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Abstract – Many CT reconstruction algorithms, especially in 

iterative CT, are constructed from a few common algorithms 

(e.g. backprojection and forward projection). These algorithms 

often dominate the computation cost during CT 

reconstruction. GPUs can provide an order of magnitude 

speed-up over conventional CPU implementations. However, 

without the proper hardware or willingness to develop the 

specialized software, these speedups will remain unexploited. 

In addition to implementing these common algorithms, sharing 

research can also be a burden. Assuming one is able to get the 

software to run someone else’s experiments, one can spend an 

entire work day tracking down the appropriate dependencies 

and modifying hard coded file paths to run it on a different 

machine. These obstacles hinder productivity and slow 

research. In this paper, we present a cloud computing 

framework that aims to make research in the medical imaging 

domain more efficient by providing a number of common GPU 

accelerated algorithms and allows for efficient sharing of 

research through a virtual workspace. It also has an interface 

that allows users to present and analyze their research. 

Index Terms—Cloud Computing, GPU, CT reconstruction 
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I. INTRODUCTION 

With the introduction and rapid adoption of GPUs to the 

medical imaging domain [6][8][9][13], it is becoming 

increasingly important to leverage the processing power of 

GPUs to make the leap from research to clinical use. 

Developing software on GPUs, however, can seem like a 

daunting task. It not only requires the appropriate hardware 

and software tools, but a shift in the mindset of how a 

program operates. This can be especially difficult for 

theoretical researchers, who have to rely on someone else to 

accelerate their algorithms on graphics hardware. 

Furthermore, comparing different CT reconstruction 

methods can require a re-implementation of a previous 

technique. A popular iterative CT reconstruction algorithm 

is ASD-POCS [10]. When a new iterative CT algorithm is 

proposed, it is often compared to ASD-POCS and other 

techniques [1][2][3] to demonstrate the validity of the new 

algorithm. Researchers will often have to re-implement 

multiple reconstruction algorithms to compare to their new 
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method; then mention that they are unsure of their 

implementation of the old methods.  

Most research today is relatively one sided (i.e. the 

authors explain how an experiment was set up and then 

present results), but there is no easy way for the reader to 

validate and further explore a presented algorithm. There are 

a number of parameters that can affect the quality of a CT 

reconstruction algorithm (i.e. number of projections, dose 

per projection, anatomy and pathology, etc.), but only a 

subset of these parameters are typically presented. 

In this paper, we present a cloud computing framework 

that will be able to solve these problems by providing three 

main services. First, it will provide a virtual workspace 

which will facilitate the sharing of research and contain a 

number of pre-loaded GPU accelerated CT reconstruction 

algorithms. Second, it will allow remote execution of GPU 

accelerated algorithms, thus allowing users to take 

advantage of graphics cards without having to purchase the 

hardware or develop GPU accelerated applications. Finally, 

it will provide an interface that will allow authors to post 

their research and allow users to replicate experiments and 

explore the parameter space through their web browser.  

We begin in section II by presenting an interface that we 

have developed to allow users to explore the parameter 

space of an iterative CT reconstruction algorithm through 

their web browser. The rest of the paper will then be focused 

on how to build a scalable framework around this interface 

and the other services that this framework will provide. In 

section III, we will discuss the current technology that will 

allow us to build this cloud computing framework. Section 

IV will describe the architecture of our framework and 

introduce the concept of the virtual workspace. In section V, 

we revisit our web interface and describe how it will operate 

in the cloud. Section VI presents a library that will allow 

remote execution of GPU accelerated algorithms. Finally, 

section VII concludes the paper. 

II. WEB INTERFACE 

We have developed a prototype of a web interface that 

allows users to explore the parameter space of an iterative 

CT reconstruction algorithm. More specifically the 

algorithm is OS-SIRT [11] using a bilateral filter (BLF)[12] 

for regularization. The bilateral filter is defined in the 

following equations, where x is the location of smoothing, 

and t is an offset. The BLF is essentially a Gaussian that 

falls off as a function of both spatial and value deviation.   
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We allow the user to explore the filter’s parameter space 

interactively using a slider to determine the amount of 

smoothing. The slider changes the parameters of the BLF to 

control the smoothing such that the value chosen by the 

slider determines σr and σd (i.e. σr = σd). 

We implemented this interface using HTML and 

JavaScript on the front end, PHP as the server side scripting 

language, and finally using C and CUDA to handle the CT 

reconstruction. The act of moving the slider triggers a 

request to the web server. The web server then writes the 

parameter value, chosen by the slider, to a file. A simple C 

program waits for this file to be updated, and when it is, it 

calls the OS-SIRT function with the appropriate parameters, 

and waits for the volume to be reconstructed. The central 

slice of the reconstructed volume along with its E-CC score 

is then passed back to the webserver to be displayed to the 

user. Fig. 1 shows the web interface that the user sees. The 

graph on the left plots the quality metric curve evolved with 

each slider update and the right shows the current image. 

Currently, this setup is running on a single desktop 

machine with a NVIDIA GeForce GTX 480. It takes around 

11 seconds for each reconstruction (i.e. 512
3 

volume for OS-

SIRT 10 with 60 projections and a BLF for regularization). 

We have available to us, however, a GPU cluster that 

contains 8 NVIDIA Tesla M2050 GPUs. The framework 

that we present in the rest of this paper is designed to run on 

this GPU cluster. We expect the reconstruction time to drop 

to between 1.3 and 1.8 seconds. This, however, does not 

mean that the user will have to wait 1.3-1.8 seconds every 

time he moves the slider, since we will include a number of 

optimization strategies, presented throughout this paper.  

 

III. CLOUD COMPUTING 

With the popularization of cloud computing, a number of 

open source technologies have been developed to support 

the infrastructure and system level requirements that are 

required by cloud computing frameworks [4][7]. Openstack 

in particular is a popular cloud operating system. It contains 

a number of networking and storage solutions that are 

required by the typical cloud computing infrastructure. It 

also allows for the creation and management of multiple 

virtual machines (i.e. software that emulates the computer 

architecture of a real machine). This is particularly 

important for efficient sharing of computational resources. 

Unfortunately, openstack currently does not contain any 

resources for efficient GPU virtualization (i.e. sharing of 

GPU resources). 

Gvirtus is an open source GPU virtualization technology. 

It allows multiple virtual machines to share the 

computational resources provided by one or more GPUs. To 

a user operating on a virtual machine, however, it appears as 

if there is one dedicated GPU. This abstraction allows for 

efficient GPU sharing, while still providing the user an 

interface he is familiar with. 

Another important tool for cloud computing is the 

network file system[5] (NFS). This allows many users to 

connect to a single file system concurrently. To the user, 

however, the NFS looks like a regular file system. This 

allows for efficient sharing of information.  

IV. FRAMEWORK ARCHITECTURE 

The cloud computing framework we are currently 
developing and have initial results for utilizes all of the 
technology presented in section III (i.e. openstack, gvirtus, 
and NFS) as well as custom improvements to make the 
overall system more efficient. The virtual workspace is 
designed as a “platform as a service” (PaaS) and will allow 
users to work in the cloud through their web browser. Each 
user will have a separate virtual machine assigned to them 
and will contain a number of relevant GPU accelerated CT 
reconstruction algorithms pre-configured on their 
workspace. There will be one virtual machine assigned to 
handle the remote execution of GPU accelerated CT 
reconstruction algorithms. Finally, there will be one virtual 
machine to function as a web server, and will be configured 
to allow users to upload their implementations, allowing it 
to be executed through a web browser. Since every service 
is being handled through virtual machines, the 8 GPUs in 
our cluster can be efficiently shared using gvirtus. 

Gvirtus consists of two segments, a front end, located on 
the virtual machine, and a back end, located on the host 
operating system. The front end provides a library that acts 
as a wrapper to many CUDA functions. The front end 
redirects calls to these functions to the back end. The back 
end executes the CUDA operations and returns the results 
back to the front end on the virtual machine. 

The network file system will contain a number of 
commonly used dependencies (i.e. CUDA libraries, include 
files, etc.) as well as a number of datasets available for CT 
reconstruction. It will also include a public folder for each 
user. The public folder allows a user to share his research 
with the rest of the community. Other users can easily 
download software from a public folder into their 
workspace. Since the dependencies are in a shared file 
system, the software will run without requiring additional 
modifications.  

Figure 1. A view of the web interface that we have developed. 

(1) 

(2) 
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The network file system will also contain a block of 
space to act as cache. A feature vector, containing all the 
parameters of a previously reconstructed volume (i.e. 
dataset, number of projections, etc.) and the volume itself, 
will be recorded. With this strategy, we can alleviate GPU 
resource contention by only executing CT reconstruction 
algorithms for which we do not already have the results. 
Figure 2 shows how this strategy interacts with the rest of 
the system. We will, however, provide a “no-cache” option 
for situations where obtaining accurate timings of an 
algorithm are important. 

V. WEB INTERFACE REVISITED 

A critical aspect of performing research is presenting the 
results. This is usually fulfilled by presenting an image of a 
slice of a reconstructed volume followed by a discussion of 
how it compares to a gold standard. The presented slice, 
however, is only one of many possible reconstructions. 
Results can vary greatly depending on the parameters that 
are chosen for the reconstruction. Moreover, the quality of 
the algorithm can differ depending on the anatomy of the 
dataset that is being reconstructed. By providing an interface 
that allows readers to access the research in question, 
experiments can be easily replicated and the algorithm can 
be thoroughly evaluated.  

In section II, we described the details of a prototype 
interface that addressed these problems. This, however, was 
specific to OS-SIRT and the BLF. To make this interface 
more useful, there needs to be a mechanism that allows 
researchers to attach their project to this interface. 

In order for researchers to utilize this interface, however, 
the process of uploading algorithms needs to be simple. The 
researcher will need to implement certain methods that will 
be called when a parameter is changed via a slider. These 
methods will provide the new parameter settings as an 
argument. The researcher will simply set the parameters of 
his algorithm based on the values provided by the web 
interface, and execute his algorithm. Figure 3 shows a 
pseudo-code example of the functions that will be needed by 
the web interface. 

 
 
 
 
 
 
 

 

Once the appropriate functions are implemented, their 
program will need to be compiled as a dynamic library. The 
compiled code will be placed in a directory that is accessible 
by the web server. By compiling the project as a dynamic 
library, the web server can call the functions it needs to, 
without having to restart the server itself. This is important 
because multiple users will be sharing the same web server. 
When the dynamic library is placed in the appropriate 
directory, users will be able to visit a web page specific to 
the project in question, and will be able to explore and 
execute the algorithm in real time. 

There are some performance issues since there will still 
be a noticeable delay from when the slider is changed, to 
when the reconstruction is complete. In section II, we 
anticipated that the reconstruction time would be between 
1.3-1.8 seconds using our cluster of 8 GPUs. With multiple 
users, this can take much longer since a user will have to 
wait for a GPU to be free before reconstruction can take 
place. Some extra optimization strategies are required to 
reduce GPU resource contention and ensure that web 
interface remains interactive. 

One strategy that we have already presented is the use of 
cache. Instead of immediately reconstructing the volume, 
we check to make sure that it has not already been 
reconstructed. If it has, we simply return the results without 
performing any extra computation. This is particularly 
useful with the slider, as users will often move the slider 
back and forth, reviewing parameter settings they have 
already seen. 

Another strategy is to only reconstruct a subset of the 
volume. Since only the central slice is displayed to the user, 
most of the three-dimensional volume is never seen. We 
estimate that we can reconstruct a 512x512x8 subset of the 
volume in 0.3-0.7 seconds using our 8 GPU cluster. This 
strategy combined with caching will greatly reduce the 
strain on the GPU server while still providing the user with 
a real-time interface in which he can explore the parameter 
space of a CT reconstruction algorithm. 

VI. REMOTE EXECUTION 

The virtual workspace provides a number of resources that 
are beneficial when starting a new project. This option may 
not be ideal, however, when maintaining an existing project. 
A researcher may still take advantage of the processing 
power of GPUs by using our remote execution library. This 
library aims to provide a simple method for executing a 
number of commonly required GPU accelerated algorithms 
(i.e. backprojection, forward projection, etc.) in the cloud. 

void sliderSetParam1(float val) { sigma = val; } 

 

void sliderSetParam2(float val) { lambda = val; } 

 

void execute() { . . .} 

 

Figure 3. A pseudo-code example demonstrating the functions that 

will need to be defined for the web interface. The functions with the 

“slider” prefix will simply set the parameters of the algorithm. The 

execute function will actually perform the algorithm 

Figure 2. An illustration of the framework presented in this paper. When a function from the “GPU_CT_lib” is called, the system first checks the NFS to see 

if the result lies in cache. If so, the result is returned. On a cache miss, the appropriate reconstruction function is redirected to the back end (i.e. host machine) 

through Gvirtus; the result is reconstructed and returned. That result is then written to the cache on the NFS. 
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The remote execution library will provide a number of 
wrapper methods to the GPU accelerated algorithms that are 
provided in the virtual workspaces. These methods operate 
by acting as a liaison between the user’s machine, and the 
virtual machine in the cloud responsible for processing 
remote execution requests.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4 shows a pseudo-code example of how users can 

interact with the remote execution library. On the server 
side, a virtual machine will be tasked with listening and 
waiting for a connection request from a client. On the client 
side, a TCP connection is initiated with the server. This 
allows for effective communication between the client and 
the server. A call to execute a GPU accelerated algorithm by 
the client sends a signal to the server, indicating the 
parameters the user requested (i.e. algorithm, dataset, etc.). 
The server then executes the requested function in a similar 
manner illustrated in Figure 2. The client can then request 
the results to be transferred from the cloud to the user’s 
machine. 

We recognize that most CT reconstruction pipelines (e.g. 
iterative CT), however, can be highly integrated (i.e. the 
results of the “project” section are given as input in the 
“backproject” section). To reduce the number of memory 
copies between the client and server, we provide a 
mechanism to allow the user to allocate space on the cloud. 
With this functionality, the user can allocate an array to 
store the results of the “project” function, and pass it as 
input to the “backproject” function. This reduces costly data 
transfers between the client and server.  

If, however, one component of this pipeline is missing in 
our library then it becomes useless; since any performance 
gained by exploiting GPUs will be wiped out by the cost of 
transferring data to and from the server on every iteration. 
To avoid this situation, we let users extend the remote 
execution library by allowing them to upload custom 
implementations to the remote execution server. A simple 
addition to the wrapper library, is then required. In this 
fashion, users can easily expand the library to suit their 
needs. 

With the remote execution library, users can exploit the 
massive speed-ups GPUs provide without the burden of 
developing highly specialized software. This library will be 
primarily useful for those looking to quickly replace 
sequential CPU implemented CT algorithms with GPU 
accelerated implementations. 

 

VII. CONCLUSIONS 

In this paper, we presented an interface for dynamically 
exploring the parameter space of an iterative CT 
reconstruction algorithm through a web browser. We then 
explained how we can build a scalable framework to allow 
many users to interact with this interface in a cloud 
environment while handling practical issues related to 
resource contention. The technology developed for cloud 
based computing infrastructures are quite powerful and 
allow us to do so much more than simply host web interface 
for exploring iterative CT reconstruction parameters. 

This cloud framework can be used to provide resources 
that are not necessarily available (i.e. hardware and 
software) to many researchers. We address many practical 
issues in the medical imaging community relating to the 
sharing and presentation of research. The cloud computing 
framework presented in this paper will be a powerful force 
for good in the medical imaging community.  
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cloudTCPConnect(); 

cloudAllocMem(vol, size); 

cloudAllocMem(volp1, size); 

cloudAllocMem(proj, projection_size); 

for each iteration 

cloudProject_GPU(vol, proj); 
cloudCorrect_GPU(proj, “dataset”); 
cloudBackproject_GPU(volp1, proj); 
cloudBLF_GPU(volp1); 
cloudVoxelUpdate_GPU(vol, volp1, lambda); 

end for 

cloudTCPDestroy(); 

. 

<code> 

. 

F_L[tid] = result; 

Figure 4. An iterative CT implementation using the remote execution 

library. Functions with the prefix cloud will be executed on the cloud. 
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