is easier and faster recognized.     

8 CONCLUSIONS 
We have devised a knowledge-based system that captures a set of 
prominent guidelines from visual color design as well as insights 
from human visual perception to encode a set of rules that can be 
used, in conjunction with data derived from scene analysis and im-
portance, to optimize the assignment of colors in 2D and 3D visuali-
zation tasks. Our system is meant to help researchers and practitio-
ners to achieve more task-effective and aesthetic color designs with 
ease. It seeks to eliminate the trial and error process that comes with 
picking the �right� colors from a set of millions. We strived to create 
an interface where users can select the mood of a visualization by 
picking from a set of suggested hues, with the system then perform-
ing the more tedious task of ensuring that it �looks good and effec-
tive�, assigning the lightness and saturation (vividness) appropriate 
for the given visualization scene and task. We also provided solu-
tions, and confirmed these via comprehensive user studies, for a 
variety of existing problems in illustrative and volume visualization, 
such as the adverse color mixing artifacts when compositing semi-
transparent surfaces. In future work we plan to also incorporate in-
formation about spatial interactions among scene objects, such as 
distance, into our scene analysis suite, and to embed perceptual rules 
on distractor colors [1] to ensure that the importance-based highlight-
ing has the desired effect. We already exploited these types of rules 
to devise strategies for object highlighting and annotation in color-
rich scenes [26]. We would also like to try a numerical optimization 
algorithm in place of our current randomized algorithm for lightness 
selection, to see if the colorization results are better or are achieved 
faster (even though the current strategy is sufficiently interactive). 
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