
Coding Ants: Using Ant Colony Optimization

to Accelerate CT Reconstruction

Eric Papenhausen, Ziyi Zheng and Klaus Mueller

Abstract –There is no one size fits all solution when it comes to

CT reconstruction. Many different CT reconstruction algo-

rithms and implementations have been devised in an attempt to

solve the problem of producing an image under a specific set of

constraints. One optimal CT reconstruction implementation

can look very different from another optimal implementation;

depending on the data, quality, and time constraints. In this

paper, we present a framework that is able to dynamically

create and compile new implementations that optimize the

multiple objectives contained in CT reconstruction. We then

show the results of this framework when applied to a GPU

accelerated version of the FDK back-projection algorithm.

Index Terms—CT reconstruction, GPU, ant colony optimization,

Filtered backprojection

I. INTRODUCTION

Any CT reconstruction algorithm can be identified as a mul-

ti-objective optimization problem. The optimal result will

provide the highest quality reconstruction in the shortest

time. Many algorithms have been developed and extended,

and good parameter settings have been identified to solve

this problem under specific conditions [1][4][7]. However,

if the boundary conditions change (i.e. noisier projections,

different numbers of projections, stricter time constraint,

anatomy and pathology, etc.), the existing implementation is

rendered sub-optimal, and in some cases, useless.

In this paper, we use swarm optimization to determine

an optimal CT reconstruction implementation for any given

set of parameters. More specifically, we use the ant colony

optimization algorithm to find an optimal implementation of

a GPU accelerated FDK back-projection, described in [5].

In this paper, we begin in Section II by discussing relat-

ed work. Section III gives a brief description of the ant col-

ony system optimization algorithm. Section IV presents the

details of the coding ants framework. Section V gives a brief

description of the graphics hardware used in our experi-

ments and the structure of a CUDA program. Section VI

presents the results of our experiments. Section VII presents

future work and Section VIII concludes the paper.

Eric Papenhausen, Ziyi Zheng and Klaus Mueller are with the Computer Science

Department, Stony Brook University, Stony Brook, NY 11777 USA(e-mail:

{epapenhausen, zizhen, mueller}@cs.sunysb.edu).

II. RELATED WORK

Recent work has focused on finding good algorithmic pa-

rameters for iterative CT reconstruction [9]. Parameter tun-

ing is critical in finding a good balance between image qual-

ity and reconstruction speed. The use of GPUs in accelerat-

ing CT reconstruction has also become very popular in de-

creasing reconstruction time [5][8][10]. However, not all

GPUs are created equally; and there are many parameters to

consider when creating a GPU accelerated program.

Whereas [9] focused on tuning algorithmic parameters,

we focus on tuning system level parameters. Our optimiza-

tions come from creating a framework that will find an op-

timal implementation by directly manipulating source code.

The optimal implementation may change across different

machines and this framework will be able to produce a ma-

chine dependent optimal implementation without direct pro-

grammer intervention.

III. ANT COLONY SYSTEM

The ant colony system optimization algorithm is a part of

the family of swarm optimization algorithms. It is a modifi-

cation of the ant system algorithm which was designed to

mimic the way ants find the shortest path from the ant nest

to a food source. Initially ants will choose paths randomly.

Once an ant finds food, it will travel back to the nest and

emit pheromones so other ants can follow that path to the

food source. As other ants follow the pheromone trail, they

emit pheromones as well which reinforces the trail. After

some time, however, the pheromone trail will evaporate.

Given multiple paths to a food source, the pheromones on

the shortest path will have the least amount of time to evap-

orate before being reinforced by another ant. Over time, the

ants will converge to the shortest path.

The ant colony system was presented in [2] and was ap-

plied to the traveling salesman problem. It modifies the ant

system algorithm [3] in several ways to lead to a faster con-

vergence rate. After an ant crosses an edge, the pheromone

value of that edge is decayed according to equation 1:

where τij denotes the pheromone quantity on the edge from

state i to state j. The pheromone decay coefficient, φ, de-

termines how much pheromone is decayed after an ant

choses the edge from i to j. The initial pheromone value, τ0,

is the value every edge has at the beginning of the program.

Equation 1 reduces the probability of multiple ants choosing

the same path.

After all ants have chosen a path, the pheromone of each

edge is updated as follows:

The variable τij has the same meaning as equation 1. The

variable Δτij
best

 evaluates to the inverse of the length of the

best path if the edge from i to j was taken by the ant with the

best path; otherwise it evaluates to zero. The variable ρ

represents the evaporation rate. This leads to a pheromone

increase on the edges taken by the ant that produced the best

solution; while decaying the pheromones on all other edges.

When transitioning from one state to another, the edge is

selected probabilistically according to the following proba-

bility:

where τij determines the amount of pheromone on the edge

from i to j, and ηij defines some predetermined desirability

of that edge (e.g. the inverse of the edge weight). The vari-

ables α and β are weighting factors for τij and ηij respective-

ly. The variable pijk is the probability that an ant will select

an edge that goes from state i to state j during the k
th

 itera-

tion.

IV. IMPLEMENTATION

We use the ant colony system described in the previous sec-

tion to find and create an optimal implementation for a spe-

cific set of constraints. In order to do so we define the struc-

ture of a program as a directed graph with a single source, at

which every ant will start, and a single sink, where every ant

will finish. The nodes of the graph correspond to source

code snippets. A path from source to sink corresponds to a

candidate implementation that can be compiled and execut-

ed. The output of the candidate implementation can then be

measured and ranked among the other candidate implemen-

tations to find the ant with the shortest path for that iteration.

The shortest path can be defined as a function of image

quality and reconstruction time.

The graph is constructed by creating a super source file.

This super source file contains annotated sections of code.

These annotations specify node id and incoming edges. Fig-

ure 1(a) and 1(b) show the graph and its corresponding su-

per source file. Figure 1(c) and 1(d) show a potential path

through the graph, and the corresponding candidate imple-

mentation. This super source file is then submitted as input

to our program, which converts it to its graph representation

and runs the ant colony system algorithm to produce an op-

timal implementation.

One aspect of our program differs from the traditional

ant colony system algorithm. There is no predetermined

desirability, η. There is no way of determining edge weight

(b)

(d)

Figure 1. An illustration of the framework presented in this paper. (a) a graph representing all possible implementations of a program. (b) the super source

file represented by the graph in (a). (c) a path is selected through the graph. (d) source code corresponding to the path selected in (c).

/*#{id=1, path=0}*/

 If(A==B)

/*#{end 1}*/

/*#{id=2, path=0}*/

 If(A!=B)

/*#{end 2}*/

/*#{id=3, path=1:2}*/

 A+=B;

/*#{end 3}

/*#{id=4, path=2}*/

 A*=B;

/*#{end 4}

/*#{id=5, path=3:4, sink)*/

 return A;

/*#{end 5}*/

 If(A!=B)

 A+=B;

 return A;

(a) (c)

(1)

(2)

(3)

before running the algorithm. We can still apply the ant col-

ony system algorithm by only considering the pheromone

value, τ, when looking at an edge. This is equivalent to set-

ting η to one, for all edges. Equation 4 shows how edges are

selected by ants. Our experiments indicate that this still con-

verges to an optimal solution.

Since graphics hardware plays such a prominent role in

CT reconstruction, our framework provides the option of

expanding the graph provided in the super source file to

account for different grid and thread block sizes. This is

done by copying the code snippets that contain the threads

unique ID and offsetting the ID by the grid dimension. This

allows the framework to implicitly increase the workload for

each thread. Figure 2 shows an example of this. The grid

and thread block dimensions determine the granularity of

each thread. The smaller the grid and block size, the more

work each thread will perform.

Figure 2. Sample code demonstrating how thread granularity can be in-

creased implicitly. (a) Source code representing a thread granularity of one

(e.g. grid = 16, thread block = 16). (b) Source code representing a thread
granularity of two (e.g. grid = 8, thread block = 16).

In this specific example a thread in Figure 2b computes two

final results and stores them into the respective target loca-

tions in memory.

V. GRAPHICS HARDWARE

Modern GPUs follow a “Single Instruction Multiple

Thread” (SIMT) model of parallel execution. In this model

of execution, every thread executes the same instruction, but

over different data. The implementation we attempt to opti-

mize in our experiments use a C-like API called CUDA

(Compute Unified Device Architecture) to program NVID-

IA GPUs.

The GPU used in our experiments was the NVIDIA Ge-

Force GTX 480. This graphics card contains 15 streaming

multiprocessors. Each streaming multiprocessor contains 32

cores. Theoretical computing power of this graphics card is

1.3 TFLOPS. Like all NVIDIA graphics cards, this card has

both on-chip and off-chip memory. Off-chip memory in-

cludes global, texture, and constant memory and typically

incurs a latency of 400 to 600 clock cycles. On-chip

memory includes shared memory as well as cache for tex-

ture and constant memory and is much faster than off-chip

memory. The GTX 480 has a peak memory bandwidth of

177.4 GB/s for its 1.5 GB DDR5 device memory.

When accessing global memory, it is critical to perfor-

mance that the access is coalesced. A coalesced memory

access will allow multiple memory addresses to be returned

with a single memory access; increasing memory band-

width. A coalesced memory access typically requires every

thread in a warp to access consecutive memory addresses.

This constraint is relaxed, however, in devices with compute

capability of 1.2 and higher. As long as the memory access

of each thread is within a 32, 64, or 128 byte segment, de-

pending on the data type, a coalesced memory access is per-

formed.

GPU accelerated applications have a large number of pa-

rameters that can be tuned for optimal performance. Occu-

pancy, thread granularity, and memory bandwidth are all

examples of the types of parameters that can have a large

impact on performance. Tuning one parameter too much can

often lead to a sudden decrease in performance in some oth-

er aspect of the application. This is what is known as a per-

formance cliff.

VI. EXPERIMENT AND RESULTS

We used the framework presented in this paper to create an

optimal GPU accelerated implementation of the FDK back-

projection algorithm described in [4]. This back-projection

implementation is then tested with the help of the RabbitCT

framework [6]. We chose to compose the graph out of the

three major implementations presented in [5]. An ant’s path

from the source to the sink represents either the first, se-

cond, or third configuration presented in [5], or some com-

bination of the three. In this graph we also added a fourth

configuration in which two projections are loaded per kernel

call.

We ran our framework with 30 ants for 5 iterations. Our

super source file described a graph that contained 25 nodes.

This graph, however, is replicated for 16 different grid and

thread block dimensions; creating a graph that contains 400

nodes. Table 1 shows a comparison of the timings of the

FDK implementations that were produced through our

framework with the results presented in [5] which were ob-

tained by manually optimizing the code. For the 256
3
 im-

plementation we found a faster implementation. This con-

figuration loads two projections per kernel invocation and

has a thread granularity of two in the x direction. For the

512
3
 implementation, our framework produced the same

code as in [5]. Figure 3 shows a slice of the reconstructed

volume. The quality of the reconstruction for the implemen-

tations produced by this framework was the same as the

quality produced in [5].

int tid = blockIdx.x * blockDim.x + threadIdx.x;

.

<code>

.

F_L[tid] = result;

int tid = blockIdx.x * blockDim.x + threadIdx.x;

.

<code>

.

F_L[tid] = result;

.

<code>

.

F_L[(blockIdx.x + 8) * blockDim.x + threadIdx.x] = result;

(a)

(b)

(4)

TABLE I

RUNTIMES OF BEST KNOWN AND FRAMEWORK PRODUCED

IMPLEMENTATIONS

Configuration Volume Time (s)

Framework 2563 2.54

Best Known 2563 2.71

Framework 5123 6.07

Best Known 5123 6.07

Figure 3. Slice of the reconstructed image.

The run time of our framework is dependent on the scale

of the application it is trying to produce. For each ant,

source code is generated, compiled, and executed. For the

experiments that we ran, it took approximately 2 hours for

all 30 ants to complete 5 iterations. The graph could have

been pruned, however, by eliminating nodes that correlate to

configurations that we know have bad performance. In our

experiments, we included the naïve configuration explained

in [5], as a possible implementation. By pruning the graph

of bad implementations, we could reduce the number of

ants; thus greatly reducing the amount of time required by

our framework.

 We wish to add that the code produced by the ant colo-

ny optimization can be re-used for any new CT reconstruc-

tion task with the same boundary conditions the code was

generated for. Therefore the optimization overhead is well

amortized.

VII. FUTURE WORK

One direction of future work for this framework is to de-

velop a visual interface that is much more user friendly. At

its current state, this framework requires the input to be an

annotated source file. As the size of this source file grows, it

can become difficult to keep track of the graph structure. In

the future, we would like to develop a visual interface that

clearly shows the graph. Nodes can be easily added or re-

moved from this graph. Source code can be easily added or

modified inside a node; and the information that is currently

stored in the annotations can be abstracted away.

Another direction of future work, involves using this

framework to build an all-encompassing CT reconstruction

builder. This would incorporate different CT reconstruction

algorithms and implementations. Given a set of parameters,

this CT reconstruction builder would produce an optimal

implementation.

VIII. CONCLUSION

In this paper we presented a novel framework for producing

an optimal code structure using an ant colony optimization

algorithm. Through our experiments in applying our frame-

work to the RabbitCT platform, we have discovered a better

implementation for the 256
3
 volume reconstruction, while

producing the same results as [5] for the 512
3
 implementa-

tion.

Although we apply this framework to GPU accelerated

CT reconstruction, it is in no way restricted to that field of

study. The graph structure that the framework works off of

ensures that this framework can be applied to produce an

optimal implementation of any type of application.

REFERENCES

[1] A. Andersen and A. Kak, “Simultaneous algebraic reconstruction
technique (SART): A superior implementation of the ART
algorithm,” Ultrason. Imaging, 6:81–94, 1984

[2] M. Dorigo and L. M. Gambardella. “Ant Colony System: A
cooperative learning approach to the traveling salesman problem.”
IEEE Transactions on Evolutionary Computation, 1(1):53–66,

[3] M. Dorigo, V. Maniezzo, and A. Colorni. “Ant System:
Optimization by a colony of cooperating agents.” IEEE Transactions
on Systems, Man, and Cybernetics – Part B, 26(1):29–41, 1996.

[4] L. Feldkamp, L. Davis, and J. Kress, “Practical cone-beam
algorithm,” J. Opt. Soc. Am. Vol 1, No. A6, 612–619 , 1984

[5] E. Papenhausen, Z. Zheng, and K. Mueller, "GPU-Accelerated
Back-Projecting Revisited: Squeezing Performance by Careful
Tuning," Fully Three-Dimensional Image Reconstruction in
Radiology and Nuclear Medicine (Potsdam, Germany, 2011)

[6] C. Rohkohl, B. Keck, H. G. Hofmann and J. Hornegger, “RabbitCT-
--an open platform for benchmarking 3D cone-beam reconstruction
algorithms,” Medical Physics, 36:3940, 2009.

[7] L. Shepp and Y. Vardi, “Maximum likelihood reconstruction for
emission tomography,” IEEE Trans. Med. Imag., 1(2):113–122,
1982.

[8] H. Scherl, B. Keck, M. Kowarschik, J. Hornegger, “Fast GPU-based
CT reconstruction using the Common Unified Device Architecture
(CUDA),” IEEE Medical Imaging Conference, 6: 4464-4466,
Honolulu, HI, 2007.

[9] W. Xu, K.Mueller "Learning Effective Parameter Settings for
Iterative CT Reconstruction Algorithms," Fully 3D Image
Reconstruction in Radiology and Nuclear Medicine (Beijing, China,
2009)

[10] Z. Zheng, K. Mueller “Cache-Aware GPU Memory Scheduling
Scheme for CT Back-Projection,” IEEE Medical Imaging
Conference, Oct. 2010.

