
1

Cloud X: A Platform as a Service for CT

Reconstruction Research and Development

Eric Papenhausen, Ziyi Zheng, and Klaus Mueller

Abstract – Many CT reconstruction algorithms, especially in

iterative CT, are constructed from a few common algorithms

(e.g. backprojection and forward projection). These algorithms

often dominate the computation cost during CT

reconstruction. GPUs can provide an order of magnitude

speed-up over conventional CPU implementations. However,

without the proper hardware or willingness to develop the

specialized software, these speedups will remain unexploited.

In addition to implementing these common algorithms, sharing

research can also be a burden. Assuming one is able to get the

software to run someone else’s experiments, one can spend an

entire work day tracking down the appropriate dependencies

and modifying hard coded file paths to run it on a different

machine. These obstacles hinder productivity and slow

research. In this paper, we present a cloud computing

framework that aims to make research in the medical imaging

domain more efficient by providing a number of common GPU

accelerated algorithms and allows for efficient sharing of

research through a virtual workspace. It also has an interface

that allows users to present and analyze their research.

Index Terms—Cloud Computing, GPU, CT reconstruction

1

I. INTRODUCTION

With the introduction and rapid adoption of GPUs to the

medical imaging domain [6][8][9][13], it is becoming

increasingly important to leverage the processing power of

GPUs to make the leap from research to clinical use.

Developing software on GPUs, however, can seem like a

daunting task. It not only requires the appropriate hardware

and software tools, but a shift in the mindset of how a

program operates. This can be especially difficult for

theoretical researchers, who have to rely on someone else to

accelerate their algorithms on graphics hardware.

Furthermore, comparing different CT reconstruction

methods can require a re-implementation of a previous

technique. A popular iterative CT reconstruction algorithm

is ASD-POCS [10]. When a new iterative CT algorithm is

proposed, it is often compared to ASD-POCS and other

techniques [1][2][3] to demonstrate the validity of the new

algorithm. Researchers will often have to re-implement

multiple reconstruction algorithms to compare to their new

Eric Papenhausen, Ziyi Zheng (now with Amazon.com, Seattle), and Klaus
Mueller are (or have been) with the Visual Analytics and Imaging Lab,

Computer Science Department, Stony Brook University, Stony Brook, NY

11777 USA (phone: 631-632-1524; e-mail: {epapenhausen, zizhen,
mueller}@cs.sunysb.edu).

method; then mention that they are unsure of their

implementation of the old methods.

Most research today is relatively one sided (i.e. the

authors explain how an experiment was set up and then

present results), but there is no easy way for the reader to

validate and further explore a presented algorithm. There are

a number of parameters that can affect the quality of a CT

reconstruction algorithm (i.e. number of projections, dose

per projection, anatomy and pathology, etc.), but only a

subset of these parameters are typically presented.

In this paper, we present a cloud computing framework

that will be able to solve these problems by providing three

main services. First, it will provide a virtual workspace

which will facilitate the sharing of research and contain a

number of pre-loaded GPU accelerated CT reconstruction

algorithms. Second, it will allow remote execution of GPU

accelerated algorithms, thus allowing users to take

advantage of graphics cards without having to purchase the

hardware or develop GPU accelerated applications. Finally,

it will provide an interface that will allow authors to post

their research and allow users to replicate experiments and

explore the parameter space through their web browser.

We begin in section II by presenting an interface that we

have developed to allow users to explore the parameter

space of an iterative CT reconstruction algorithm through

their web browser. The rest of the paper will then be focused

on how to build a scalable framework around this interface

and the other services that this framework will provide. In

section III, we will discuss the current technology that will

allow us to build this cloud computing framework. Section

IV will describe the architecture of our framework and

introduce the concept of the virtual workspace. In section V,

we revisit our web interface and describe how it will operate

in the cloud. Section VI presents a library that will allow

remote execution of GPU accelerated algorithms. Finally,

section VII concludes the paper.

II. WEB INTERFACE

We have developed a prototype of a web interface that

allows users to explore the parameter space of an iterative

CT reconstruction algorithm. More specifically the

algorithm is OS-SIRT [11] using a bilateral filter (BLF)[12]

for regularization. The bilateral filter is defined in the

following equations, where x is the location of smoothing,

and t is an offset. The BLF is essentially a Gaussian that

falls off as a function of both spatial and value deviation.

Fully 3D Image Reconstruction in Radiology and Nuclear Medicine, Lake Tahoe, CA, June 2013

2

 ‖ ‖

 ()
 | |

Where G𝜎 is the Gaussian kernel:

√

We allow the user to explore the filter’s parameter space

interactively using a slider to determine the amount of

smoothing. The slider changes the parameters of the BLF to

control the smoothing such that the value chosen by the

slider determines σr and σd (i.e. σr = σd).

We implemented this interface using HTML and

JavaScript on the front end, PHP as the server side scripting

language, and finally using C and CUDA to handle the CT

reconstruction. The act of moving the slider triggers a

request to the web server. The web server then writes the

parameter value, chosen by the slider, to a file. A simple C

program waits for this file to be updated, and when it is, it

calls the OS-SIRT function with the appropriate parameters,

and waits for the volume to be reconstructed. The central

slice of the reconstructed volume along with its E-CC score

is then passed back to the webserver to be displayed to the

user. Fig. 1 shows the web interface that the user sees. The

graph on the left plots the quality metric curve evolved with

each slider update and the right shows the current image.

Currently, this setup is running on a single desktop

machine with a NVIDIA GeForce GTX 480. It takes around

11 seconds for each reconstruction (i.e. 512
3

volume for OS-

SIRT 10 with 60 projections and a BLF for regularization).

We have available to us, however, a GPU cluster that

contains 8 NVIDIA Tesla M2050 GPUs. The framework

that we present in the rest of this paper is designed to run on

this GPU cluster. We expect the reconstruction time to drop

to between 1.3 and 1.8 seconds. This, however, does not

mean that the user will have to wait 1.3-1.8 seconds every

time he moves the slider, since we will include a number of

optimization strategies, presented throughout this paper.

III. CLOUD COMPUTING

With the popularization of cloud computing, a number of

open source technologies have been developed to support

the infrastructure and system level requirements that are

required by cloud computing frameworks [4][7]. Openstack

in particular is a popular cloud operating system. It contains

a number of networking and storage solutions that are

required by the typical cloud computing infrastructure. It

also allows for the creation and management of multiple

virtual machines (i.e. software that emulates the computer

architecture of a real machine). This is particularly

important for efficient sharing of computational resources.

Unfortunately, openstack currently does not contain any

resources for efficient GPU virtualization (i.e. sharing of

GPU resources).

Gvirtus is an open source GPU virtualization technology.

It allows multiple virtual machines to share the

computational resources provided by one or more GPUs. To

a user operating on a virtual machine, however, it appears as

if there is one dedicated GPU. This abstraction allows for

efficient GPU sharing, while still providing the user an

interface he is familiar with.

Another important tool for cloud computing is the

network file system[5] (NFS). This allows many users to

connect to a single file system concurrently. To the user,

however, the NFS looks like a regular file system. This

allows for efficient sharing of information.

IV. FRAMEWORK ARCHITECTURE

The cloud computing framework we are currently
developing and have initial results for utilizes all of the
technology presented in section III (i.e. openstack, gvirtus,
and NFS) as well as custom improvements to make the
overall system more efficient. The virtual workspace is
designed as a “platform as a service” (PaaS) and will allow
users to work in the cloud through their web browser. Each
user will have a separate virtual machine assigned to them
and will contain a number of relevant GPU accelerated CT
reconstruction algorithms pre-configured on their
workspace. There will be one virtual machine assigned to
handle the remote execution of GPU accelerated CT
reconstruction algorithms. Finally, there will be one virtual
machine to function as a web server, and will be configured
to allow users to upload their implementations, allowing it
to be executed through a web browser. Since every service
is being handled through virtual machines, the 8 GPUs in
our cluster can be efficiently shared using gvirtus.

Gvirtus consists of two segments, a front end, located on
the virtual machine, and a back end, located on the host
operating system. The front end provides a library that acts
as a wrapper to many CUDA functions. The front end
redirects calls to these functions to the back end. The back
end executes the CUDA operations and returns the results
back to the front end on the virtual machine.

The network file system will contain a number of
commonly used dependencies (i.e. CUDA libraries, include
files, etc.) as well as a number of datasets available for CT
reconstruction. It will also include a public folder for each
user. The public folder allows a user to share his research
with the rest of the community. Other users can easily
download software from a public folder into their
workspace. Since the dependencies are in a shared file
system, the software will run without requiring additional
modifications.

Figure 1. A view of the web interface that we have developed.

(1)

(2)

3

The network file system will also contain a block of
space to act as cache. A feature vector, containing all the
parameters of a previously reconstructed volume (i.e.
dataset, number of projections, etc.) and the volume itself,
will be recorded. With this strategy, we can alleviate GPU
resource contention by only executing CT reconstruction
algorithms for which we do not already have the results.
Figure 2 shows how this strategy interacts with the rest of
the system. We will, however, provide a “no-cache” option
for situations where obtaining accurate timings of an
algorithm are important.

V. WEB INTERFACE REVISITED

A critical aspect of performing research is presenting the
results. This is usually fulfilled by presenting an image of a
slice of a reconstructed volume followed by a discussion of
how it compares to a gold standard. The presented slice,
however, is only one of many possible reconstructions.
Results can vary greatly depending on the parameters that
are chosen for the reconstruction. Moreover, the quality of
the algorithm can differ depending on the anatomy of the
dataset that is being reconstructed. By providing an interface
that allows readers to access the research in question,
experiments can be easily replicated and the algorithm can
be thoroughly evaluated.

In section II, we described the details of a prototype
interface that addressed these problems. This, however, was
specific to OS-SIRT and the BLF. To make this interface
more useful, there needs to be a mechanism that allows
researchers to attach their project to this interface.

In order for researchers to utilize this interface, however,
the process of uploading algorithms needs to be simple. The
researcher will need to implement certain methods that will
be called when a parameter is changed via a slider. These
methods will provide the new parameter settings as an
argument. The researcher will simply set the parameters of
his algorithm based on the values provided by the web
interface, and execute his algorithm. Figure 3 shows a
pseudo-code example of the functions that will be needed by
the web interface.

Once the appropriate functions are implemented, their
program will need to be compiled as a dynamic library. The
compiled code will be placed in a directory that is accessible
by the web server. By compiling the project as a dynamic
library, the web server can call the functions it needs to,
without having to restart the server itself. This is important
because multiple users will be sharing the same web server.
When the dynamic library is placed in the appropriate
directory, users will be able to visit a web page specific to
the project in question, and will be able to explore and
execute the algorithm in real time.

There are some performance issues since there will still
be a noticeable delay from when the slider is changed, to
when the reconstruction is complete. In section II, we
anticipated that the reconstruction time would be between
1.3-1.8 seconds using our cluster of 8 GPUs. With multiple
users, this can take much longer since a user will have to
wait for a GPU to be free before reconstruction can take
place. Some extra optimization strategies are required to
reduce GPU resource contention and ensure that web
interface remains interactive.

One strategy that we have already presented is the use of
cache. Instead of immediately reconstructing the volume,
we check to make sure that it has not already been
reconstructed. If it has, we simply return the results without
performing any extra computation. This is particularly
useful with the slider, as users will often move the slider
back and forth, reviewing parameter settings they have
already seen.

Another strategy is to only reconstruct a subset of the
volume. Since only the central slice is displayed to the user,
most of the three-dimensional volume is never seen. We
estimate that we can reconstruct a 512x512x8 subset of the
volume in 0.3-0.7 seconds using our 8 GPU cluster. This
strategy combined with caching will greatly reduce the
strain on the GPU server while still providing the user with
a real-time interface in which he can explore the parameter
space of a CT reconstruction algorithm.

VI. REMOTE EXECUTION

The virtual workspace provides a number of resources that
are beneficial when starting a new project. This option may
not be ideal, however, when maintaining an existing project.
A researcher may still take advantage of the processing
power of GPUs by using our remote execution library. This
library aims to provide a simple method for executing a
number of commonly required GPU accelerated algorithms
(i.e. backprojection, forward projection, etc.) in the cloud.

void sliderSetParam1(float val) { sigma = val; }

void sliderSetParam2(float val) { lambda = val; }

void execute() { . . .}

Figure 3. A pseudo-code example demonstrating the functions that

will need to be defined for the web interface. The functions with the

“slider” prefix will simply set the parameters of the algorithm. The

execute function will actually perform the algorithm

Figure 2. An illustration of the framework presented in this paper. When a function from the “GPU_CT_lib” is called, the system first checks the NFS to see

if the result lies in cache. If so, the result is returned. On a cache miss, the appropriate reconstruction function is redirected to the back end (i.e. host machine)

through Gvirtus; the result is reconstructed and returned. That result is then written to the cache on the NFS.

4

The remote execution library will provide a number of
wrapper methods to the GPU accelerated algorithms that are
provided in the virtual workspaces. These methods operate
by acting as a liaison between the user’s machine, and the
virtual machine in the cloud responsible for processing
remote execution requests.

Figure 4 shows a pseudo-code example of how users can

interact with the remote execution library. On the server
side, a virtual machine will be tasked with listening and
waiting for a connection request from a client. On the client
side, a TCP connection is initiated with the server. This
allows for effective communication between the client and
the server. A call to execute a GPU accelerated algorithm by
the client sends a signal to the server, indicating the
parameters the user requested (i.e. algorithm, dataset, etc.).
The server then executes the requested function in a similar
manner illustrated in Figure 2. The client can then request
the results to be transferred from the cloud to the user’s
machine.

We recognize that most CT reconstruction pipelines (e.g.
iterative CT), however, can be highly integrated (i.e. the
results of the “project” section are given as input in the
“backproject” section). To reduce the number of memory
copies between the client and server, we provide a
mechanism to allow the user to allocate space on the cloud.
With this functionality, the user can allocate an array to
store the results of the “project” function, and pass it as
input to the “backproject” function. This reduces costly data
transfers between the client and server.

If, however, one component of this pipeline is missing in
our library then it becomes useless; since any performance
gained by exploiting GPUs will be wiped out by the cost of
transferring data to and from the server on every iteration.
To avoid this situation, we let users extend the remote
execution library by allowing them to upload custom
implementations to the remote execution server. A simple
addition to the wrapper library, is then required. In this
fashion, users can easily expand the library to suit their
needs.

With the remote execution library, users can exploit the
massive speed-ups GPUs provide without the burden of
developing highly specialized software. This library will be
primarily useful for those looking to quickly replace
sequential CPU implemented CT algorithms with GPU
accelerated implementations.

VII. CONCLUSIONS

In this paper, we presented an interface for dynamically
exploring the parameter space of an iterative CT
reconstruction algorithm through a web browser. We then
explained how we can build a scalable framework to allow
many users to interact with this interface in a cloud
environment while handling practical issues related to
resource contention. The technology developed for cloud
based computing infrastructures are quite powerful and
allow us to do so much more than simply host web interface
for exploring iterative CT reconstruction parameters.

This cloud framework can be used to provide resources
that are not necessarily available (i.e. hardware and
software) to many researchers. We address many practical
issues in the medical imaging community relating to the
sharing and presentation of research. The cloud computing
framework presented in this paper will be a powerful force
for good in the medical imaging community.

REFERENCES

[1] A. Andersen and A. Kak, “Simultaneous algebraic reconstruction
technique (SART): A superior implementation of the ART
algorithm,” Ultrason. Imaging, 6:81–94, 1984

[2] A. Chambolle, "An Algorithm for Total Variation Minimizations
and Applications," J. Mathematical. Imaging and Vision 20(1-2) 89-
97 (2004).

[3] P. Gilbert, “Iterative methods for the 3D reconstruction of an object
from projections,” Journal of Theoretical Biology 76, 105–117
(1972).

[4] G. Giunta, R. Montella, G. Agrillo, and G. Coviello. "A GPGPU
transparent virtualization component for high performance
computing clouds". In Euro-Par 2010 - Parallel Processing, volume
6271 of Lecture Notes in Computer Science, chapter 37, pages 379–
391–391. Springer Berlin / Heidelberg, Berlin, Heidelberg, 2010.

[5] A. Muthitacharoen, B. Chen, and D. Mazieres. A Low-bandwidth
Network File System. In Proc. 18th SOSP, Oct. 2001.

[6] Y. Okitsu, F. Ino and K. Hagihara. “High-Performance Cone Beam
Reconstruction Using CUDA Compatible GPUs,” Parallel
Computing,36(2-3):129-141, 2010.

[7] OpenStack LLC, “OpenStack: The Open Source Cloud Operating
System,” 21-Jul-2012. [Online]. Available:
http://www.openstack.org/software/.

[8] E. Papenhausen, Z. Zheng, and K. Mueller, "GPU-Accelerated
Back-Projecting Revisited: Squeezing Performance by Careful
Tuning," Fully Three-Dimensional Image Reconstruction in
Radiology and Nuclear Medicine (Potsdam, Germany, 2011)

[9] H. Scherl, B. Keck, M. Kowarschik, J. Hornegger, “Fast GPU-based
CT reconstruction using the Common Unified Device
Architecture(CUDA),” IEEE Medical Imaging Conference, 6: 4464-
4466, Honolulu, HI, 2007.

[10] E.Y. Sidky and X. Pan, "Image Reconstruction in Circular Cone-
Bean Computed Tomography by Constrained, Total Variation
Minimization", Phys. Med. Biol. 53 (2008) 4777-4907

[11] F. Xu, W. Xu, M. Jones, B. Keszthelyi, J. Sedat, D. Agard and K.
Mueller, "On the Efficiency of Iterative Ordered Subset
Reconstruction Algorithms for Acceleration on GPUs," Computer
Methods and Programs in Biomedicine 98(3) 261-270 (2010).

[12] W. Xu, K. Mueller, “Evaluating Popular Non-Linear Image
Processing Filters for their Use in Regularized Iterative CT,” IEEE
Medical Imaging Conference, Knoxville, TN, October, 2010

[13] Z. Zheng, K. Mueller “Cache-Aware GPU Memory Scheduling
Scheme for CT Back-Projection,” IEEE Medical Imaging
Conference, Oct. 2010.

cloudTCPConnect();

cloudAllocMem(vol, size);

cloudAllocMem(volp1, size);

cloudAllocMem(proj, projection_size);

for each iteration

cloudProject_GPU(vol, proj);
cloudCorrect_GPU(proj, “dataset”);
cloudBackproject_GPU(volp1, proj);
cloudBLF_GPU(volp1);
cloudVoxelUpdate_GPU(vol, volp1, lambda);

end for

cloudTCPDestroy();

.

<code>

.

F_L[tid] = result;

Figure 4. An iterative CT implementation using the remote execution

library. Functions with the prefix cloud will be executed on the cloud.

http://www.openstack.org/software/

