
1

GPU-Accelerated Incremental Correlation Clustering of Large Data

with Visual Feedback

Eric Papenhausen
1
, Bing Wang

1
, Sungsoo Ha

2
, Alla Zelenyuk

3
, Dan Imre

4
, and Klaus Mueller

1,2

Visual Analytics and Imaging Lab, Center for Visual Computing, Computer Science Department
1
Stony Brook University, Stony Brook, NY, USA and

2
SUNY Korea, Songdo, Korea

Email: {epapenhausen, wang12, sunha, mueller}@cs.sunysb.edu

3
Chemical and Material Sciences Division, Pacific Northwest National Lab, Richland, WA, USA

Email: alla.zelenyuk@pnnl.gov

4
Imre Consulting, Richland, WA, USA

Email: dimre2b@gmail.com

Abstract—Clustering is an important preparation step in big

data processing. It may even be used to detect redundant data

points as well as outliers. Elimination of redundant data and

duplicates can serve as a viable means for data reduction and it

can also aid in sampling. Visual feedback is very valuable here

to give users confidence in this process. Furthermore, big data

preprocessing is seldom interactive, which stands at conflict

with users who seek answers immediately. The best one can do

is incremental preprocessing in which partial and hopefully

quite accurate results become available relatively quickly and

are then refined over time. We propose a correlation clustering

framework which uses MDS for layout and GPU-acceleration

to accomplish these goals. Our domain application is the

correlation clustering of atmospheric mass spectrum data with

8 million data points of 450 dimensions each.

Keywords-big data; clustering; visualization; visual

analytics; correlation; GPU;

I. INTRODUCTION

Some have called big data the second major revolution in
modern civilization after the industrial revolution [23].
Indeed, big data affects everyone and everything – the
internet of things, social networks, internet search indexing,
astronomy, atmospheric science, health, biology, military
surveillance, e-commerce – just to name a few. Big data is
often associated with the terms e-science and data science,
which really both refer to a similar goal – the automated or
semi-automated extraction of knowledge from massive
volumes of data. Just e-science is the term commonly used in
astronomy, oceanography, and biology, while data science is
the term used in business applications [7].

 In data mining and especially in big data, preprocessing
consumes a large portion of the workflow, as much as 80-
90% [1]. Preprocessing includes data preparation,
integration, cleaning, reduction, and transformation. As big
data analysis can often be mission critical, preprocessing
should be done expediently. The massively parallel
architecture of GPUs offers an effective platform to
accomplish high speed data preprocessing. However, as GPU
technology has been developing steadily and rapidly, users

have trouble keeping up. And even if they do, the largeness
of big data requires not just one GPU but multiple GPUs in
conjunction with large memory. These needs are best
addressed in a cloud-based platform. The framework we
describe in this paper utilizes both a single GPU as well as a
GPU server that could also operate in a cloud setting.

But no matter on which computational platform the
preprocessing is conducted, the decimation of big data to a
more manageable size brings great benefits. Given the
abundance of data, the detection of redundancies is of utmost
importance as these can make later stages in big data analysis
more lightweight. Clustering is an effective means to
accomplish this. Here one would make the cluster boundaries
sufficiently tight such that the resulting cluster centers serve
as viable representatives for their respective sub populations.
This boundary would be determined by the domain experts.

While GPUs can clearly accelerate preprocessing, the
response will not be immediate but can possibly take hours
or more. The best possible compromise is to give the user a
glimpse of the final result – a partial result that can convey a
good hint on what to expect when all is done. In computer
graphics there is the concept of progressive rendering or
refinement [2]. It is an approximation of the final rendered
image in cases when the full resolution image will take a
long time to compute. We have worked towards a solution
into this direction for big data clustering, Necessitated by our
domain application – the analysis of data acquired from a
single particle mass spectral analyzer – we have focused on
correlation clustering, but we could handle spatial distances,
such as Euclidean, just as well.

To communicate these evolving results, visualization is
an effective means. Here we have opted for a display that
uses Multi-Dimensional Scaling (MDS) [11] to generate a
dynamic 2D overview display of the emerging clustering
results. Visual hints are given that allow users to appreciate
relevance, updates and changes to the evolving landscape.

Our paper is structured as follows. Section 2 discusses
related work. Section 3 presents relevant background.
Sections 4 and 5 describe our framework. Section 6 presents
results, and Section 7 ends with conclusions and future work.

This paper was presented at the First IEEE Workshop on Big Data Visualization

Santa Clara, CA, October, 2013

2

(a) (b)

Fig. 1: Deployment of SPLAT II in a flight campaign.

Fig. 2: The SpectraMiner interface.

II. RELATED WORK

Two recent papers by Wong and colleagues list the top ten
challenges in extreme-scale visual analytics [14][15]. Among
these were user-driven data reduction, scalability and
multilevel hierarchy, and data summarization. We achieve
data reduction via our tight clustering framework which the
user is able to drive and appreciate by visualizing the
dynamic MDS display as a data summary. Then, once the
clustering is finished, we can construct a hierarchical
decomposition by merging the clusters into a tree (a
dendrogram) using a correlation metric [9][12][18].

Our algorithm is a clustering scheme but its main purpose
is data decimation. Clustering of big data is often done with
the k-means algorithm. It has two iterative steps. Step 1
begins with k samples (the means) and assigns all other data
points to the closest of these k means. Step 2 then computes a
new mean for each of the k clusters upon which a new
iteration begins. Iterations typically continue until the total
sum of errors falls below some minimum. The k-means
algorithm is not guaranteed to converge to the global
minimum – typically multiple runs are taken, also with
different numbers of k.

To parallelize k-means on distributed architectures
interconnected via MPI/OpenMP, a typical approach is to
partition the N data points onto the P processors. In this case
each processor runs step 1 and 2 on its local data, and the
global k means are found by averaging the local ones. This
step can occur in parallel as well by using a map-reduce
approach [3][22]. Here all mappers distribute their local k
means to a set of P reducers which perform the averaging in
parallel. Following, the reducers send the global k means
back to the mappers for a new iteration. As such, this
approach requires two communication steps per iteration but
offers parallelism at every stage of the distributed algorithm.

Alternative to map-reduce, in another less parallel
approach each processor broadcasts its local set of k means
to all other processors which then all compute the global set
locally. This approach requires only one communication step
but offers less parallelism. It has found use, for example, in
the P2P algorithm by Datta et al. [4] where a set of remote
workstations are connected via TCP/IP.

Finally, k-means has also been accelerated on GPUs
[1][6][8][17] using CUDA. Most approaches typically only
parallelize step 1 but not step 2 since the number of clusters
has been found to be too low for parallelization. We also use
GPUs and CUDA but our purpose is not standard k-means
where clusters can have any extent as long as they do not
overlap with other clusters. Rather, in our algorithm clusters
cannot have an extent greater than a preset threshold, in a
correlation context. This makes a direct comparison to the
existing, more general work difficult.

III. BACKGROUND

The clustering framework presented here is part of a larger
visual analytics system that we have developed with a group
of aerosol scientists over the past ten years [9][12][18]
[19][21]. The data acquired by a state-of-the-art single
particle mass spectrometer, termed SPLAT II, are composed

of 450-dimensional mass spectra of individual aerosol
particles (see [20] for more detail). SPLAT II can acquire up
to 100 particles per second at sizes between 50-3,000 nm
with a precision of 1 nm. It can be used for atmospheric
chemistry to understand the processes that control the
atmospheric aerosol life cycle. This is important, for
example, in finding the origins of climate change, by
uncovering and helping to model the relationship between
atmospheric aerosols and climate. Other applications are
fundamental science, nanotechnology, characterization of
engine emission, and national security. Fig. 1a shows
SPLAT II operated by the collaborating scientist in-flight in
the Arctic aboard a Convair-580 research aircraft. Fig. 1b
shows various sensor probes mounted on the aircraft wing.

The overall goal is to build a hierarchy of particles based
on their spectral composition that can be used in subsequent
automated classification of new particle acquisitions, either
back in the lab or directly in the field. The tools we
developed to create this hierarchy tightly integrate the
scientist into this process. Our system provides a variety of
interaction capabilities that allow the scientists to delineate
particle clusters directly in high-dimensional (450-D) space
– a process which we refer to as cluster sculpting.
Interactive tools for this process are strongly needed since
the data are extremely noisy and fully automated clustering
tools do not return satisfactory results.

Fig. 2 shows the interface (called SpectraMiner) with a
complete particle hierarchy in form of a radial dendrogram
[9]. The outer ring has the leaf nodes which make up the set
of particles. These are then merged into higher level nodes
based on their mutual correlation. A heap sort algorithm

3

Fig. 2: The SpectraMiner interface.

Make the first point a cluster center

While number of unclustered points > 0

Pt = next unclustered point

Compare Pt to all cluster centers

Find the cluster with the shortest distance

If(distance < threshold)

Cluster Pt into cluster center

Else

Make Pt a new cluster center

End If

End

Fig. 3: Incremental clustering algorithm pseudo code.

merges the currently most correlated pair of nodes until
reaching the root at which all nodes have been merged.
Correlation serves as a distance metric here since we are
primarily interested in particle composition ratios (mixing
state) and not in absolute numbers. Since SPLAT II can
acquire 100 particles/s, the number of particles gathered in a
single acquisition run can easily reach 100,000 – it would
take just a 15 minute time window.

Even 100,000 is a large number of points to compute the
classification tree from and so we have always relied on
correlation clustering with a tight bound to detect and
remove redundant data points. Since in the onset the number
of points was reasonably small, this clustering could be
done on the CPU. But now in the large campaigns, such as
the more recent one in the Arctic (Fig. 1), the runs are much
longer and more frequent and so datasets of 5-10M particles
have become the norm. This paper uses the dataset acquired
during a month-long CARES field campaign in Sacramento,
CA [16] in which SPLAT II operated 24/7 for the entire
month. To keep the size of the dataset manageable, the
sampling rate was reduced to 20 particles/s. The CPU
solution was insufficient to perform the correlation
clustering at this level of magnitude, and this necessitated a
high-performance GPU solution.

IV. OUR APPROACH

The algorithm we present is not necessarily a new clustering
algorithm; but a modification of an existing incremental

clustering algorithm, used in [9], to make it more amenable
to GPU acceleration. The incremental k-means algorithm
has the desirable property of selecting a good value for k
(i.e. the value of k does not need to be predetermined). The
way the algorithm is structured, however, does not map very
well to a parallel implementation.

A. INCREMENTAL K-MEANS

Figure 3 shows pseudo code for the incremental algorithm

of [9]. It starts by selecting the first point from a dataset of

N points and making it the initial cluster center. The next

point is then selected and compared to the initial cluster

center using some distance metric. If this point is close

enough to the cluster center (i.e. within some threshold), it is

placed into the cluster. The center is then updated by taking

the average of the coordinates of each point in the cluster. If

the point is too far from the cluster center (i.e. outside of

some threshold), then the point becomes a new cluster

center. The next point in the dataset of N points is then

selected and compared to the two cluster centers. This

process is repeated until all points have been clustered.

As this algorithm is running, it uses some heuristics to

identify clusters that will likely be outliers. More

specifically, it will keep track of small clusters which have

not been updated for a while, and mark them as outliers. A

second pass is then performed to re-cluster the points in the

“outlier” clusters. During the first pass, each point is only

compared to the cluster centers that came before it. In the

second pass, the outlier points can be clustered into any of

the cluster centers that were formed during the first pass.

B. PARALLEL INCREMENTAL K-MEANS

When applied to a big data setting, the incremental

algorithm can become quite slow. The points toward the end

of the dataset will have to be compared against all of the

cluster centers that came before it. This becomes

extraordinarily compute intensive; especially when the

points are of high dimensionality and the cost of computing

the distance metric takes a non-negligible amount of time.

The incremental nature of this algorithm makes it

unclear how to efficiently map it to GPUs. One approach we

considered was to parallelize over the cluster centers. In this

approach, a point would be compared to each cluster center

in parallel. Then a parallel reduction operation would take

place to find the closest cluster center. There are a few

problems with this approach. Toward the beginning of the

algorithm, when there are not many clusters, the GPU would

be highly underutilized. Also, we would iterate through all

the points in a sequential fashion. We have found, in our

experience, that it is better to parallelize over the largest

parts of an algorithm, and since there is an order of

magnitude more points than clusters, this algorithm

contradicts this rule of thumb. Finally, this strategy still

requires that we perform a second pass to re-cluster outliers.

Figure 4 presents the parallelization strategy we

adopted, in the form of pseudo code. It follows the original

sequential algorithm described in the previous section until

we have C cluster centers chosen from the pool of

unclustered points – C was determined through empirical

evaluation to yield the best run time performance. Then we

compare, in parallel, all points to each of the C cluster

centers. Each point is either labeled with the cluster center

that it belongs to, or it is labeled as unclustered. Essentially,

we are performing the parallel k-means clustering algorithm

described in [1] where k=C and the criteria for inclusion into

a cluster is that the distance between a point and a cluster is

below a user defined threshold. The C cluster centers are

then updated in parallel. Following, all points are compared,

again in parallel, to the updated cluster centers. This process

repeats until the points converge, or a predefined number of

iterations, Max_iterations, have been performed.

4

Make the first point a cluster center

While number of unclustered points > 0

Perform sequential k-means until C clusters emerge

Num_Iterations = 0

While Num_Iterations < Max_iterations

 In Parallel: Compare all points to C centers

 In Parallel: Update the C cluster centers

 Num_Iterations++

End

 Output the C clusters

End

Fig. 4: Our parallel incremental clustering algorithm

We then record the C cluster centers to an output buffer, and

repeat the sequential algorithm to obtain a new set of C

cluster centers, followed by another parallel clustering step

using these new C centers.

This strategy essentially merges the incremental k-

means algorithm with a parallel implementation of the

traditional k-means algorithm, where k=C. The advantage

here is that the sequential part of the algorithm never

compares a point to more than C cluster centers. Another

advantage to this approach is that we no longer need a

second pass. Since every point is being compared to every

cluster, a second pass would be unnecessary.

We chose C=96 through experimentation. We found that

96 clusters gave a good balance between CPU and GPU

utilization. Conversely, with more than 96 clusters, the

algorithm would become CPU bound. With less than 96

clusters, the GPU would be underutilized. It was also

important that the number of clusters be a multiple of 32 to

avoid divergent warps. See Section 5 for more detail.

Finally, the limit Max_iterations was also determined

experimentally. We found a value of 5 to be effective, but

note that most iterations converge much earlier.

C. CLUSTER VISUALIZATION

For the visualization of the evolving high-dimensional data

clusters we aimed for a display that can show these clusters

intuitively. A low-dimensional embedding into the 2D

plane, as provided by MDS, is such a visualization and we

chose Glimmer MDS [10] for this purpose. Glimmer MDS

is a multilevel dimension reduction and visualization

technique. It is an iterative algorithm where points are

embedded (i.e. reduced to a 2D layout) in the current level

based on the embedding of the points at a previous level. It

consists of three main stages: (1) restriction, (2)

interpolation and (3) relaxation. The restriction stage is to

build the multilevel hierarchy by randomly assigning each

point to a certain level. The interpolation phase is to

compute the current level’s points’ coordinates by

interpolating them into the lower dimensional space where

the embedding of all points from the previous level is fixed.

Finally, the relaxation stage is to take all points into

consideration and move them around to achieve a globally

minimum stress value. For the interpolation and relaxation,

Glimmer MDS adopts a stochastic force algorithm. The

main advantage of this algorithm is that the final embedding

of a point is only decided by a small number of points. Even

though the set of those referential points changes at every

iteration, its size remains unchanged and thus the

computation cost is also fixed. This property makes

Glimmer MDS quite amenable to GPU acceleration.

Next we need to finalize what to visualize. Since the

number of points is massive, if we visualize all of them the

visualization will become cluttered. Since after clustering

the points each cluster center is a fairly tight representative

of its members, it is reasonable to only visualize the cluster

centers. Further, we also only visualize significant clusters –

those that have more than M members – we chose M=10. A

histogram visualizes the size distribution of the clusters and

a transfer function maps the number of members of each

cluster to the color of its displayed cluster center.

The range of the number of members in each cluster can

be vary widely (in our application, from 1 to 317,786).

Moreover, the cluster sizes may not be evenly distributed

across this range. Therefore a linear transfer function would

not effectively capture the difference. By applying a

piecewise transfer function, however, we can exercise more

control over how points are colored. Since we only have one

parameter (i.e. the number of members in each cluster) that

distinguishes the cluster centers, we link it only to its color

saturation change. We use a color map from white to blue;

with small clusters mapped to mostly white and large

clusters to saturated blue. By incorporating this visualization

component into our parallel incremental clustering

algorithm we can provide a streaming experience where we

initially visualize the first C cluster centers, and update the

view with new cluster centers as they are formed.

V. LOW LEVEL DETAILS

We implemented the parallel clustering algorithm described

in the previous section using CUDA. The distance metric

we used in this implementation is the Pearson distance

metric dxy=1-xy where ρxy is the Pearson correlation

coefficient. We will now describe how we compare each

point to C=96 cluster centers in parallel.

For our CUDA function, we launch N/32 thread blocks

of size 32 × 32; where N is the number of points. Each

thread block compares 32 points to 96 cluster centers. The x

coordinate of each thread tells it what point it will be

operating on; while the y coordinate tells it what cluster

center the point will be compared against – each thread

processes three cluster centers. The points and the cluster

centers are stored in memory as two matrices (see figure 5).

Both matrices have an x dimension of 450 –the number of

bins in the mass spectrum. The naïve approach would be to

map each thread to a point and have it iterate along the x

dimension of the point and its corresponding cluster center

(a)

5

c1 = Centers[tid.y] // First 32/96 loaded by thread block
c2 = Centers[tid.y + 32] // Second 32/96 loaded

c3 = Centers[tid.y + 64] // Final 32/96 loaded

pt = Points[tid.x]

[clust, dist] = PearsonDist(pt, c1,c2,c3)

[clust, dist] = IntraColumnReduction(clust,dist)

//first thread in each column writes result

If(tid.y == 0)

Points.clust[tid.x] = clust

Points.dist[tid.x] = dist

End If

Fig. 6: CUDA kernel for clustering. Each thread block

compares 32 points to 96 clusters (i.e 3 clusters per thread)

(1) 𝐷𝐵 =
1

𝑛
 max(

𝜎𝑖 + 𝜎𝑗

𝑀𝑖𝑗

𝑛

𝑖=1

)

Fig. 5: Access pattern for naïve GPU clustering. (a) Per warp access pattern of the “Points” matrix. (b) Per warp access

pattern of the “Centers” matrix.

(b) (a)

to compute the Pearson distance. This, however, leads to an

un-coalesced access pattern. We can see in figure 5(a) that

the access pattern is quite sparse for the memory layout of

the “points” matrix. This results in 32 separate data transfers

for each warp. The access pattern for the cluster “centers”

matrix is better, as seen in figure 5(b). Since every thread in

a warp is accessing the same data at the same time, this

results in one data transfer per warp.

 The latency due to the poor memory access is the

primary bottleneck of this application. To improve the

throughput of the access to the points matrix, we load a 32 ×

32 block of the points matrix into shared memory in a

coalesced fashion (i.e. transpose the access pattern in figure

5(a)). Once the data is in shared memory, we can use almost

any access pattern and still have a high throughput. This

technique could also be used to improve the throughput of

the cluster centers matrix. Unfortunately, there is not

enough shared memory to handle both matrices without a

drop in occupancy, and hence, overall performance.

Figure 6 shows the pseudo code for our GPU accelerated

clustering algorithm. The optimizations presented in this

section are implemented in the PearsonDist function and are

omitted for brevity. Each thread computes the Pearson

distance between a point and three cluster centers – resulting

in 96 cluster centers per thread block. Increasing the per-

thread workload in this way helps the CUDA scheduler hide

latency from costly memory transfers. Although the choice

of 96 clusters was influenced by the dataset, what is

important is that performance is often improved by

increasing the per-thread workload. The PearsonDist

function returns the cluster that is closest to the thread’s

point, and the corresponding distance value. Since every

column in the thread block operates on a separate point, and

every thread within a column operates on the same point, an

intra-column parallel reduction takes place to find the

cluster with the minimum distance. By doing this, we arrive

at one cluster center and one distance value per column. We

can then compute the new cluster centers by using a parallel

segmented scan algorithm [13]. Computing the cluster

centers, however, is small enough that a simple

implementation using the “atomic add” function is suitable.

VI. RESULTS

We implemented our parallel k-means clustering algorithm

on a server with 4 Tesla K20 GPUs. We also implemented

the sequential algorithm presented earlier. The user-defined

threshold was set to a Pearson distance of 0.3 throughout.

We measure clustering quality using the Davies-Bouldin

(DB) index [5] (equation 1). It is a measure of intra-cluster

distance, σ, as well as the distance between cluster centers,

Mij for the total number of clusters, n. With the DB index,

the lower the score, the higher the quality of the clustering.

 In our experiments we noticed that the sheer size of our

datasets was the main performance bottleneck. With

millions of points, each call to the GPU would take between

2-4 seconds. Since the GPU was being called thousands of

times, this was still a very time consuming process. By

removing points that were considered “close enough” to

their respective cluster centers, the size of the dataset would

decrease with every call to the GPU. This optimization,

which we call sub-thresholding, drastically reduced the

computation time. By setting the sub-threshold to 0.2, for

example, any point that has a Pearson distance of less than

0.2 for their current cluster will become ineligible for re-

clustering (i.e. the point will stay in that cluster even if a

closer cluster is introduced later). This effectively prevents

points with a low intra-cluster distance from moving to a

new cluster in a future iteration. As a result, these points can

be removed from consideration.

Thread Block Points Matrix Thread Block Centers Matrix

6

Fig. 7: Timings of parallel and sequential incremental k-

means algorithm Fig. 8: Timings of the multi-GPU parallel incremental k-

means algorithm (ST: 0.15)

Size Seq. Par. ST: 0.3 ST: 0.2 ST: 0.15

10k 0.527 0.539 0.540 0.537 0.529

50k 0.546 0.590 0.548 0.554 0.539

100k 0.550 0.584 0.600 0.570 0.544

200k 0.564 0.587 0.640 0.593 0.564

DB scores measuring the cluster quality (lower is better). Quality

of sub-thresholding (ST) is also presented.

TABLE I: DB SCORES OF CLUSTERS

Table 1 compares the DB index of our parallel clustering

algorithm to the sequential algorithm. Table 1 also shows

how different sub-threshold levels affect quality.

Unexpectedly, clustering with no sub-threshold does not

produce the best results. This suggests that there is some

discrepancy between what is locally optimal (i.e. each point

lies in cluster where it is closest to the cluster center) and

what is globally optimal (i.e. producing clusters with a low

intra-cluster distance and a high inter-cluster distance).

Intuitively, this makes sense. Because the points are of

high dimensionality, it is likely that if k points find clusters

that are closer, they will be in k separate clusters. Within

each cluster, a single point will have a small impact on the

intra-cluster distance. The cluster that is losing k points,

however, is going to suffer a large increase in its intra-

cluster distance if those points were relatively close to the

center. In addition, the k updated clusters will have a smaller

inter-cluster distance.

Figure 7 shows how the timings scale with increasing

datasets for the different implementations. The graph

compares the sequential to the parallel implementation with

differing values for the sub-threshold. Here we can see the

effectiveness of our sub-thresholding optimization. As the

dataset increases, the sub-thresholding optimization helps to

suppress the explosion in compute time required.

We also implemented a multi-GPU solution. This

solution is very similar to the parallel algorithm presented

earlier. The only difference is that the dataset is distributed

to each GPU equally. One step is added after the GPU

clustering call to merge per-GPU cluster centers. The rest of

the algorithm remains unchanged. We can see, from figure

7, that the compute time required grows at a super-linear

rate with respect to the size of the dataset (i.e. doubling the

size of the dataset requires more than double the compute

time). Another interpretation of this graph is that halving the

size of the dataset requires less than halve the compute time.

This super linear growth rate is what makes this

algorithm a good candidate for multi-GPU acceleration. We

can see in figure 8 that using two GPUs requires less than

half the compute time when compared to one GPU. This

level of speed-up is rarely seen when implementing a multi-

GPU solution. We observe it here because each GPU is

working on half the dataset. We do not, however, observe a

similar increase in performance when moving from two to

four GPUs. This suggests that there is a diminishing rate of

return in the multi-GPU approach.

In figure 9 we show some visualizations generated

during the incremental k-means clustering. For each row,

the top scatterplots are the MDS layouts of the cluster

centers and the bottom histograms show the distributions of

the number of members of all clusters. The two numbers

under each figure indicate the number of significant cluster

centers being visualized (i.e. having more than 10 members)

and the total number of clusters processed.

From the visualizations, we notice two interesting facts.

First, several clusters are forming in the MDS layout. We

believe this is due to the low threshold enforced by the

incremental k-means algorithm. Some clusters are actually

close but not close enough to form one single cluster.

Second, the ratio of the significant clusters (i.e. number of

members more than 10) over the total clusters being

processed is getting smaller. In the beginning the ratio is

82.3% but toward the end is only about 1%. From the last

two figures we also see that of the first 165,984 clusters,

4,000 of these are significant (>10 points), while for the

second 165,984 clusters only 200 are significant. This is

because most of the big clusters were generated during the

early rounds and most of the clusters produced in the late

iterations only have a small number of members. This is a

major advantage of the visual feedback – users can easily

determine when partial clustering results are sufficient to

perform a subsequent analysis step.

Lastly, we note that the clusters appear rotated from plot

to plot. This is purely due to the MDS layout algorithm that

7

does not prefer certain layout orientations. Future work will

use anchoring to maintain the same orientations throughout.

VII. CONCLUSION

We have presented a novel approach to parallelizing a

sequential incremental k-means clustering algorithm. We

observed an order of magnitude speed-up over the

sequential version. Our results also show that the compute

time required for parallel implementation grows at a slower

rate compared to the sequential implementation. The

compute time required to cluster the entire 8 million points

dataset on four GPUs was just under two hours; whereas the

sequential implementation required several days for this.

Future work will include an out of core approach to

handle larger dataset sizes. At 8 million points, our system

is at the limit of what it can store in RAM. We would also

like to examine the effects of load balancing techniques on

performance. In the multi-GPU approach, points are not

necessarily removed from the datasets on each GPU in a

balanced way. One load balancing solution would be to

redistribute points onto each GPU after every call to the

parallel clustering function. Additional experimentation is

needed to determine if the latency of this extra memory

transfer is small enough to reach a net gain in performance.

For completeness, a multi-core CPU solution should also

be analyzed. The sequential incremental algorithm is non-

parallelizable and adapting this algorithm to expose

parallelization comes at a cost of increasing the total amount

of work (i.e. comparing every point to every cluster versus

every point to a subset of clusters in the sequential version).

GPUs are powerful enough to overcome this extra work and

achieve speed-ups over the sequential implementation. It is

unclear whether a multicore solution will be able to

overcome this extra work as well. A more complete analysis

is left for future work.

We believe providing visual feedback while the

clustering algorithm is running can be very helpful. It can

allow users to fine tune the clustering parameters and

process. In the context of big data (where processing takes a

long time) streaming visualizations can provide users with

immediate feedback. Visualizing results is also more

intuitive than raw text data and can increase the chance of

spotting patterns that might otherwise go unnoticed.

ACKNOWLEDGMENTS

This work was partly supported by NSF grant IIS-1117132,

by the Ministry of Korea Knowledge Economy, and DOE

STTR grant DE-SC0009678. Partial support was also

provided by the US Department of Energy (DOE) Office of

Basic Energy Sciences, Division of Chemical Sciences,

Geosciences, and Biosciences. Some of this research was

performed in the Environmental Molecular Sciences

Laboratory, a national scientific user facility sponsored by

the DOE’s OBER at Pacific Northwest National Laboratory

(PNNL). PNNL is operated by the US DOE by Battelle

Memorial Institute under contract No. DE-AC06-76RL0.

REFERENCES

[1] H. Bai, et al. "K-means on commodity GPUs with CUDA." IEEE
World Congr. on Comp. Sci. & Info. Eng., pp. 651–655, 2009.

[2] M. Cohen, S. Chen, J. Wallace, D. Greenberg," A Progressive
Refinement Approach to Fast Radiosity Image Generation."
Computer Graphics (Proc. SIGGRAPH, 22(4), pp. 75–84, 1988..

[3] C. Chu,, S. Kim,, Y. Lin. et al., “Map-Reduce for Machine Learning
on Multicore,” NIPS, 19:281-288, 2007.

[4] S. Datta, C. Giannella, H. Kargupta, "Approximate Distributed K-
means Clustering Over a Peer-to-Peer Network." IEEE Trans on.
Knowledge and Data Engineering,, 21(10):1372-1388, 2009.

[5] D. L. Davies, D. W. Bouldin, “A Cluster Separation Measure,” IEEE
Trans.on Pattern Analysis and Machine Intelligence, 224-227, 1979

[6] R. Farivar, D. Rebolledo, E. Chan, R. Campbell. "A parallel
implementation of k-means clustering on GPUs." PDPTA, pp. 340-
345, 2008.

[7] B. Howe. Introduction to Data Science, Coursera Course (06/15/13)

[8] M. Hsu, R. Wu, B. Zhang, “Uniformly Fine-grained Data Parallel
Computing for Machine Learning Algorithms,” in Scaling Up
Machine Learning, R. Bekkerman, M. Bilenko, J. Langford, eds,
Cambridge University Press, 2012.

[9] P. Imrich, K. Mueller, D. Imre, A. Zelenyuk, W. Zhu, "Interactive
Poster: Visual Datamining with the Interactive Dendogram," IEEE
Information Visualization Symposium, Poster Session, October 2002.

[10] S. Ingram, T. Munzner, M. Olano, “Glimmer: Multilevel MDS on the
GPU,” IEEE Trans Vis. & Comp. Graph., 15(2):249-261, 2009.

[11] J. Kruskal, “Multidimensional scaling by optimizing goodness of fit
to a nonmetric hypothesis,” Psychometrika, 29(1):1–27, 1964.

[12] E. Nam, Y. Han, K. Mueller, A. Zelenyuk, D. Imre, "ClusterSculptor:
A Visual Analytics tool for high-dimensional data," IEEE Symp.
Visual Analytics Science & Technology (VAST), pp. 75-82, 2007.

[13] S. Sengupta, M. Harris, Y. Zhang, J. D. Owens, “Scan Primitives for
GPU Computing,” Proc. Graphics Hardwaree, 97-106, 2007

[14] P. Wong, H. Shen, C. Johnson, C. Chen, R. Ross, “The Top 10
Challenges in Extreme-Scale Visual Analytics,” IEEE Computer
Graphics & Applications, 32(4): 63 – 67. 2012.

[15] P. Wong, H. Shen, C. Chen, “Top Ten Interaction Challenges in
Extreme-Scale Visual Analytics,” Expanding the Frontiers of Visual
Analytics and Visualization, Springer, pp. 197–207, 2012.

[16] R. Zaveri et al. “Overview of the 2010 Carbonaceous Aerosols and
Radiative Effects Study (CARES),” Atmos. Chem. Phys. 12:7647-
7687, 2012.

[17] M. Zechner, M. Granitzer. "Accelerating k-means on the graphics
processor via CUDA." Proc. IEEE INTENSIVE, pp. 7-15, 2009.

[18] A. Zelenyuk, D. Imre, Y. Cai, K. Mueller, Y. Han, and P. Imrich,
"SpectraMiner, an Interactive Data Mining and Visualization
Software for Single Particle Mass Spectroscopy: A Laboratory Test
Case," International Journal of Mass Spectrometry, 258:58-73, 2006.

[19] A. Zelenyuk, D. Imre, E. Nam, Y. Han, K. Mueller, "ClusterSculptor:
Software for Expert-Steered Classification of Single Particle Mass
Spectra," Intern. Journal of Mass Spectrometry, 275(1-3):1-10, 2008.

[20] A. Zelenyuk, J. Yang, D. Imre, E. Choi, “SPLAT II: An aircraft
compatible, ultra-sensitive, high precision instrument for in-situ
characterization of the size & composition of fine & ultrafine
particles,” Aerosol Sci. Technol. 43: 411-424, 2009.

[21] Z. Zhang, X. Tong, K. McDonnell, A. Zelenyuk, D. Imre, K. Mueller.
"An Interactive Visual Analytics Framework for Multi-Field Data in a
Geo-Spatial Context" Tsinghua Science and Technology on
Visualization and Computer Graphics, 18(2), April, 2013.

[22] W. Zhao, H. Ma, Q. He, “Parallel K-Means Clustering Based on
MapReduce,” Cloud Computing, Lecture Notes in Computer Science
Volume 5931, pp. 674-679, 2009.

[23] http://www.kdd.org/blog/age-big-data-kdd-89-kdd-2012 (07/29/13)

http://www.kdd.org/blog/age-big-data-kdd-89-kdd-2012

8

Figure 9: Cluster visualization. The number below each image is the number of cluster centers being visualized vs. the

total number of cluster centers. The centers not visualized are those that have a population of less than 10 members.

79/96 998/3360 2004/13920

4002/165984 4207/336994 3001/52800

