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Abstract –There is no one size fits all solution when it comes to 

CT reconstruction. Many different CT reconstruction algo-

rithms and implementations have been devised in an attempt to 

solve the problem of producing an image under a specific set of 

constraints. One optimal CT reconstruction implementation 

can look very different from another optimal implementation; 

depending on the data, quality, and time constraints. In this 

paper, we present a framework that is able to dynamically 

create and compile new implementations that optimize the 

multiple objectives contained in CT reconstruction. We then 

show the results of this framework when applied to a GPU 

accelerated version of the FDK back-projection algorithm. 

Index Terms—CT reconstruction, GPU, ant colony optimization, 

Filtered backprojection 

I. INTRODUCTION 

Any CT reconstruction algorithm can be identified as a mul-

ti-objective optimization problem. The optimal result will 

provide the highest quality reconstruction in the shortest 

time. Many algorithms have been developed and extended, 

and good parameter settings have been identified to solve 

this problem under specific conditions [1][4][7]. However, 

if the boundary conditions change (i.e. noisier projections, 

different numbers of projections, stricter time constraint, 

anatomy and pathology, etc.), the existing implementation is 

rendered sub-optimal, and in some cases, useless. 

In this paper, we use swarm optimization to determine 

an optimal CT reconstruction implementation for any given 

set of parameters. More specifically, we use the ant colony 

optimization algorithm to find an optimal implementation of 

a GPU accelerated FDK back-projection, described in [5].  

In this paper, we begin in Section II by discussing relat-

ed work. Section III gives a brief description of the ant col-

ony system optimization algorithm. Section IV presents the 

details of the coding ants framework. Section V gives a brief 

description of the graphics hardware used in our experi-

ments and the structure of a CUDA program. Section VI 

presents the results of our experiments. Section VII presents 

future work and Section VIII concludes the paper. 
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II. RELATED WORK 

Recent work has focused on finding good algorithmic pa-

rameters for iterative CT reconstruction [9]. Parameter tun-

ing is critical in finding a good balance between image qual-

ity and reconstruction speed. The use of GPUs in accelerat-

ing CT reconstruction has also become very popular in de-

creasing reconstruction time [5][8][10]. However, not all 

GPUs are created equally; and there are many parameters to 

consider when creating a GPU accelerated program. 

Whereas [9] focused on tuning algorithmic parameters, 

we focus on tuning system level parameters. Our optimiza-

tions come from creating a framework that will find an op-

timal implementation by directly manipulating source code. 

The optimal implementation may change across different 

machines and this framework will be able to produce a ma-

chine dependent optimal implementation without direct pro-

grammer intervention. 

 

III. ANT COLONY SYSTEM 

The ant colony system optimization algorithm is a part of 

the family of swarm optimization algorithms. It is a modifi-

cation of the ant system algorithm which was designed to 

mimic the way ants find the shortest path from the ant nest 

to a food source. Initially ants will choose paths randomly. 

Once an ant finds food, it will travel back to the nest and 

emit pheromones so other ants can follow that path to the 

food source. As other ants follow the pheromone trail, they 

emit pheromones as well which reinforces the trail. After 

some time, however, the pheromone trail will evaporate. 

Given multiple paths to a food source, the pheromones on 

the shortest path will have the least amount of time to evap-

orate before being reinforced by another ant. Over time, the 

ants will converge to the shortest path. 

The ant colony system was presented in [2] and was ap-

plied to the traveling salesman problem. It modifies the ant 

system algorithm [3] in several ways to lead to a faster con-

vergence rate. After an ant crosses an edge, the pheromone 

value of that edge is decayed according to equation 1:  



 

where τij denotes the pheromone quantity on the edge from 

state i to state j.  The pheromone decay coefficient, φ, de-

termines how much pheromone is decayed after an ant 

choses the edge from i to j.  The initial pheromone value, τ0, 

is the value every edge has at the beginning of the program. 

Equation 1 reduces the probability of multiple ants choosing 

the same path.  

After all ants have chosen a path, the pheromone of each 

edge is updated as follows:  

 

The variable τij has the same meaning as equation 1. The 

variable Δτij
best

 evaluates to the inverse of the length of the 

best path if the edge from i to j was taken by the ant with the 

best path; otherwise it evaluates to zero.  The variable ρ 

represents the evaporation rate. This leads to a pheromone 

increase on the edges taken by the ant that produced the best 

solution; while decaying the pheromones on all other edges. 

When transitioning from one state to another, the edge is 

selected probabilistically according to the following proba-

bility:  

 

where τij determines the amount of pheromone on the edge 

from i to j, and ηij defines some predetermined desirability 

of that edge (e.g. the inverse of the edge weight).  The vari-

ables α and β are weighting factors for τij and ηij respective-

ly.  The variable pijk is the probability that an ant will select 

an edge that goes from state i to state j during the k
th

 itera-

tion. 

IV. IMPLEMENTATION 

We use the ant colony system described in the previous sec-

tion to find and create an optimal implementation for a spe-

cific set of constraints. In order to do so we define the struc-

ture of a program as a directed graph with a single source, at 

which every ant will start, and a single sink, where every ant 

will finish. The nodes of the graph correspond to source 

code snippets. A path from source to sink corresponds to a 

candidate implementation that can be compiled and execut-

ed. The output of the candidate implementation can then be 

measured and ranked among the other candidate implemen-

tations to find the ant with the shortest path for that iteration. 

The shortest path can be defined as a function of image 

quality and reconstruction time. 

The graph is constructed by creating a super source file. 

This super source file contains annotated sections of code. 

These annotations specify node id and incoming edges. Fig-

ure 1(a) and 1(b) show the graph and its corresponding su-

per source file. Figure 1(c) and 1(d) show a potential path 

through the graph, and the corresponding candidate imple-

mentation. This super source file is then submitted as input 

to our program, which converts it to its graph representation 

and runs the ant colony system algorithm to produce an op-

timal implementation.  

One aspect of our program differs from the traditional 

ant colony system algorithm. There is no predetermined 

desirability, η. There is no way of determining edge weight 

(b) 

(d) 

Figure 1. An illustration of the framework presented in this paper. (a) a graph representing all possible implementations of a program. (b) the super source 

file represented by the graph in (a). (c) a path is selected through the graph. (d) source code corresponding to the path selected in (c). 

/*#{id=1, path=0}*/ 

 If(A==B) 

/*#{end 1}*/ 

/*#{id=2, path=0}*/ 

 If(A!=B) 

/*#{end 2}*/ 

/*#{id=3, path=1:2}*/ 

 A+=B; 

/*#{end 3} 

/*#{id=4, path=2}*/ 

 A*=B; 

/*#{end 4} 

/*#{id=5, path=3:4, sink)*/ 

 return A; 

/*#{end 5}*/ 

  

         If(A!=B) 

      A+=B; 

 

       return A; 

(a) (c) 

(1) 

(2) 

(3) 



before running the algorithm. We can still apply the ant col-

ony system algorithm by only considering the pheromone 

value, τ, when looking at an edge. This is equivalent to set-

ting η to one, for all edges. Equation 4 shows how edges are 

selected by ants. Our experiments indicate that this still con-

verges to an optimal solution.  

 

Since graphics hardware plays such a prominent role in 

CT reconstruction, our framework provides the option of 

expanding the graph provided in the super source file to 

account for different grid and thread block sizes. This is 

done by copying the code snippets that contain the threads 

unique ID and offsetting the ID by the grid dimension. This 

allows the framework to implicitly increase the workload for 

each thread. Figure 2 shows an example of this. The grid 

and thread block dimensions determine the granularity of 

each thread. The smaller the grid and block size, the more 

work each thread will perform.  

 

 

 

 

 

 

 

 

 

 

Figure 2. Sample code demonstrating how thread granularity can be in-

creased implicitly. (a) Source code representing a thread granularity of one 

(e.g. grid = 16, thread block = 16). (b) Source code representing a thread 
granularity of two (e.g. grid = 8, thread block = 16). 

In this specific example a thread in Figure 2b computes two 

final results and stores them into the respective target loca-

tions in memory.  

V. GRAPHICS HARDWARE 

Modern GPUs follow a “Single Instruction Multiple 

Thread” (SIMT) model of parallel execution. In this model 

of execution, every thread executes the same instruction, but 

over different data. The implementation we attempt to opti-

mize in our experiments use a C-like API called CUDA 

(Compute Unified Device Architecture) to program NVID-

IA GPUs. 

The GPU used in our experiments was the NVIDIA Ge-

Force GTX 480. This graphics card contains 15 streaming 

multiprocessors. Each streaming multiprocessor contains 32 

cores. Theoretical computing power of this graphics card is 

1.3 TFLOPS. Like all NVIDIA graphics cards, this card has 

both on-chip and off-chip memory. Off-chip memory in-

cludes global, texture, and constant memory and typically 

incurs a latency of 400 to 600 clock cycles. On-chip 

memory includes shared memory as well as cache for tex-

ture and constant memory and is much faster than off-chip 

memory. The GTX 480 has a peak memory bandwidth of 

177.4 GB/s for its 1.5 GB DDR5 device memory. 

When accessing global memory, it is critical to perfor-

mance that the access is coalesced. A coalesced memory 

access will allow multiple memory addresses to be returned 

with a single memory access; increasing memory band-

width. A coalesced memory access typically requires every 

thread in a warp to access consecutive memory addresses. 

This constraint is relaxed, however, in devices with compute 

capability of 1.2 and higher. As long as the memory access 

of each thread is within a 32, 64, or 128 byte segment, de-

pending on the data type, a coalesced memory access is per-

formed. 

GPU accelerated applications have a large number of pa-

rameters that can be tuned for optimal performance. Occu-

pancy, thread granularity, and memory bandwidth are all 

examples of the types of parameters that can have a large 

impact on performance. Tuning one parameter too much can 

often lead to a sudden decrease in performance in some oth-

er aspect of the application. This is what is known as a per-

formance cliff. 

VI. EXPERIMENT AND RESULTS 

We used the framework presented in this paper to create an 

optimal GPU accelerated implementation of the FDK back-

projection algorithm described in [4]. This back-projection 

implementation is then tested with the help of the RabbitCT 

framework [6]. We chose to compose the graph out of the 

three major implementations presented in [5]. An ant’s path 

from the source to the sink represents either the first, se-

cond, or third configuration presented in [5], or some com-

bination of the three. In this graph we also added a fourth 

configuration in which two projections are loaded per kernel 

call.  

We ran our framework with 30 ants for 5 iterations. Our 

super source file described a graph that contained 25 nodes. 

This graph, however, is replicated for 16 different grid and 

thread block dimensions; creating a graph that contains 400 

nodes. Table 1 shows a comparison of the timings of the 

FDK implementations that were produced through our 

framework with the results presented in [5] which were ob-

tained by manually optimizing the code.  For the 256
3
 im-

plementation we found a faster implementation. This con-

figuration loads two projections per kernel invocation and 

has a thread granularity of two in the x direction. For the 

512
3
 implementation, our framework produced the same 

code as in [5]. Figure 3 shows a slice of the reconstructed 

volume. The quality of the reconstruction for the implemen-

tations produced by this framework was the same as the 

quality produced in [5]. 

int tid = blockIdx.x * blockDim.x + threadIdx.x; 

. 

<code> 

. 

F_L[tid] = result; 

int tid = blockIdx.x * blockDim.x + threadIdx.x; 

. 

<code> 

. 

F_L[tid] = result; 

. 

<code> 

. 

F_L[(blockIdx.x + 8) * blockDim.x + threadIdx.x] = result; 

(a) 

(b) 

(4) 



 

TABLE I 

RUNTIMES OF BEST KNOWN AND FRAMEWORK PRODUCED 

IMPLEMENTATIONS 

Configuration Volume Time (s) 

Framework 2563 2.54 

Best Known 2563 2.71 

Framework 5123 6.07 

Best Known 5123 6.07 

 

 

Figure 3. Slice of the reconstructed image. 

The run time of our framework is dependent on the scale 

of the application it is trying to produce. For each ant, 

source code is generated, compiled, and executed. For the 

experiments that we ran, it took approximately 2 hours for 

all 30 ants to complete 5 iterations. The graph could have 

been pruned, however, by eliminating nodes that correlate to 

configurations that we know have bad performance. In our 

experiments, we included the naïve configuration explained 

in [5], as a possible implementation. By pruning the graph 

of bad implementations, we could reduce the number of 

ants; thus greatly reducing the amount of time required by 

our framework. 

 We wish to add that the code produced by the ant colo-

ny optimization can be re-used for any new CT reconstruc-

tion task with the same boundary conditions the code was 

generated for. Therefore the optimization overhead is well 

amortized.   

VII. FUTURE WORK 

One direction of future work for this framework is to de-

velop a visual interface that is much more user friendly. At 

its current state, this framework requires the input to be an 

annotated source file. As the size of this source file grows, it 

can become difficult to keep track of the graph structure. In 

the future, we would like to develop a visual interface that 

clearly shows the graph. Nodes can be easily added or re-

moved from this graph. Source code can be easily added or 

modified inside a node; and the information that is currently 

stored in the annotations can be abstracted away.  

Another direction of future work, involves using this 

framework to build an all-encompassing CT reconstruction 

builder. This would incorporate different CT reconstruction 

algorithms and implementations. Given a set of parameters, 

this CT reconstruction builder would produce an optimal 

implementation.  

VIII. CONCLUSION 

In this paper we presented a novel framework for producing 

an optimal code structure using an ant colony optimization 

algorithm. Through our experiments in applying our frame-

work to the RabbitCT platform, we have discovered a better 

implementation for the 256
3
 volume reconstruction, while 

producing the same results as [5] for the 512
3
 implementa-

tion.  

Although we apply this framework to GPU accelerated 

CT reconstruction, it is in no way restricted to that field of 

study. The graph structure that the framework works off of 

ensures that this framework can be applied to produce an 

optimal implementation of any type of application. 

REFERENCES 

[1] A. Andersen and A. Kak, “Simultaneous algebraic reconstruction 
technique (SART): A superior implementation of the ART 
algorithm,” Ultrason. Imaging, 6:81–94, 1984 

[2] M. Dorigo and L. M. Gambardella. “Ant Colony System: A 
cooperative learning approach to the traveling salesman problem.” 
IEEE Transactions on Evolutionary Computation, 1(1):53–66,  

[3] M. Dorigo, V. Maniezzo, and A. Colorni. “Ant System: 
Optimization by a colony of cooperating agents.” IEEE Transactions 
on Systems, Man, and Cybernetics – Part B, 26(1):29–41, 1996. 

[4] L. Feldkamp, L. Davis, and J. Kress, “Practical cone-beam 
algorithm,” J. Opt. Soc. Am. Vol 1, No. A6, 612–619 , 1984 

[5] E. Papenhausen, Z. Zheng, and K. Mueller, "GPU-Accelerated 
Back-Projecting Revisited: Squeezing Performance by Careful 
Tuning," Fully Three-Dimensional Image Reconstruction in 
Radiology and Nuclear Medicine (Potsdam, Germany, 2011) 

[6] C. Rohkohl, B. Keck, H. G. Hofmann and J. Hornegger, “RabbitCT-
--an open platform for benchmarking 3D cone-beam reconstruction 
algorithms,” Medical Physics, 36:3940, 2009. 

[7] L. Shepp and Y. Vardi, “Maximum likelihood reconstruction for 
emission tomography,” IEEE Trans. Med. Imag., 1(2):113–122, 
1982. 

[8] H. Scherl, B. Keck, M. Kowarschik, J. Hornegger, “Fast GPU-based 
CT reconstruction using the Common Unified Device Architecture 
(CUDA),” IEEE Medical Imaging Conference, 6: 4464-4466, 
Honolulu, HI, 2007. 

[9] W. Xu, K.Mueller "Learning Effective Parameter Settings for 
Iterative CT Reconstruction Algorithms," Fully 3D Image 
Reconstruction in Radiology and Nuclear Medicine (Beijing, China, 
2009) 

[10] Z. Zheng, K. Mueller “Cache-Aware GPU Memory Scheduling 
Scheme for CT Back-Projection,” IEEE Medical Imaging 
Conference, Oct. 2010. 


