
Coding Ants – Optimization of GPU Code Using Ant

Colony Optimization

Eric Papenhausen and Klaus Mueller

Computer Science Department, Stony Brook University, Stony Brook, NY

Abstract

This article proposes the Coding Ants framework, an approach for auto-
tuning which uses ant colony optimization to find a sequence of code op-
timizations for GPU architectures. The proposed framework is built as an
extension to the PPCG compiler, a source-to-source code generator based on
the polyhedral model and specializing in the generation of CUDA code. As
such, the Coding Ants framework is able to use the polyhedral abstraction
to represent a large space of possible transformations. Several optimizations
are also presented which have not been included in any previous GPU auto-
tuning system. The proposed framework also extends the traditional ant
colony optimization algorithm to include performance metrics as well as a
regression tree analysis to segment the search space. We evaluate the frame-
work on the PolyBench suite and compare the performance of three levels of
optimization that transfer increasing control to the Coding Ants framework
from the PPCG cost model.

Keywords: Automatic Optimization, GPU Optimization, Autotuning,
CUDA, Ant Colony Optimization, Polyhedral Model

1. Introduction

Optimizing performance by hand can be a labor intensive operation.
Performance-sensitive applications can require a great deal of effort and ex-
perimentation by the programmer. This is especially true for GPU applica-
tions, which typically have more architectural features compared to CPUs.
Proper utilization of the different memory regions (e.g. global, texture,
shared, etc.) and a careful balancing of the thread workload are required
to achieve good performance. As a result, subtle changes in the GPU code

Preprint submitted to Computer Languages, Systems and Structures July 14, 2018

can lead to drastic effects on performance. The resulting hand-tuned code
often performs well but is optimized for a specific architecture. This makes
porting the application to new hardware difficult, as the program needs to
be re-tuned for the new architecture.

Iterative optimization, or auto-tuning, has been shown to produce better
performance compared to compiler cost models and machine learning meth-
ods [27][7]. This typically involves compiling different variants of a program
and testing the performance. There is often an intelligent search which uses
the previous runs to choose the next program variant. Different algorithms
have been used for this task including parallel rank order [51] and best first
search algorithms [16].

In this work, we propose the Coding Ants (CA) framework. It is an iter-
ative optimization approach based on the Ant Colony Optimization (ACO)
algorithm [9]. Ant Colony Optimization is attractive because it is well suited
for graph search problems, and a given computer program code and its varia-
tions can be formulated as a graph. Our core idea is to use ACO to optimize
computer program code formulated as a graph.

Our CA framework is built off the PPCG (Polyhedral Parallel Code Gen-
erator) compiler [57]. It takes C code as input and outputs optimized CUDA
code. The CA framework optimizes over a large search space which includes
polyhedral transformations (e.g. skewing, permutation, etc.) as well as GPU
specific parameters (e.g. thread block size, thread granularity, shared mem-
ory usage, etc.). The main contributions of this paper are:

– Demonstrates how the GPU optimization space can be mapped to a,
possibly cyclic, graph.

– Presents several optimizations that have not been considered by previ-
ous GPU based auto-tuners – including use of parallel reduction and
atomic operations.

– Evaluates three optimization levels to determine the optimal work dis-
tribution between the PPCG cost model and the CA framework.

– Presents extensions to the ACO algorithm to incorporate performance
metrics as a criteria for optimization selection.

– Presents a novel extension to the ACO algorithm which uses a re-
gression tree to segment the search space into regions with promising
performance.

2

– Evaluates the CA framework on the PolyBench suite version 4.2.1 and
compares the performance against code generated by the PPCG com-
piler. Performance is also compared to a random search through the
optimization graph.

The remainder of the paper is organized as follows. Section 2 presents
background on the GPU architecture and the polyhedral model. Related
work is presented in Section 3. Section 4 describes the Polyhedral Parallel
Code Generator (PPCG). Section 5 presents the Coding Ants framework
along with the optimizations that are considered, and Section 6 discusses
extensions to the ACO algorithm. Experiments are presented in Section 7
and Section 8 concludes the paper.

2. Background

2.1. GPU Architecture

The CA framework produces code for NVIDIA GPUs using the CUDA
programming language. This is a C like language that allows general purpose
GPU (GPGPU) programming. It allows GPUs to be used as an accelerator
where the computationally expensive parts of a program can be offloaded
and executed in parallel. In CUDA, functions that are executed on the GPU
are called CUDA kernels.

The GPU architecture is composed of a number of multiprocessors – with
each multiprocessor containing a number of processing units, or cores. Each
core within a multiprocessor is synchronized and executes in lock-step. As a
result, parallelism is exploited in a single instruction multiple thread (SIMT)
fashion. Each thread executes the same instruction over different data. Up
to three dimensions of parallelism can be exploited. Threads are organized
into thread blocks. Thread blocks are further organized into a grid. Threads
within a thread block have access to shared memory. Shared memory is a
type of user controlled cache. Data written to a location in shared memory
is visible by all threads in a thread block. A group of 32 threads in a thread
block form a warp. Warps are scheduled to run on a multiprocessor – with
each thread being assigned to a core. In newer GPUs (i.e. starting with the
Kepler architecture) intra-warp communication can be performed via shuffle
instructions. These instructions serve a similar purpose to that of the SSE
shuffle instructions. They allow for direct communication between threads in
a warp and is a faster method of communication compared to shared memory.

3

GPUs have several types of memory with different optimal access pat-
terns. Global memory is the largest region and requires that data be ac-
cessed in a coalesced fashion. A coalesced access occurs when each thread
in a warp accesses adjacent memory locations. A coalesced access pattern
results in a single memory request, as opposed to a separate request for each
thread. Texture memory is a type of read-only memory in which the texture
caches are optimized for 2D spatial locality. This can be particularly useful
when the access pattern is unknown at compile time or un-coalesced. Con-
stant memory is also read-only and typically much smaller than texture or
global memory. It is designed for small, constant arrays that do not change
throughout the execution of a CUDA kernel. Its optimal access pattern is
one where every thread in a warp accesses the same memory location.

A key reason that GPUs are so powerful is their ability to perform ex-
tremely fast context switches. When a warp stalls (e.g. due to a request
to off-chip memory), it can be quickly swapped for a new warp. Context
switches are performed quickly because registers are assigned when a thread
is created and it does not change throughout the lifetime of the thread. This
can, however, cause limitations on parallelism. If each thread requires too
many registers, then fewer threads can run concurrently. This results in a
lower occupancy. Occupancy is a metric for measuring the utilization of mul-
tiprocessors and is defined as the ratio of active warps on a multiprocessor to
the maximum number of active warps supported by the multiprocessor [2].

2.2. Polyhedral Model

The polyhedral model is a mathematical framework capable of represent-
ing static control parts (SCoP) of a program. SCoPs include statements
where array accesses, surrounding conditionals and loop bounds are affine
functions of outer loop iterators and parameters [8]. Statements are modeled
using polyhedra, where affine inequalities are used to represent loop bounds
and form a face of the statement’s iteration domain. Each point, or itera-
tion vector, in the iteration domain corresponds to an instance in which the
statement is executed. For example, Figure 1 shows a loop nest that would
give rise to a rectangular model; it would undergo a shearing affine trans-
formation if, say, the start and end indexes of the j-loop were shifted by an
integer factor.

Along with the iteration domain, an exact dependence analysis is com-
puted. A dependence occurs when two statement instances access the same
memory location, and at least one of those accesses is a write. A generalized

4

dependence graph (GDG) is computed. The GDG is a directed multi-graph
in which nodes correspond to statements and edges correspond to depen-
dences. An edge e ∈ E in the GDG is represented using a dependence
polyhedra, Pe [21]. Dependence polyhedra models dependences using affine
equalities and inequalities and describe the exact statement instances which
are dependent.

The polyhedral model is capable of improving performance by scheduling
statement instances to execute in such a way that minimizes execution time.
This is often achieved by exposing parallelism and improving cache locality.
Each statement s ∈ V in the GDG is scheduled by applying a transformation
matrix, Hs. A transformation matrix has d rows with d + p + 1 columns,
where d is the dimensionality of the statement’s iteration domain and p is
the number of program parameters. Each row, φ, of the matrix represents a
one-dimensional affine hyperplane. For a dependence from statement Si to
Sj (i.e. Sj depends on Si), a valid hyperplane is one in which:

φSj
− φSi

≥ 0 (1)

Note that equation 1 simply states that φ is valid if it schedules statement
Sj to be executed after Si. Valid hyperplanes can be identified with the help
of Farkas lemma [47].

Lemma 2.1 (Affine form of Farkas Lemma). Let D be a nonempty poly-
hedron defined by p affine inequalities

ak · x + bk ≥ 0, 1 ≤ k ≤ p

Then an affine form ψ(x) is nonnegative everywhere in D iff it is a positive
affine combination of the faces:

ψ(x) ≡ λ0 +
∑
k

λk(ak · x + bk), λk ≥ 0

3. Related Work

Much work has been done in the field of iterative optimization. A strong
argument for the benefits of iterative compilation is given by Kisuki et al.
[27]. The authors show that the combinations of tile size and unroll factors
that lead to good performance (i.e. within 3% of the global optimum) vary

5

wildly depending on the architecture. Optimizations suitable for one archi-
tecture, will not necessarily port to another. Bodin et al. [11] performed
iterative compilation to optimize the selection of tile size, unroll factor, and
array padding. Results were promising – achieving within 0.3% of the global
optimum by visiting less than 0.25% of the search space.

Autotuning of full applications, as opposed to single functions, was per-
formed by Tiwari et al. [56]. Profiling was first performed to identify compu-
tationally intensive loop nests and outline them into separate functions using
the ROSE outliner [29]. Different code variants were then generated using
CHiLL [44]. CHiLL is a loop transformation and code generation framework
based on the polyhedral model [8]. It uses the polyhedral abstraction to
represent loop iteration spaces and array accesses. Transformations such as
loop permutation, tiling, unrolling, and skewing can be easily represented
and composed using this framework. These transformation recipes can be
used to generate a large number of code variants systematically. Similarly,
Pouchet et al. [38] described a tractable optimization algorithm over the
space of loop transformations. A recipe library was created by compiler ex-
perts to facilitate the tuning process. Finally, Active Harmony [52] was used
to initiate the autotuning.

Active Harmony is an auto-tuning framework which allows programmers
to define tunable parameters that describe the search space. A search algo-
rithm can then be used to identify a near optimal configuration with relatively
few evaluations. The Nelder-Mead simplex algorithm [33] was initially used
by Tapus et al. [52]. Given an N dimensional search space, the Nelder-Mead
algorithm maintains a set of N + 1 points forming a simplex. Each vertex
corresponds to a different solution variant that is evaluated. Based on this
evaluation, the simplex is either reflected, contracted, or expanded. Tiwari
et al. [55] used the Parallel Rank Order (PRO) algorithm [51]. Parallel rank
order is an extension of the Nelder-Mead simplex algorithm. The PRO algo-
rithm is a parallelization of the Nelder-Mead algorithm in which N vertices
are evaluated in parallel at each time step.

A number of domain specific auto-tuners have also emerged in recent
years. ATLAS [41] is a popular library which tunes BLAS programs using
a direct search method. Experiments showed that ATLAS could produce
within 90% of the global optimum at a fraction of the search cost. PATUS
[17] is framework for optimizing stencil programs using a domain specific
language. It could be applied to multi-core CPUs as well as GPUs and opti-
mized over loop unrolling, tiling, and vectorization on CPUs. SPIRAL [39] is

6

a tool for optimizing discrete signal processing applications. Algorithmic as
well as code optimizations are applied. The search algorithms used include
random search, dynamic programming, genetic algorithms and hill climbing
[40]. Experiments show that SPIRAL is competitive with hand-tuned code.
OpenTuner [6] is an extensible framework for empirical performance tuning
based on heuristics.

Auto-tuning GPU specific applications has recently become popular due
to the large number of GPU configuration parameters that can be tuned.
In our previous work [37], ant colony optimization was used to identify the
optimal CT reconstruction implementation. Given a graph of CUDA code
segments defining different implementation variants, ants would assemble
the segments to optimize for runtime performance. Results were competitive
with hand-tuned code. An application independent GPU auto-tuner which
optimizes thread block size and loop unroll factors was presented by Tillmann
et al. [54]. Grauer-Gray et al. [24] tuned loop permutation, unrolling, and
tiling on the GPU. Pragma directives were used to generate different program
variants with the help of the HMPP compiler [20]. OpenACC [1] is a directive
based programming model for GPUs and is similar to OpenMP [35]. Magni
et al. [32] tuned the OpenACC parameters ”gang” and ”vector” for different
input sizes. A random search was initially performed with a set of input sizes.
Given a new input size, a nearest neighbor search was performed to narrow
the search space. AlZayer et al. [5] studied different search algorithms for
tuning of ”gang” and ”vector” parameters. They compared the results of
random walk [45], simulated annealing [26], Nelder-Mead [33], and genetic
algorithms [46] on 4th and 8th order stencils. Results showed that simulated
annealing had the worst convergence time while genetic algorithms had the
fastest convergence. Finally, Lift [49] provides a high-level functional data
parallel language for GPU code optimization. It is defined primarily for
OpenCL while we use CUDA. Other libraries and programming languages
that aim to improve access of the GPU parallel execution facilities include
Firepile [34], SafeGPU [28], and StreamIt [53].

Machine learning has also been used to improve iterative optimization
quality and convergence time. Agokov et al. [4] used it to focus a random
and genetic algorithm search to the most promising regions of the search
space. Using a simple independent distribution model and a Markov model,
they were able to obtain between 1.22x–1.27x speed-up in just a few evalu-
ations. Ashouri et al. [7] introduced the COBAYN framework which is an
auto-tuning framework that uses Bayesian networks to select the optimal se-

7

ALGORITHM 1: Ant Colony Optimization

1 Initialize pheromone values.;
2 while termination criteria not met do
3 ConstructSolutions()
4 ApplyLocalSearch() % optional
5 UpdateTrails()

6 end

quence of compiler optimizations. Training was performed to learn statistical
relations between application features and compiler optimizations. For new
applications, iterative compilation was performed with the most promising
optimizations as predicted by the Bayesian network. Chaimov et al. [15]
kept a database to store the optimal variants of a program for different prob-
lem sizes. Decision trees were then used to predict the best variant given a
new input size. Results for a matrix multiply kernel showed a 1.7x speedup
compared to 1.3x for auto-tuning alone. Decision trees were also used to pre-
dict a good initial starting position for the PRO search algorithm – resulting
in greatly improved convergence time. Lim et al [30] used static analysis
to auto-tune GPU kernels without explicitly running them. Given a code
variant, GPU occupancy and instruction throughput are used to estimate
the performance of the kernel. Results showed that using instruction mix, in
particular, was a good indicator of performance.

4. The Polyhedral Parallel Code Generator (PPCG)

The CA framework is built as an extension to the PPCG compiler. It
takes C code as input and relies on PPCG to produce the polyhedral ex-
traction. Our framework has three optimization levels which give increasing
control to the ant colony optimization. The O1 optimization uses coding
ants to select PPCG compiler options, including the scheduling algorithm,
but lets the PPCG compiler actually perform the scheduling. The O2 op-
timization uses coding ants to select which statements get fused / fissioned
at each level but relies on the PPCG compiler to compute the scheduling
matrix. Finally, O3 gives complete control over fusion / fission and schedul-
ing to the CA framework. The goal is to identify the optimal distribution of
work between the PPCG compiler and the CA framework. For all three op-
timization levels, CA is responsible for selecting the remaining optimizations

8

(e.g. shared memory usage, tile size parameters, unroll factors, etc.)
As a motivating example we will look at the MVT benchmark in the

PolyBench suite as an optimization case study (see figure 1). The MVT
benchmark composes two matrix vector multiplications. It is a good candi-
date for GPU parallelism, since it has no dependences along the outermost
loop. The PPCG generated code using the default options is shown in figure
1(b). It generates two, lightweight kernels that each parallelize over a single
statement. This is not, however, the only possible configuration and overall
performance can benefit from creating a single, coarser kernel.

Ant colony optimization has some advantages over other popular methods
for iterative optimization such as parallel rank order and Nelder-Mead. First,
it does not require the optimization search space to be hyper-rectangular.
Second, framing the optimization space as a graph allows for the inclusion of
meta-data to accelerate the optimization. For example, performing a skew-
ing transformation will only hurt performance for many applications. By
separating skewing and interchange transformations to be rooted at different
nodes in the graph, as shown in Figure 6, the ant colony optimization algo-
rithm can determine whether skewing or interchange, in general, produces
better results.

5. Coding Ants

As mentioned, our Coding Ants parallel code optimization framework
makes use of Ant colony optimization (ACO). ACO is an optimization ap-
proach typically used for solving NP hard problems. It mimics the way ants
find a path to a food source in nature. Ants initially perform a random
search. When an ant finds food, it will travel back to the colony while laying
down a pheromone trail. This acts as a type of indirect communication to
help other ants find the food source. The pheromone trail, however, evapo-
rates over time. Given multiple paths to a food source, the pheromone on
the shortest path will have less time to evaporate before being reinforced by
the next ant. Eventually, all ants will converge to a single, shortest path.

Algorithm 1, from [9], shows the algorithmic skeleton for ACO algorithms.
For each iteration of the while loop, a number of ants construct solutions.
Solutions are constructed from a graph where each node represents a com-
ponent of the solution. A path through the graph represents a complete
solution which can be evaluated. Ants construct solutions probabilistically.
Specifically, ant k at node i chooses to move to node j according to:

9

for (i = 0; i < N; ++i)

for (j = 0; j < N; ++j)

x1[i] += A[i][j] * y1[j]

for (i = 0; i < N; ++i)

for (j = 0; j < N; ++j)

x2[i] += A[j][i] * y2[j]

(a) MVT benchmark C code

// Kernel 1 ...

tx = threadIdx.x

bx = 32 * blockIdx.x

for (it = 0; it < N; it += 32)

shared y2[tx] = y2[tx + it]

syncthreads()

for (i = 0; i < 32; ++i)

x2[tx + bx] += A[i + it][tx + bx] * shared y2[i]

syncthreads()

// Kernel 2 ...

tx = threadIdx.x

bx = 32 * blockIdx.x

for (it = 0; it < N; it += 32)

for (i = 0; i < 32; ++i)

shared A[i][tx] = A[it + bx][tx + i]

shared y1[tx] = y1[tx + it]

syncthreads()

for (i = 0; i < 32; ++i)

x1[tx + bx] += shared A[tx][i] * shared y1[i]

syncthreads()

(b) MVT benchmark PPCG generated code

Figure 1: MVT PolyBench benchmark C code (a) and default PPCG generated code(b).
The PPCG code generates a CUDA kernel for each statement and makes heavy use of
shared memory.

10

pkij =
ταijη

β
ij∑

l∈Nk
i
ταil η

β
il

(2)

where τij is the pheromone amount on the edge from i to j and ηij is some
a priori desirability for moving from node i to node j. α and β control the
pheromone and a priori influence respectively. Nk

i is the set of all possible
transitions ant k can take from node i.

After a solution is constructed, the pheromone values are updated ac-
cording to:

τij = (1− ρ) · τij + ρ ·
∑
s∈Supd

ws · F (s) (3)

where Supd is the set of ant solutions that will be updated. ws is a weight
and F (s) represents the quality of solution s. ρ is the evaporation coefficient
and it determines how quickly the pheromone evaporates.

Ant system (AS) [19], was the first ACO algorithm developed. It was used
to solve the traveling salesman problem. Although AS produced encouraging
results, it was not competitive with state of the art algorithms. Algorithmic
improvements have been applied and a number of ACO algorithms have since
been developed. Elitist AS [18] was the first extension to the AS algorithm.
At the end of each iteration, in addition to the ants updating the pheromone
values along their respective paths, the best-so-far path was updated as well.
This helps to bias the ants’ path selection to the best known solution. Rank-
based AS [14] was another extension over the AS algorithm. Instead of
performing the pheromone update on all ants in the iteration, only the best
m− 1 ants were updated along with the best-so-far solution. The weights of
each solution were set based on its rank such that ws = m− rs, where rs is
the rank of solution s.

The Max-Min Ant System (MMAS) [50] is among the best performing
ACO variants. In MMAS, the pheromone trail is updated based on a single
ant. Depending on the iteration, either the best ant or the best-so-far trail
is updated. In the earlier iterations, the iteration best path is updated more
often, while in the later iterations the best-so-far path is updated more often.
This helps to prevent premature convergence to the globally best solution.
Upper and lower bounds on the amount of pheromone are also set. A constant
lower bound of τmin > 0 is used while the upper bound is set to F (sbs)/ρ. By
setting bounds on the pheromone values, Stutzle and Hoos [50] were able to
prove that the global optimum could be found in a finite number of iterations.

11

Table 1: List of Optimizations

Optimization Level Description
Scheduling Algorithm O1 Pluto or Feautrier Scheduling algorithm
Serialize SCCs O1 CUDA kernel for each SCC
Max Band Depth O1 Maximize the depth of permutable bands
Stmt. Order O2, O3 Set the lexicographic statement order
Partition Stmts. O2, O3 Fuse / Fission loops and kernels
Schedule Matrix O3 Construct the scheduling matrix
Reduction O1, O2, O3 Use parallel reduction
Memory Placement O1, O2, O3 Store arrays in texture or global memory
Shared Memory O1, O2, O3 Toggle use of shared memory per kernel
Cache Config. O1, O2, O3 Set the cudaFuncSetCacheConfig variable
Outer Tile Size O1, O2, O3 Set the tile size for the parallel dims.
Thread Block Size O1, O2, O3 Set the thread block sizes
Unroll Factors O1, O2, O3 Set the unroll factors for intra-kernel loops
Inner Tile Size O1, O2, O3 Set tile sizes for intra-kernel permutable bands
Atomic Store O1, O2, O3 Replace Stores with atomic stores

The hyper-cube framework (HCF) [10] is an extension to ACO algorithms
that replaces the weight function in equation 3 with (

∑
s′∈Supd

F (s′))−1. This
bounds the pheromone values to between 0 and 1. It was proven that for
unconstrained optimization problems, the expected solution quality increased
monotonically for each iteration. This also has some practical benefits in that
the objective functions are automatically scaled. Additionally, the upper
bound in the MMAS implementation does not need to be recomputed when
a new global best solution is found.

5.1. Optimization Space

Table 1 shows a list of optimizations that are considered by the CA frame-
work. There are three optimization levels. O1 optimizes the selection of
compiler options that are exposed by the PPCG compiler. O2 optimizes the
partitioning of statements into CUDA kernels and intra-kernel loop nests.
The scheduling matrix, however, is selected by the PPCG compiler. For O3,
the scheduling matrix is also selected by the coding ants optimization. A
majority of the optimizations considered are used for all three optimization
levels. These optimizations are applied after the schedule has been set and

12

Pluto

Feautrier

Serialize
SCCs
(On)

Serialize
SCCs
(Off)

Max
Band-
Depth
(Off)

Max
Band-
Depth
(On)

Figure 2: The O1 optimization subgraph. Note that the subtree rooted at the ”Feautrier”
node is omitted for brevity and is a clone of the subtree rooted at the ”Pluto” node.

the number of kernels has been determined.

5.1.1. O1

The O1 optimization for the coding ants framework gives maximal con-
trol of the scheduling to the PPCG compiler. Its effect on scheduling is only
in the selection of algorithms and various compiler options available through
the PPCG compiler. Figure 2 shows the optimization subgraph for the O1
optimization level. The first choice is in the selection of the scheduling al-
gorithm. The options are either the Pluto algorithm [12] or the Feautrier
algorithm [22][23]. The Pluto algorithm is able to obtain outer loop par-
allelism and permutable bands. The code generated with this algorithm is
more likely to contain CUDA kernels that are relatively coarse (i.e. they
have deep intra-kernel loops and perform a lot of work). It is also more likely
to tile intra-kernel loops. The Feautrier algorithm is more adept at exposing
inner loop parallelism. Code generated by the Feautrier algorithm is more
likely to contain relatively lightweight CUDA kernels that are nested within
sequential for loops.

The serialize SCCs compiler option separates each strongly connected
component (SCC) into its own CUDA kernel. Statements will only be placed
in the same kernel if they belong to the same strongly connected component.
The effect of the max band depth option is to maximize the width of the per-
mutable bands. Two SCCs are only fused if they do not prevent permutabil-
ity or parallelism. The maximize band depth option is only applicable if the
serialize SCCs option has not been selected. This is because the serialize
SCCs option prevents any fusion from happening and so the band depth is

13

// Kernel 1 ...

tid = threadIdx.x + 32 * blockIdx.x

for (it = 0; it < N; it += 16)

shared y2[threadIdx.x] = tex1D(y2, threadIdx.x + it)

syncthreads()

for (i = 0; i < 16; ++i)

x2[tid] += tex2D(A, i + it, tid) * shared y2[i]

syncthreads()

// Kernel 2 ...

tid = threadIdx.x + 32 * blockIdx.x

for (it = 0; it < N; it += 32)

for (i = 0; i < 32; ++i)

shared y1[threadIdx.x] = y1[threadIdx.x + it]

syncthreads()

for (i = 0; i < 32; ++i)

x1[tid] += tex2D(A, threadIdx.x, i) * shared y1[i]

syncthreads()

Figure 3: CUDA code generated by the O1 optimization. The major difference from the
PPCG generated code is the use of texture memory to store arrays A and y2.

trivially maximized.
Returning to our motivating example, figure 3 shows the result of applying

the O1 optimization on the MVT benchmark. The structure of the code is
similar to that of the default PPCG code of figure 1(b). In this benchmark,
however, performance is improved by the use of texture memory. This is
especially beneficial for kernel two, as the access pattern on array A is un-
coalesced – leading to long latencies when retrieving data.

5.1.2. O2

The O2 optimization gives control over the scheduling matrix to the
PPCG compiler but lets the CA framework select the optimal partitioning
of statements to kernels and loop nests. There are three steps the framework
takes for partitioning statements. First, a lexicographic statement ordering
is selected. This is done by first topologically sorting the SCC dependence
graph. Any valid topological ordering may be selected. Next, the number of
partitions is selected. A partition represents a single loop nest. The number

14

S1

S0

S1

S2

1
Part.

2
Part.

3
Part.

S2

S0

S1

S1

S1

S0

Size
3

Size
1

Size
2

Size
2

Size
1

Size
1

Size
1

Size
1

Statement Order Num. Partitions Partition Size

Figure 4: The O2 optimization subgraph for a program with three statements and no
inter-statement dependences. Note that only the top branch of the graph is shown in full
and dashed edges represent clones of the top branch. Each partition ”size” node represents
the number of SCCs in a partition.

of valid partitions ranges from 1 to N , where N is the number of SCCs. If
there is 1 partition then there is max fusion (i.e every SCC will be nested
under the same loop). Conversely, N partitions represents max fission (i.e.
every SCC will be nested under a separate loop). Finally, the partition sizes
are selected. The size of a partition represents the number of SCCs it con-
tains. Valid partition sizes vary depending on the number of partitions. If
there is a single partition, then only one valid partition size exists (i.e. N).
If there are N partitions, however, then each partition has a size of 1. If the
number of partitions is between 1 and N , then there are multiple options for
selecting the partition sizes of each partition. An example of this is shown
in figure 4.

Figure 5 shows the result of applying the O2 optimization on the MVT
benchmark. The CA framework has chosen to fuse the two statements into
a single, coarser kernel. This reduces overhead associated with launching
CUDA kernels as well as improves cache reuse along array A. A second level
of parallelism is also exposed with this optimization. Note that in figure
1(a), the innermost loop is a prime candidate for parallel reduction. This
is enabled as an option in the CA framework and utilizes a combination of
shuffle instructions and atomic operations. More detail about how reduction
parallelism is exposed can be seen in Section 5.1.4.

15

// Kernel 1 ...

tx = threadIdx.x, ty = threadIdx.y

bx = 32 * blockIdx.x, by = 32 * blockIdx.y

for (i = tx; i < 32; i += 16)

reduce(x2[bx + i], tex2D(A, bx + i, ty + by) * tex1D(y2, ty + by))

reduce(x1[bx + i], tex2D(A, ty + by, bx + i) * y1[ty + by])

Figure 5: CUDA code generated by the O2 optimization. Statements have been fused
into a single kernel. The kernel also exposes an additional level of parallelism via parallel
reduction.

Φ = (-2,-1)Φ = (1,1)Φ = (2,1)Φ = (1,0)Φ = (0,1)

Permute Skew

Figure 6: The O3 optimization subgraph. Note that the hyperplanes under the ”Permute”
node are all rows of the identity matrix.

16

5.1.3. O3

The O3 optimization gives complete control of scheduling to the CA
framework. The framework is responsible for selecting a scheduling hyper-
plane, φ, for each statement as well as defining the partitions. The hyperplane
is selected by CA from a set of valid hyperplanes for the current scheduling
level and SCC. Schedules are created by setting each of the coefficients of φ
between [−2, 2] and checking if the schedule is valid with respect to all of the
intra-SCC dependences. Given a candidate schedule, φ, for each dependence
edge, e, between statements Si and Sj in the SCC, we check:

Pe ⊆ φSj
− φSi

(4)

where Pe is the dependence polyhedron. Equation 4 guarantees that the
schedule does not violate any dependences and follows directly from Farkas
Lemma. If the candidate schedule satisfies equation 4 then it is added to a
set of valid schedules that will be considered by the coding ants framework.

The schedule is selected prior to partitioning. In general, scheduling will
have more impact on performance than the partitioning. An appropriate
schedule can expose parallelism and permutability; two aspects that are par-
ticularly important for GPU acceleration. Additionally, it is simpler to find a
partition that conforms to a selected schedule than to select a valid schedule
given a partitioning of statements. In general, it may not be possible to pro-
duce a valid schedule where two statements are fused under the same loop
nest. It is, however, always possible to produce a valid partitioning through
maximum fission of the SCCs.

Figure 6 shows the optimization graph for selecting the scheduling hy-
perplane. The selected hyperplanes are then organized into a scheduling
matrix. Note that we separate the valid schedules into permutation and
skewing schedules. A permutation schedule is a matrix that consists of rows
of the identity matrix. It results in code which simply permutes the order
of loops in the input code. A skewing schedule consists of a matrix in which
any row contains a two or more non-zero coefficients. It usually results in
more complex code generation but can be useful for obtaining parallelism
and permutability if none exists in the input code. Separating the sched-
ules into these two categories is useful because there are typically more ways
to skew than to permute. This introduces a bias in the framework for se-
lecting schedules that skew. Furthermore, skewing when it is not beneficial
is usually harmful to performance. It can remove existing parallelism and

17

// Kernel 1 ...

tx = threadIdx.x

bx = 64 * blockIdx.x

for (it = 0; it < N; it += 8)

for (i = 0; i < 8; ++i)

x2[bx + i] += tex2D(A, tx + bx, it + i) * tex1D(y2, it + i)

x1[bx + i] += tex2D(A, it + i, tx + bx) * tex1D(y1, it + i)

Figure 7: CUDA code generated by the O3 optimization. Statements have been fused into
a single kernel but the parallel reduction has been lost.

permutability in the input code. By adding an additional layer to separate
skewing from permutation schedules, the initial probability of selecting either
remains 50%.

Figure 7 shows the result of applying the O3 optimization level to the
MVT benchmark. Although the statements have been fused and texture
memory is still being used, reduction level parallelism has not been exposed.
This is possibly due to the large increase in the search space caused by
evaluating the different candidate schedules. As is seen in Section 7, the
O3 optimization level performs worse than the O2 level for this benchmark,
largely because it missed the reduction level parallelism.

5.1.4. Reduction

Parallel reduction is a powerful technique that exposes some amount of
parallelism. A loop is a candidate for parallel reduction if (1) the only de-
pendence within the loop is a write-after-write (WAW) dependence (2) each
iteration of the loop writes to the same memory location, and (3) the arith-
metic operator is associative [43]. Although parallel reduction has been im-
plemented in CUDA [25], it is not often utilized in automatic GPU code
generation. As a part of the coding ants framework, intra-kernel parallel
reduction is implemented.

Intra-kernel parallel reduction is implemented based on the algorithm by
Luitjens et al. [31]. This involves using shuffle instructions to perform a
warp level reduction to reduce to a single value per warp, followed by an
atomic add. Atomics have traditionally been a very slow operation in paral-
lel programming. The Kepler architecture of NVIDIA GPUs, however, has
redesigned atomic operations to be asynchronous. With the newer generation
of GPUs, atomics only introduce bottlenecks if there is a lot of contention

18

for (i = 0; i < N; ++i)

for (j = 0; j < N; ++j)

C[i][j] = A[i][j] * B[j][i]

(a)

Global
A

Texture
A

Global
B

Texture
B

Global
B

Texture
B

(b)

Figure 8: Source code with a poor access pattern on B (a) and the corresponding opti-
mization graph (b).

on a single memory location. By performing the warp level reduction first,
the contention is reduced by a factor of 32 (i.e. the warp size). Additionally,
when the write operation of a parallel reduction is to a location in shared
memory, the atomic contention is limited within the thread block.

The inclusion of the warp level reduction creates some additional con-
straints for the parallel reduction detection. In addition to the three criteria
mentioned earlier, the write array cannot be indexed by the x dimension
of the thread block. Each thread in the warp is viewed as an iteration of
the reduction loop. If the write array is indexed by the x dimension then
each thread in the warp no longer represents a separate iteration of the same
reduction loop. Each thread writes to a different memory location and so
cannot be reduced to a single value per warp.

The selection of parallel reduction in the coding ants framework is rela-
tively straightforward. Parallel reduction is toggled on or off for each parti-
tion and is only possible if every statement in the partition can be reduced.
The partition can be selected either through CA (via the O2 optimization
level) or by the PPCG compiler (through the O1 optimization level). If par-
allel reduction is enabled, then an additional level of parallelism is applied to
the CUDA kernel. This creates a fifth criteria for enabling parallel reduction.
There must be at most two parallel dimensions found so far during schedul-
ing. This is because CUDA allows for up to three dimensions of parallelism.
At least one dimension needs to be reserved for parallel reduction.

19

5.1.5. Memory Placement

GPUs have many different regions in which to store data (e.g. global
memory, texture memory, etc.). These different regions contain caches that
have different desirable access patterns. For example, global memory is sim-
ilar to traditional DRAM in which accessing data sequentially is the best
access pattern. Texture memory, however, is organized with a space-filling
curve [2], and so is optimized for 2D spatial locality. This is particularly use-
ful for storing matrices where it is not possible to access data sequentially.
Figure 8(a) shows a simple example where texture memory can be useful.
Note that it is not possible to obtain spatial locality for both the A and B

matrices simultaneously.
The CA framework optimizes the placement of arrays into either global

or texture memory. All arrays can be placed into global memory, but texture
memory is only available to read-only arrays. Figure 8(b) shows the opti-
mization graph for memory placement. Note that the optimization is not
unconstrained. Placing array A in texture memory affects the likelihood of
every other array also being placed in texture memory. This is to account for
texture cache contention. Placing every array in texture memory may cause
too many cache capacity misses to be beneficial.

5.1.6. Shared Memory + Cache Configuration

Shared memory acts as a type of user controlled cache. It is often useful to
use shared memory in cases where an un-coalesced access pattern is required.
Data is loaded into shared memory in a coalesced way, and the remainder
of the computation is performed using the data in shared memory. Shared
memory usage was incorporated into the PPCG compiler. Shared memory
usage can be toggled on and off through a compiler option. It is, however, a
global option and when enabled, uses shared memory in all kernels whenever
possible. The CA framework implements shared memory at finer granularity
and additionally sets the CUDA cache configuration for each kernel.

There are three CUDA cache configurations – increase the amount of
shared memory, no preference, and increase the amount of L1 cache. Since
they share a physical location, the configurations allow for a trade-off between
L1 cache and shared memory size. When shared memory is enabled, all three
configuration options are available to the traversing ant. When it is disabled,
however, only the ”no preference” and ”prefer L1 cache” options are available.
This is a straightforward implementation decision because it does not make
sense to increase the size of shared memory if it is not being used.

20

5.1.7. Outer Tile + Thread Block Size

The outer tile size (OTS) refers to the tile factors of the parallel dimen-
sions. The OTS determines how much work each thread block will perform.
The thread block size (TBS) refers to the thread block dimensions of the
CUDA kernel. The OTS and TBS together determine the thread granularity
(i.e. the amount of work per thread). For example, if the OTS is 64 and the
TBS is 32, then each thread will have a granularity of two. Setting the TBS
equal to the OTS, however, results in a thread granularity of one. In general,
the granularity can be defined as OTS/TBS.

There are a few constraints on the selection of tile and thread block sizes.
First, the thread block size must be less than or equal to the corresponding
outer tile dimension. A TBS greater than the OTS would imply a thread
granularity that is less than one. Second, the total OTS is limited to 1024.
This is due to the GPU constraint that no thread block can contain more than
1024 threads. Finally, a thread block cannot contain less than 32 threads, as
it would lead to unutilized threads in a warp. For both the OTS and TBS,
the possible values are 32, 64, 128, 256, or 512 for the x dimension; 4, 8, 16,
or 32 for the y dimension; and 2, 4, 8, or 16 for the z dimension.

5.1.8. Unroll Factors + Inner Tile Size

The CA framework selects optimal unroll factors and tile sizes for intra-
kernel loops. Unrolling loops has several advantages. Before each iteration
of the loop, a check must be made to determine if the thread should exit
the loop. Loop unrolling reduces the number of these checks. Unrolling can
also improve register usage and expose instruction level parallelism. Tiling
is a combination of strip-mine plus loop interchange and is commonly used
to improve data locality. A traversing ant may select unroll factors of 1 (i.e.
no unroll), 2, 4, or 8. The possible tile sizes are 1 (i.e. no tile), 4, 8, 16,
32, or 64. The PPCG compiler provides mechanisms to apply both of these
transformations.

Similar to the selection of thread block sizes, we place additional con-
straints on the selection of unroll factors and tile sizes. Specifically, the tile
sizes must be greater than the unroll factors. As mentioned by Chen [16],
selecting a tile size less than the unroll factor will not yield much improve-
ment, since the data in the tiles will already be stored in registers. Selecting
optimal unroll factors is particularly important since it has important im-
plications on occupancy. Unrolling loops will usually increase the register
pressure and may cause a drop in occupancy. This may still be beneficial,

21

however, as the benefits to register usage and instruction level parallelism
may improve the overall runtime.

5.1.9. Atomic Store

As mentioned earlier, NVIDIA GPUs have greatly improved the atomics
since the Kepler architecture. Atomics are now implemented asynchronously
and is only slow when there is a lot of contention. If there is no contention,
however, using atomics can still be used for asynchronous stores. This type
of optimization was first used in our earlier work [36] and typically yields a
modest speed-up. The use of atomic stores is considered in the CA frame-
work. Specifically, atomic store is toggled on or off for each kernel. When
enabled, all stores to global memory will be replaced with the atomicExch
function.

5.2. Optimization Graph

Since the optimization space is so large, the graph is not fully constructed
prior to running the ant colony optimization algorithm. Instead, it is con-
structed throughout the traversal. A node in the graph is only created when
an ant chooses a previously untouched edge to traverse. The destination
node of the edge is initialized and appropriate edge pointers are updated. A
part of the initialization is to identify the number of outgoing edges. This
can be computed based on the type of optimization the node represents. For
example, if the node represents an optimization that is toggled on or off (e.g.
shared memory, atomic store, etc.), the node will have two outgoing edges –
one edge to enable the optimization and one edge to disable the optimization.
The graph can be dynamically constructed in this way because the ant only
needs to know the number of outgoing edges to make a decision according to
equation 2.

Like previous work [52][29], the CA framework uses the polyhedral model
to apply certain transformations (e.g. loop permutation, fusion, fission, etc.).
Unlike previous work, however, the set of transformations to consider are not
selected prior to running the iterative optimizer. The CA framework is tightly
integrated with the PPCG compiler and these transformations are selected
during scheduling. This has the advantage that no additional analysis is
needed to identify legal transformations. It also gives CA insight into the full
space of valid transformations. Algorithm 2 shows the modifications made to
the Pluto algorithm [12] to allow the CA framework to select transformations.
Note that HS is the transformation matrix for statement S and H⊥S is the

22

orthogonal subspace to the HS. The call to the ConstructSolution function
in line 17 triggers the traversal of O3 optimization subgraph of figure 6.
Similarly, calling ConstructSolution in line 24 triggers the traversal of the
O2 optimization graph of figure 4 to select a partitioning of statements. Note
that cutting dependences is synonymous with partitioning.

One advantage of framing the optimization space via a graph is the abil-
ity to insert domain expertise. Optimizations that are expected to have a
significant impact on performance (e.g. scheduling matrix, partitioning, etc.)
are placed toward the top of the optimization graph. Nodes near the root of
the graph will be evaluated more thoroughly because ants are more likely to
select them and thus, better communicate their impact of the optimization
on performance. Another advantage of using a graph is the ability to add
nodes that correspond to meta-data. These are nodes that do not directly
map to an optimization, but can help guide ants toward an optimal solution.
An example of this meta-data is seen in the selection of scheduling matrices
in Section 5.1.3. The use of a graph allows us to divide the schedules into
skewing and permutation transformations.

The use of a graph as the optimization space also allows for the pruning
of likely bad solutions. Pruning the search space of known bad solutions has
been known to significantly improve solution quality and reduce the search
time [16]. The optimization graph is pruned in several ways. As seen in
the previous section, we prune the thread block size and the intra-kernel tile
sizes. The possible thread block sizes is dependent on the selection of the
outer tile sizes. Similarly, the intra-kernel tile sizes are pruned based on the
selection of unroll factors.

The possible partitions are also pruned to ensure at least two dimensions
of parallelism when it is available. A constraint is added such that two
SCCs with different levels of parallelism cannot be fused at the outermost
dimension. This prevents parallelism from being disabled due to fusion.
Additionally, if multiple SCCs are fused at the outermost dimension, and
they have parallelism at the next dimension, then they must be also be fused
at the second dimension. If SCCs are fused at the outermost dimension,
then they will be contained in a single CUDA kernel. Fissioning at the
second dimension, will force the kernel to launch with a one-dimensional
thread block. Thus, even though parallelism exists at the second dimension,
the generated code will be unable to exploit this parallelism. When the O3
optimization level is enabled, pruning also takes place to ensure that the
schedules selected contain sufficient parallelism. This is done by selecting

23

Kernel 2
(S2, S3)

Kernel 1
(S0, S1)

rows(HS2)= 0 ʌ rows(HS3) = 0 rows(HS0)= 0 ʌ rows(HS1) = 0

Figure 9: Optimization graph for two kernels with no dependences. Kernel 1 contains
statements S0 and S1, while kernel 2 contains statements S2 and S3. Semantic edges are
shown in black and are traversed whenever the condition, shown as the edge label, is true.
Note that the dashed circles represent intra-kernel optimization subgraphs for partitioning
statements into intra-kernel loops.

candidate schedules that not only satisfy equation 4 but also satisfy Pe ⊇
φSj
− φSi

for the outer two dimensions.
Optimization graphs that are used for ant colony optimization are typ-

ically directed acyclic graphs (DAG). Ants that traverse DAGs will always
terminate. The requirement that optimization graph is a DAG presents a
problem. Consider the case where there are two CUDA kernels that are
completely independent (i.e. there exists no dependence between kernel 1
and kernel 2). In a DAG optimization graph, there exists two paths – one
where kernel 1 is executed first, followed by kernel 2 and a second path where
kernel 2 is executed first followed by kernel 1. An acyclic optimization graph
will contain multiple copies of the same kernel. This is problematic, however,
as intra-kernel optimizations (e.g. tiling, unrolling, thread block sizes, etc.)
will only effect the performance of a single kernel. Multiple copies of the
kernel in the optimization graph will hinder the ants’ ability to communicate
about the value of the different solution components.

The CA framework eliminates problems associated with multiple copies
by adding cycles. Figure 9 illustrates how cycles are added to ensure that
lexicographic ordering does not result in unnecessary duplicates of parts of
the optimization graph. Cycles are introduced by adding a new type of edge,
called semantic edges, to the optimization graph. These semantic edges differ
from the rest of the edges in the graph in that they are traversed by an
ant when some deterministic criteria is satisfied. Specifically, the statements

24

being scheduled and the current scheduling level are used to determine which
semantic edge should be traversed. The semantic edge from kernel 1 to kernel
2 in figure 9, for example, is traversed when the number of chosen hyperplanes
for S2 and S3 is zero (i.e. the statements in kernel 2 have not yet been
scheduled). Although figure 9 shows how cycles prevent duplicate kernels in
the optimization graph, the same process is used to prevent duplicates when
partitioning statements into intra-kernel loops as well.

6. ACO Extensions

The coding ants framework applies the Max-Min Ant System (MMAS)
with hypercube formulation (HCF). Recall from Section 5 that the effect of
applying the HCF is that the weight in equation 3 becomes (

∑
s′∈Supd

F (s′))−1.

Additionally, the MMAS updates the pheromones based on a single ant (i.e.
either the iteration best ant or the best-so-far ant). Applying the HCF with
the MMAS simplifies the update function in equation 3 to:

τ = (1− ρ) · τ + ρ · 1 (5)

6.1. Per Kernel Updates

Extensions to this algorithm are also applied to make it more amenable
to GPU performance optimization. In addition to updating the pheromone
values with the an ant based on the global runtime performance, pheromone
values are also updated based on the per kernel timings. Some solutions
may have a poor global runtime performance because of bottlenecks in a
single kernel. The optimizations selected for other kernels may, however, be
profitable. The CA framework keeps track of the best ant per kernel and
updates each of the intra-kernel optimization subgraphs using equation 5 at
the end of each iteration. The benefit of this extension is that optimizations
selected for one kernel will not be unfairly penalized because of optimizations
selected for another kernel.

6.2. Performance Metrics

Another extension to the ACO algorithm is the use of performance met-
rics. Performance metrics can be used to communicate additional informa-
tion between the ants. Instead of communicating that using texture memory
is desirable, for example, it can communicate that it is desirable because it
leads to a high cache hit rate. Conversely, ants can also communicate that

25

parallel reduction, for example, leads to a 50% drop in occupancy, and so
it should be avoided. The idea is to encourage ants to select optimizations
which address current performance bottlenecks, as it has the best chance of
improving performance.

The performance metrics that are gathered from each evaluation are
shown in table 2. After the evaluation of an ant, the performance metrics
are gathered using nvprof [3] and are normalized between 0 and 1 – where 1
is the theoretical peak. The value of each performance metric is then stored
at each edge along the ant’s path along with the standard deviation. The
metric values at each edge are then used to compute the a priori desirability,
η, from equation 2. The eta value is computed by:

ηij = 1 +
1

|Mij|
·

∑
mij∈Mij

msb∈Msb

(mij −msb)

σmij
+ 1

(6)

where Mij is the set of performance metrics from table 2 accumulated on the
edge from node i to node j. Msb is the set of performance metrics gathered
from the best-so-far solution. σmij

is the standard deviation of metric m on
the edge ij.

The effect of equation 6 is to weight edges more heavily which address the
performance bottlenecks of the best-so-far solution. The performance metric,
mij, acts as a prediction. If edge ij is traversed, we expect that metric m
will have a value that is close to mij. The influence of each performance
metric is controlled by the standard deviation of the metrics on edge ij. If
the standard deviation is low, then mij is a good predictor of performance.

6.3. Regression Tree

The last extension the coding ants framework makes to the traditional
ACO algorithm is the utilization of regression trees [13]. Regression trees
are similar to decision trees [42], except instead of classification, regression
trees model piecewise constant functions. Given a number of samples, the
regression tree is built by recursively splitting the samples until some criterion
is met (e.g. the number of samples is less than some threshold). Each node in
the resulting tree represents a split. Splits are chosen such that the variance
of the children is minimized. Regression trees can be used to predict the
performance of applying a set of optimizations. The CA framework uses
regression trees to guide ants’ optimization choices.

26

Sample # Part. Mem. Tile Score
P0 2 T 4 1s
P1 2 T 8 2s
P2 1 T 4 4s
P3 1 T 8 5s
P4 2 G 4 6s
P5 2 G 8 7s
P6 1 G 4 8s
P7 1 G 8 9s

(a)

Memory

T

G

Num.
Partition

Tile Size

Tile Size

≤ 1

≤ 4

≤ 4

> 4

> 4

> 1

(b)

Figure 10: Regression tree (b) constructed from sample points (a) corresponding to op-
timizations selected by 8 ants. A subset of the optimizations are shown for brevity and
include number of partitions, memory placement (i.e. T for texture and G for global
memory), and tile size. Score is the runtime measured in seconds. Note that even though
partitioning is performed before memory placement in the optimization graph, the regres-
sion tree places memory placement at the root because of its greater performance impact.

A regression tree is constructed before each iteration from the solutions
that have been discovered from all prior iterations. These solutions act as
samples of the optimization space, where the different optimizations act as
the attributes. Figure 10 shows an example of a regression tree constructed
from previous solutions. Splits are represented through linear inequalites.
For the O2 and O3 optimization levels, the regression tree is constructed
from a subset of the optimizations. Only partitioning at the outermost level is
considered with the O2 optimization. This lets the regression tree determine
the partitioning of statements to CUDA kernels, but it is not concerned with
intra-kernel loops. When O3 is enabled, the regression tree only considers
whether a statement’s schedule is a skewing or a permutation hyperplane.
The termination criteria is based on the number of samples. Specifically,
construction terminates if the number of samples is ≤ 2. For each level of
the recursion, a split is chosen which minimizes the variance of the global
runtime. This effectively segments the optimization space into regions that
have promising performance.

The regression tree is viewed as an extension to the optimization graph.
After it is constructed, the edges of the regression tree are updated with
pheromones according to the original ant system algorithm [19]. This is
done by identifying the path through the newly constructed regression tree

27

that an ant would have taken based on its selected optimizations. For each
new ant in the next iteration, the regression tree is traversed prior to traversal
of the optimization graph. The nodes correspond to splits and are recorded
by the traversing ant. The splits act as filters. Throughout the traversal
of the optimization graph, the ant must only select paths which respect the
splits that have been traversed in the regression tree. For example, if the
ant traverses the bottom path of the ”Memory” node in figure 10(b), then
the ant must choose to use texture memory when it reaches the appropriate
edge in the optimization graph. This type of filtering is easy to incorporate
in ACO algorithms. It corresponds to obstacles being placed on some paths,
making them impassable.

There are several advantages to using a regression tree with ACO. First,
splits toward the top of the regression tree correspond to distinguishing op-
timizations specific to the program being optimized. For example, loop un-
rolling optimizations are selected toward the end of the optimization graph.
This implies that loop unrolling will have little impact on performance. Ants
will have less communication toward the end of the graph because of the
many different paths that are available in the optimization graph. If this
assumption is wrong, however, the construction of the regression tree will
place splits relating to loop unrolling at the root of the tree. Ants will make
this decision first and so more effectively communicate the benefits of loop
unrolling.

Another advantage of the regression tree is that it can help focus ants
to search specific subspaces. These subspaces are not selected prior to opti-
mization, but rather they are discovered by sampling the optimization space.
For each iteration, the CA framework directs half of the ants to search the
subspace of the best-so-far solution. This allows for a type of local search,
in which the ants are searching near the best-so-far solution by applying the
most crucial optimizations, and searching among the others.

7. Experiments

We performed experiments to evaluate our approach (all code is available
on GitHub 1) using the PolyBench suite version 4.2.1 2. We compare the

1https://github.com/epapenhausen/CodingAnts
2http://web.cse.ohio-state.edu/ pouchet.2/software/polybench

28

performance of the Coding Ants framework to that of the performance gen-
erated by the PPCG compiler version 0.05 alone as well as a random search.
In all cases CUDA code was generated and compiled using NVCC version
8.0. The performance was evaluated on two GPUs – the NVIDIA GeForce
GT 755m and NVIDIA GeForce GTX 1070.

The NVIDIA GeForce GT 755m has a compute capability 3.0 (i.e. Kepler
architecture). It contains 2 multiprocessors with 192 CUDA cores each, oper-
ating at 1.02 GHz. It contains 65,536 registers and 48KB of shared memory
per thread block and has 256KB of L2 cache. The NVIDIA GeForce GTX
1070 has a compute capability of 6.1 (i.e. Pascal architecture). It contains
15 multiprocessors with 128 cores operating at 1.75 GHz. It contain 65,536
registers and 48KB of shared memory per thread block and has 2MB of L2
cache.

We compare the performance of the three CA optimization levels with
the default PPCG strategy and a random search through the graph. The
CA optimizations were run with 10 ants for 5 iterations – for a total of 50
evaluations. The α and β values from equation 2 were both set to 1 and the
evaporation coefficient, ρ, was set to 0.1. The performance of each evaluation
was determined as the mean execution time of 10 executions, and so the time
required for an optimization was 10 ants × 5 iterations × 10 executions ×
code runtime. The default PPCG strategy uses the Pluto algorithm with the
maximize band depth option enabled. Shared memory is also used whenever
possible. The random search evaluates the performance of 50 random paths
through the O2 optimization graph.

Figure 12 shows the performance of the CA framework for the GT 755m
GPU. An average speed-up of 2.85, 3.02 and 2.44 was obtained for the O1,
O2, and O3 optimization levels respectively over the default PPCG gener-
ated code. The random search only achieved an average speed-up of 2.03.
There were several benchmarks in which CA did not improve over the PPCG
compiler (2mm, 3mm, gemm and syrk). These benchmarks required careful
tuning of thread block and tile sizes to obtain good performance. Further-
more, there did not appear to be a strong correlation between performance
and distance to the global optimum for these examples. This makes the
search process more difficult. In several benchmarks, a dramatic perfor-
mance improvement was gained largely because of the new optimizations we
have included. The doitgen benchmark, for example, saw a 2x performance
improvement just from using texture memory. This further improved to 3x
by including parallel reduction as well.

29

Figure 13 shows the performance on the GTX 1070 GPU. Average speed-
ups of 1.58, 1.56, and 1.3 were obtained for the O1, O2, and O3 optimization
levels. The random search achieved a speed-up of 1.4. The O1 optimization
performed slightly better than the O2 optimization on this GPU and even
outperformed the PPCG compiler on the 2mm, gemm, and syrk benchmarks.
Interestingly, the overall performance improvement on this GPU was not as
dramatic as the GT 755m GPU. This is likely because the GTX 1070 is more
powerful. Compared to the GT 755m, the GTX 1070 has 5x more cores, 3x
increased memory bandwidth and 8x more L2 cache. As a result, the effects
of a poor access pattern, for example, is mitigated by the faster bandwidth
and increased cache size.

7.1. ACO Convergence

We also evaluated the efficacy of our extensions to the ACO algorithm.
Figure 14 shows the performance of the best-so-far solution for each eval-
uation of an ant throughout the ACO algorithm. Three configurations of
the CA framework are compared on a subset of the benchmarks. CA base
is the ACO algorithm without any of the extensions described earlier. Ants
make decisions based only on the pheromone coefficient. CA with metrics
shows the performance of the ACO algorithm when performance metrics are
included as the a priori parameter to equation 2. Finally, CA full shows the
performance when metrics and the regression tree are included.

Results suggest that the use of a regression tree allows the CA full configu-
ration to break out of local minimums that trap the other two configurations.
For most benchmarks, the use of metrics led to a modest improvement over
CA base. There are some exceptions however. In figure 14(b), CA with met-
rics performs slightly worse than CA base. For the gesummv benchmarks
on both GPUs, CA with metrics performs similarly to CA full. This sug-
gests there is some benefit to including performance metrics into the ACO
algorithm.

7.2. Comparison

To provide some context for our results, we compared them with those
achieved in another recent work, that of Shirako et al. [48] who developed a
framework called PolyAST. PolyAST achieves higher performance through
integrating separate schedules for block-level and thread-level parallelism by
ways of superposition. They demonstrated their framework using the Poly-
Bench suite in conjunction with two GPU architectures: (1) an older high-end

30

Coding Ants Coding Ants PolyAST PolyAST
GeForce GTX 1070 GeForce GT 755m Tesla M2050 Tesla K80

1.3 1.5 0.9 1.2

Figure 11: Median speed-ups for the PolyBench benchmarks 2mm, 3mm, covariance,
doitgen, gemm, gemver, gsummv, jacobi-2d and mvt for the Coding Ants and PolyAST
frameworks using the NVIDIA boards listed in the table header.

GPU – the NVIDIA Tesla M2015 and (2) a more recent one – the NVIDIA
Tesla K80. While these are GPU boards rather different from the ones we
tested our framework on, we can neutralize these differences by comparing
just the speed-ups obtained over the default PPCG generated code. For our
comparison we took the maximum of the O1, O2, O3 speed-ups for Coding
Ants. For PolyAST we divided the two speed-up numbers they reported, that
is, the speed-up of PPCG over a gcc-O3 compilation (resulting in sequential
code) and the speed-up of PolyAST over that gcc-O3 compilation.

There were nine PolyBench benchmarks that both Shirako et al. and
we tested. Figure 15 visualizes eight of these nine benchmarks.The doitgen
benchmark scored a speed-up of over 200 with both Tesla boards for PolyAST
and we omitted it because it would dominate the plot. Further, we also
calculated the median speedup obtained for each GPU model and algorithm,
shown in the table of Figure 11.

Given these analyses we observe a slight advantage (around 10%) of Cod-
ing Ants over PolyAST in the median case. But there are some benchmarks
in which CA shines and some in which PolyAST does better. Others show
similar performance gains. Recalling that we have also observed this diversity
for CA’s different optimization levels, it appears that the best optimization
strategy depends on the input code (here, the benchmark); there are no clear
winners overall. In practice, one would need to try out the different strategies
and see which performs best for a specific piece of code.

8. Conclusions

In this work we presented the Coding Ants framework, a tool for us-
ing ACO for GPU based auto-tuning. We showed how GPU optimization

* Timings do not include CUDA memcpy as it accounts for ≥ 50% of execution time.

31

 0

 2

 4

 6

 8

 10

 12

 14

correlation

covariance

2m
m

3m
m

atax*

bicg*

doitgen

gem
m

gem
ver*

gesum
m

v*

lu m
vt*

syrk
jacobi-1d

jacobi-2d

heat-3d

average

sp
e
e
d

-u
p

CA O1
CA O2
CA O3

Random

Figure 12: Speed-up over the default PPCG generated code on the NVIDIA GeForce GT
755m GPU using three optimization levels: O1, O2, O3, and a random search.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

correlation

covariance

2m
m

3m
m

atax*

bicg*

doitgen

gem
m

gem
ver*

gesum
m

v*

lu m
vt*

syrk
jacobi-1d

jacobi-2d

heat-3d

average

sp
e
e
d

-u
p

CA O1
CA O2
CA O3

 Random

Figure 13: Speed-up over the default PPCG generated code on the NVIDIA GeForce GTX
1070 GPU using three optimization levels: O1, O2, O3, and a random search.

32

NVIDIA GeForce GT 755m

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 0.045

 0.05

 0 5 10 15 20 25 30 35 40 45 50

R
u
n
ti

m
e
 (

s)

Number of Evaluations

CA Base
CA w/Metrics

CA Full

(a) mvt*

NVIDIA GeForce GTX 1070

 0.032

 0.034

 0.036

 0.038

 0.04

 0.042

 0.044

 0.046

 0.048

 0.05

 0 5 10 15 20 25 30 35 40 45 50

R
u
n
ti

m
e
 (

s)

Number of Evaluations

CA Base
CA w/Metrics

CA Full

(b) mvt*

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0 5 10 15 20 25 30 35 40 45 50

R
u
n
ti

m
e
 (

s)

Number of Evaluations

CA Base
CA w/Metrics

CA Full

(c) correlation

 0.14

 0.15

 0.16

 0.17

 0.18

 0.19

 0.2

 0.21

 0.22

 0.23

 0.24

 0 5 10 15 20 25 30 35 40 45 50

R
u
n
ti

m
e
 (

s)

Number of Evaluations

CA Base
CA w/Metrics

CA Full

(d) correlation

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0 5 10 15 20 25 30 35 40 45 50

R
u
n
ti

m
e
 (

s)

Number of Evaluations

CA Base
CA w/Metrics

CA Full

(e) gesummv*

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 0 5 10 15 20 25 30 35 40 45 50

R
u
n
ti

m
e
 (

s)

Number of Evaluations

CA Base
CA w/Metrics

CA Full

(f) gesummv*

Figure 14: Evolution of the best-so-far solution for the base CA framework, CA with
performance metrics, and CA using metrics and a regression tree. Results from three
benchmarks are shown on the NVIDIA GeForce GT 755m (a)(c)(e), and the NVDIA
GeForce GTX 1070 (b)(d)(f).

can be represented through a, possibly cyclic, optimization graph. We also
presented several optimizations that are not typically considered with GPU
auto-tuners. Experimental evaluation of three levels of optimization that
give increasing control to the CA framework was also performed. Results
show that the O1 and O2 optimization levels are the most promising, while

33

 0

 2

 4

 6

 8

 10

 12

 14

2m
m

3m
m

covariance

gesum
m

v*

gem
m

gem
ver*

jacobi-2d

m
vt*

sp
e
e
d

-u
p

CA 1070
CA 755m

PolyAST M2050
PolyAST K80

Figure 15: Speed-up over default PPCG generated code for Coding Ants and PolyAST,
each running on different GPU hardware.

the O3 optimization performed the worst. In general, there are too many
ways to harm performance by selecting random schedules. Use of a cost
model to select the schedule analytically is shown to be the best choice for
most benchmarks. Finally, we presented several extensions to the ACO algo-
rithm to make it more amenable to performance optimization. Experiments
showed using performance metrics and regression trees in particular led to
better quality solutions over ACO alone.

Acknowledgements

This work was supported by the National Science Foundation grants CNS-
0435060, CCR-0325197, EN-CS-0329609, and IIS-1527200, as well as the
MSIP (Ministry of Science, ICT and Future Planning), Korea, under the
”ITCCP Program” directed by NIPA

References

[1] (2011). The openacc application programming interface, .

[2] (2012). NVIDIA CUDA C Programming Guide 4.2 . Technical Report.

[3] (2014). Visual Profiler User’s Guide. Technical Report.

[4] Agakov, F., Bonilla, E., Cavazos, J., Franke, B., & Fursin, G. (2006).
Using machine learning to focus iterative optimization. In Proceedings

34

of the International Symposium on Code Generation and Optimization
(pp. 295–305).

[5] AlZayer, F. R. (2015). ACCTuner: OpenACC Auto-Tuner For Acceler-
ated Scientific Applications . Master’s thesis King Abdullah University
of Science and Technology.

[6] Ansel, J., Kamil, S., Veeramachaneni, K., Ragan-Kelley, J., Bosboom,
J., O’Reilly, U.-M., & Amarasinghe, S. (2014). Opentuner: An exten-
sible framework for program autotuning. In Proceedings of the 23rd
international conference on Parallel architectures and compilation (pp.
303–316). ACM.

[7] Ashouri, A. H., Mariani, G., Palermo, G., Park, E., Cavazos, J., &
Silvano, C. (2016). Cobayn: Compiler autotuning framework using
bayesian networks. ACM Transactions on Architecture and Code Opti-
mization (TACO), 13 .

[8] Benabderrahmane, M.-W., Pouchet, L.-N., Cohen, A., & Bastoul, C.
(2010). The polyhedral model is more widely applicable than you think.
In Proceedings of the International Conference on Compiler Construc-
tion CC ’15. Paphos, Cyprus.

[9] Blum, C. (2005). Ant colony optimization: Introduction and recent
trends. Physics of Life Reviews , 2 , 353–373.

[10] Blum, C., & Dorigo, M. (2004). The hyper-cube framework for ant
colony optimization. IEEE Transactions on Systems, Man, and Cyber-
netics – Part B , 34 , 1161–1172.

[11] Bodin, F., Kisuki, T., Knijnenburg, P., O’Boyle, M., & Rohou, E.
(1998). Iterative compilation in a non-linear optimisation space. Work-
shop on Profile and Feedback-Directed Compilation, .

[12] Bondhugula, U., Baskaran, M., Krishnamoorthy, S., Ramanujam, J.,
Rountev, A., & Sadayappan, P. (2008). Automatic transformations for
communication-minimized parallelization and locality optimization in
the polyhedral model. In International Conference on Compiler Con-
struction (ETAPS CC).

35

[13] Breiman, L., Friedman, J., Stone, C. J., & Olshen, R. (1984). Classifi-
cation and Regression Trees . Taylor and Francis.

[14] Bullnheimer, B., Hartl, R. F., & Strauss, C. (1999). A new rank-based
version of the ant system: A computational study. Central European J
Operations Res Econom, 7 , 25–38.

[15] Chaimov, N., Biersdorff, S., & Malony, A. D. (2013). Tools for machine-
learning-based empirical autotuning and specialization. International
Journal of High Performance Computing Applications , 27 , 403–411.

[16] Chen, C. (2007). Model-Guided Empirical Optimization for Memory
Hierarchy . Ph.D. thesis University of Southern California.

[17] Christen, M., Schenk, O., & Burkhart, H. (2011). Patus: A code gen-
eration and autotuning framework for parallel iterative stencil compu-
tations on modern microarchitectures. In Proceedings of the 2011 IEEE
25th International Parallel & Distributed Processing Symposium IPDPS
’11 (pp. 676–687). Washington DC, USA.

[18] Dorigo, M. (1992). Optimization, learning and natural algorithms . Ph.D.
thesis Politecnico di Milano, Italy Milan, Italy.

[19] Dorigo, M., Maniezzo, V., & Colorni, A. (1996). Ant system: Optimiza-
tion by a colony of cooperating agents. IEEE Transactions on Systems,
Man, and Cybernetics – Part B , 26 , 29–41.

[20] Enterprise, C. (2010). Hmpp:hybrid compiler for many core applications
workbench user guide.. Technical Report.

[21] Feautrier, P. (1991). Dataflow analysis of array and scalar references.
International Journal of Parallel Programming , 20 , 23–53.

[22] Feautrier, P. (1992). Some efficient solutions to the affine scheduling
problem: part i. one-dimensional time. International Journal of Parallel
Programming , 21 , 313–348.

[23] Feautrier, P. (1992). Some efficient solutions to the affine scheduling
problem: part ii. multidimensional time. International Journal of Par-
allel Programming , 21 , 389–420.

36

[24] Grauer-Gray, S., Xu, L., Searles, R., Ayalasomayajula, S., & Cavazos,
J. (2012). Auto-tuning a high-level language targeted to gpu codes.
Innovative Parallel Computing , .

[25] Harris, M. (2007). Optimizing parallel reduction in cuda. Presentation
packaged with CUDA Toolkit.

[26] Kirkpatrick, S., Gelatt, C. D., & Vecchi, M. P. (1983). Optimization by
simulated annealing. Science, 220 , 671–680.

[27] Kisuki, T., Knijnenburg, P. M. W., O’Boyle, M. F. P., Bodin, F., &
Wijshoff, H. A. G. (1999). A feasibility study in iterative compilation.
High Performance Computing , (pp. 121–132).

[28] Kolesnichenko, A., Poskitt, C. M., & Nanz, S. (2017). Safegpu:
Contract-and library-based gpgpu for object-oriented languages. Com-
puter Languages, Systems & Structures , 48 , 68–88.

[29] Liao, C., Quinlan, D. J., Vuduc, R., & Panas, T. (2009). Effective source-
to-source outlining to support whole program empirical optimization.
In International Workshop on Languages and Compilers for Parallel
Computing LCPC ’09. Newark Delaware.

[30] Lim, R. V., Norris, B., & Malony, A. D. (2017). Auto-
tuning gpu kernels via static and predictive analysis, . URL:
https://arxiv.org/abs/1701.08547.

[31] Luitjens, J. (2014). Faster parallel reductions on kepler. URL:
https://devblogs.nvidia.com/parallelforall/faster-parallel-reductions-kepler/

presentation packaged with CUDA Toolkit.

[32] Magni, A., Grewe, D., & Johnson, N. (2013). Input-aware auto-tuning
for directive based gpu programming. In Proceedings of the 6th Work-
shop on General Purpose Processor Using Graphics Processing Units
GPGPU-6 (pp. 66–75). New York, NY.

[33] Nelder, J. A., & Mead, R. (1965). A simplex method for function mini-
mization. Computer Journal , 7 , 308–313.

[34] Nystrom, N., White, D., & Das, K. (2011). Firepile: run-time compila-
tion for gpus in scala. In ACM SIGPLAN Notices (pp. 107–116). ACM
volume 47.

37

[35] OpenMP (1997). Openmp – api specification for parallel programming.
Http://openmp.org.

[36] Papenhausen, E., & Mueller, K. (2013). “rapid rabbit: Highly opti-
mized gpu accelerated cone-beam ct reconstruction. In Nuclear Science
Symposium and Medical Imaging Conference.

[37] Papenhausen, E., Zheng, Z., & Mueller, K. (2013). Creating optimal
code for gpu-accelerated ct reconstruction using ant colony optimization.
Medical Physics , 40 .

[38] Pouchet, L.-N., Bondhugula, U., Bastoul, C., Cohen, A., Ramanujam,
J., Sadayappan, P., & Vasilache, N. (2011). Loop transformations: con-
vexity, pruning and optimization. ACM SIGPLAN Notices , 46 , 549–
562.

[39] Puschel, M., Moura, J. M. F., Johnson, J. R., Padua, D., Veloso, M. M.,
Singer, B. W., Xiong, J., Franchetti, F., Gacic, A., Voronenko, Y., Chen,
K., Johnson, R. W., & Rizzolo, N. (2005). Spiral: Code generation for
dsp transforms. In Proceedings of the IEEE, special issue on Program
Generation, Optimization and Platform Adaptation (pp. 232–275). vol-
ume 93.

[40] Puschel, M., Singer, B., Xiong, J., Moura, J. M. F., Johnson, J., Padua,
D., Veloso, M., & Johnson, R. W. (2004). Spiral: A generator for
platform-adapted libraries of signal processing algorithms. International
Journal of High Performance Computing Applications , 18 , 21–45.

[41] Qasem, A., Kennedy, K., & Mellor-Crummely, J. (2006). Automatic
tuning of whole applications using direct search and a performance-based
transformation system. The Journal of Supercomputing , 36 , 183–196.

[42] Quinlan, J. R. (1986). Induction of decision trees. Machine Learning ,
1 , 81–106.

[43] Rauchwerger, L., Amato, N. M., & Padua, D. A. (1995). Run-time meth-
ods for parallelizing partially parallel loops. In Proceedings of the 9th
ACM International Conference on Supercomputing . Barcelona, Spain.

[44] Rudy, G., Khan, M. M., Hall, M., Chen, C., & Chame, J. (2010). A
programming language interface to describe transformations and code

38

generation. In International Workshop on Languages and Compilers for
Parallel Computing LCPC ’10. Berlin, Heidelberg.

[45] Russel, S. J., & Norvig, P. (2003). Artificial Intelligence: A Modern
Approach. (2nd ed.). Pearson Education.

[46] Sastry, K., Goldberg, D., & Kendall, G. (2005). Search methodologies.
name of chapter: Genetic Algorithms. (pp. 97–125). Springer.

[47] Schrijver, A. (1998). Theory of Linear and Integer Programming . Wiley.

[48] Shirako, J., Hayashi, A., & Sarkar, V. (2017). Optimized two-level
parallelization for gpu accelerators using the polyhedral model. In Pro-
ceedings of the 26th International Conference on Compiler Construction
(pp. 22–33). ACM.

[49] Steuwer, M., Remmelg, T., & Dubach, C. (2017). Lift: a functional data-
parallel ir for high-performance gpu code generation. In Proceedings of
the 2017 International Symposium on Code Generation and Optimiza-
tion (pp. 74–85). IEEE Press.

[50] Stutzle, T., & Hoos, H. H. (2000). Max–min ant system. Future Gen-
eration Computing Systems , 16 , 889–914.

[51] Tabatabaee, V., Tiwari, A., & Hollingsworth, J. K. (2005). Parallel
parameter tuning for applications with performance variability. In Pro-
ceedings of the 2005 ACM/IEEE conference on supercomputing SC ’05.
Washington DC, USA.

[52] Tapus, C., Chung, I.-H., & Hollingsworth, J. K. (2002). Active harmony:
Towards automated performance tuning. In Proceedings of the 2002
ACM/IEEE conference on supercomputing SC ’02. Baltimore, Mary-
land.

[53] Thies, W., Karczmarek, M., & Amarasinghe, S. (2002). Streamit: A
language for streaming applications. In International Conference on
Compiler Construction (pp. 179–196). Springer.

[54] Tillmann, M., Karcher, T., Dachsbacher, C., & Tichy, W. F. (2014).
Application-independent autotuning for gpus. Parallel Computing: Ac-
celerating Computational Science and Engineering , 25 , 626–635.

39

[55] Tiwari, A., Chen, C., Chame, J., Hall, M., & Hollingsworth, J. (2009).
A scalable autotuning framework for compiler optimization. In Pro-
ceedings of the 2009 International Symposium on Parallel & Distributed
Processing IPDPS ’09. Rome, Italy.

[56] Tiwari, A., Hollingsworth, J. K., Chen, C., Hall, M., Liao, C., Quinlan,
D. J., & Chame, J. (2011). Auto-tuning full applications: A case study.
International Journal of High Performance Computing Applications , 25 ,
286–294.

[57] Verdoolaege, S., Juega, J. C., Cohen, A., Gomez, J. I., Tenllado, C., &
Catthoor, F. (2013). Polyhedral parallel code generator for cuda. ACM
Transactions on Architecture and Code Optimization (TACO), 9 .

40

ALGORITHM 2: ACO + Pluto Algorithm [12]

Input: Generalized dependence graph GDG = (V,E) (includes dependence
polyhedra Pe, e ∈ E)

1 Smax: statement with maximum domain dimensionality
2 for each dependence e ∈ E do
3 Build legality constraints: apply Farkas Lemma on φ(t)− φ(s) ≥ 0, and

eliminate all Farkas multipliers
4 Build communication volume/reuse distance bounding constraints
5 Aggregate constraints from both into Ce(i)

6 end
7 repeat
8 C = ∅
9 D = ∅

10 for each dependence edge e ∈ E do
11 C → C ∪ Ce(i)
12 D → D ∪ Pe
13 end
14 repeat
15 if O3 then
16 Compute the set of valid scheduling hyperplanes such that φ ⊇ D and

aggregate them into V
17 Use ACO to select a schedule: ConstructSolution(V)

18 else
19 Compute lexicographic minimal solution to C
20 end
21 if Solution exists then
22 Add orthogonality constraint
23 if O2 or O3 then
24 Use ACO to select which, if any, dependences to cut:

ConstructSolution(GDG)
25 if Cut Dependences then
26 Insert the appropriate splitter in the transformation matrices

of the statements
27 continue

28 end

29 end
30 Use ACO to select whether to perform parallel reduction:

ConstructSolution(GDG)
31 end

32 until no solution is found or H⊥Smax
= 0;

33 Compute Ec: carried dependences
34 E → E − Ec: update GDG(V,E)

35 until H⊥Smax
= 0 and E = ∅;

Output: A transformation matrix for each statement

41

Table 2: Performance Metrics

Metric Description
Executed IPC Instructions executed per cycle
Achieved Occupancy Ratio of active warps to the maximum number of warps per cycle
Global Store Throughput Global memory store throughput
Global Load Throughput Global memory load throughput
Cache Hit Rate Average hit rate for L2 and texture cache

42

