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Abstract—Clustering is an important preparation step in big 

data processing. It may even be used to detect redundant data 

points as well as outliers. Elimination of redundant data and 

duplicates can serve as a viable means for data reduction and it 

can also aid in sampling. Visual feedback is very valuable here 

to give users confidence in this process. Furthermore, big data 

preprocessing is seldom interactive, which stands at conflict 

with users who seek answers immediately. The best one can do 

is incremental preprocessing in which partial and hopefully 

quite accurate results become available relatively quickly and 

are then refined over time. We propose a correlation clustering 

framework which uses MDS for layout and GPU-acceleration 

to accomplish these goals. Our domain application is the 

correlation clustering of atmospheric mass spectrum data with 

8 million data points of 450 dimensions each.  

Keywords-big data; clustering; visualization; visual 

analytics; correlation; GPU; 

I.  INTRODUCTION 

Some have called big data the second major revolution in 
modern civilization after the industrial revolution [23]. 
Indeed, big data affects everyone and everything – the 
internet of things, social networks, internet search indexing, 
astronomy, atmospheric science, health, biology, military 
surveillance, e-commerce – just to name a few. Big data is 
often associated with the terms e-science and data science, 
which really both refer to a similar goal – the automated or 
semi-automated extraction of knowledge from massive 
volumes of data. Just e-science is the term commonly used in 
astronomy, oceanography, and biology, while data science is 
the term used in business applications [7].  

 In data mining and especially in big data, preprocessing 
consumes a large portion of the workflow, as much as 80-
90% [1]. Preprocessing includes data preparation, 
integration, cleaning, reduction, and transformation. As big 
data analysis can often be mission critical, preprocessing 
should be done expediently. The massively parallel 
architecture of GPUs offers an effective platform to 
accomplish high speed data preprocessing. However, as GPU 
technology has been developing steadily and rapidly, users 

have trouble keeping up. And even if they do, the largeness 
of big data requires not just one GPU but multiple GPUs in 
conjunction with large memory. These needs are best 
addressed in a cloud-based platform. The framework we 
describe in this paper utilizes both a single GPU as well as a 
GPU server that could also operate in a cloud setting.  

But no matter on which computational platform the 
preprocessing is conducted, the decimation of big data to a 
more manageable size brings great benefits. Given the 
abundance of data, the detection of redundancies is of utmost 
importance as these can make later stages in big data analysis 
more lightweight. Clustering is an effective means to 
accomplish this. Here one would make the cluster boundaries 
sufficiently tight such that the resulting cluster centers serve 
as viable representatives for their respective sub populations. 
This boundary would be determined by the domain experts.  

While GPUs can clearly accelerate preprocessing, the 
response will not be immediate but can possibly take hours 
or more. The best possible compromise is to give the user a 
glimpse of the final result – a partial result that can convey a 
good hint on what to expect when all is done. In computer 
graphics there is the concept of progressive rendering or 
refinement [2]. It is an approximation of the final rendered 
image in cases when the full resolution image will take a 
long time to compute. We have worked towards a solution 
into this direction for big data clustering, Necessitated by our 
domain application – the analysis of data acquired from a 
single particle mass spectral analyzer – we have focused on 
correlation clustering, but we could handle spatial distances, 
such as Euclidean, just as well.  

To communicate these evolving results, visualization is 
an effective means. Here we have opted for a display that 
uses Multi-Dimensional Scaling (MDS) [11] to generate a 
dynamic 2D overview display of the emerging clustering 
results. Visual hints are given that allow users to appreciate 
relevance, updates and changes to the evolving landscape.   

Our paper is structured as follows. Section 2 discusses 
related work. Section 3 presents relevant background. 
Sections 4 and 5 describe our framework. Section 6 presents 
results, and Section 7 ends with conclusions and future work.    

This paper was presented at the First IEEE Workshop on Big Data Visualization 
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(a) (b) 

Fig. 1: Deployment of SPLAT II in a flight campaign. 

Fig. 2: The SpectraMiner interface. 

II.   RELATED WORK 

Two recent papers by Wong and colleagues list the top ten 
challenges in extreme-scale visual analytics [14][15]. Among 
these were user-driven data reduction, scalability and 
multilevel hierarchy, and data summarization. We achieve 
data reduction via our tight clustering framework which the 
user is able to drive and appreciate by visualizing the 
dynamic MDS display as a data summary. Then, once the 
clustering is finished, we can construct a hierarchical 
decomposition by merging the clusters into a tree (a 
dendrogram) using a correlation metric [9][12][18].  

Our algorithm is a clustering scheme but its main purpose 
is data decimation. Clustering of big data is often done with 
the k-means algorithm. It has two iterative steps. Step 1 
begins with k samples (the means) and assigns all other data 
points to the closest of these k means. Step 2 then computes a 
new mean for each of the k clusters upon which a new 
iteration begins. Iterations typically continue until the total 
sum of errors falls below some minimum. The k-means 
algorithm is not guaranteed to converge to the global 
minimum – typically multiple runs are taken, also with 
different numbers of k.   

To parallelize k-means on distributed architectures 
interconnected via MPI/OpenMP, a typical approach is to 
partition the N data points onto the P processors. In this case 
each processor runs step 1 and 2 on its local data, and the 
global k means are found by averaging the local ones. This 
step can occur in parallel as well by using a map-reduce 
approach [3][22]. Here all mappers distribute their local k 
means to a set of P reducers which perform the averaging in 
parallel. Following, the reducers send the global k means 
back to the mappers for a new iteration. As such, this 
approach requires two communication steps per iteration but 
offers parallelism at every stage of the distributed algorithm.  

Alternative to map-reduce, in another less parallel 
approach each processor broadcasts its local set of k means 
to all other processors which then all compute the global set 
locally. This approach requires only one communication step 
but offers less parallelism. It has found use, for example, in 
the P2P algorithm by Datta et al. [4] where a set of remote 
workstations are connected via TCP/IP.  

Finally, k-means has also been accelerated on GPUs 
[1][6][8][17] using CUDA. Most approaches typically only 
parallelize step 1 but not step 2 since the number of clusters 
has been found to be too low for parallelization. We also use 
GPUs and CUDA but our purpose is not standard k-means 
where clusters can have any extent as long as they do not 
overlap with other clusters. Rather, in our algorithm clusters 
cannot have an extent greater than a preset threshold, in a 
correlation context. This makes a direct comparison to the 
existing, more general work difficult.  

III. BACKGROUND 

The clustering framework presented here is part of a larger 
visual analytics system that we have developed with a group 
of aerosol scientists over the past ten years [9][12][18] 
[19][21]. The data acquired by a state-of-the-art single 
particle mass spectrometer, termed SPLAT II, are composed 

of 450-dimensional mass spectra of individual aerosol 
particles (see [20] for more detail). SPLAT II can acquire up 
to 100 particles per second at sizes between 50-3,000 nm 
with a precision of 1 nm. It can be used for atmospheric 
chemistry to understand the processes that control the 
atmospheric aerosol life cycle. This is important, for 
example, in finding the origins of climate change, by 
uncovering and helping to model the relationship between 
atmospheric aerosols and climate. Other applications are 
fundamental science, nanotechnology, characterization of 
engine emission, and national security. Fig. 1a shows 
SPLAT II operated by the collaborating scientist in-flight in 
the Arctic aboard a Convair-580 research aircraft. Fig. 1b 
shows various sensor probes mounted on the aircraft wing. 

The overall goal is to build a hierarchy of particles based 
on their spectral composition that can be used in subsequent 
automated classification of new particle acquisitions, either 
back in the lab or directly in the field. The tools we 
developed to create this hierarchy tightly integrate the 
scientist into this process. Our system provides a variety of 
interaction capabilities that allow the scientists to delineate 
particle clusters directly in high-dimensional (450-D) space 
– a process which we refer to as cluster sculpting. 
Interactive tools for this process are strongly needed since 
the data are extremely noisy and fully automated clustering 
tools do not return satisfactory results.   

Fig. 2 shows the interface (called SpectraMiner) with a 
complete particle hierarchy in form of a radial dendrogram 
[9]. The outer ring has the leaf nodes which make up the set 
of particles. These are then merged into higher level nodes 
based on their mutual correlation. A heap sort algorithm 
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Fig. 2: The SpectraMiner interface. 

Make the first point a cluster center 

While number of unclustered points > 0 

Pt = next unclustered point 

Compare Pt to all cluster centers 

Find the cluster with the shortest distance  

If(distance < threshold) 

Cluster Pt into cluster center 

Else 

Make Pt a new cluster center 

End If 

End 

 
Fig. 3: Incremental clustering algorithm pseudo code. 

merges the currently most correlated pair of nodes until 
reaching the root at which all nodes have been merged. 
Correlation serves as a distance metric here since we are 
primarily interested in particle composition ratios (mixing 
state) and not in absolute numbers. Since SPLAT II can 
acquire 100 particles/s, the number of particles gathered in a 
single acquisition run can easily reach 100,000 – it would 
take just a 15 minute time window. 

Even 100,000 is a large number of points to compute the 
classification tree from and so we have always relied on 
correlation clustering with a tight bound to detect and 
remove redundant data points. Since in the onset the number 
of points was reasonably small, this clustering could be 
done on the CPU. But now in the large campaigns, such as 
the more recent one in the Arctic (Fig. 1), the runs are much 
longer and more frequent and so datasets of 5-10M particles 
have become the norm. This paper uses the dataset acquired 
during a month-long CARES field campaign in Sacramento, 
CA [16] in which SPLAT II operated 24/7 for the entire 
month. To keep the size of the dataset manageable, the 
sampling rate was reduced to 20 particles/s. The CPU 
solution was insufficient to perform the correlation 
clustering at this level of magnitude, and this necessitated a 
high-performance GPU solution.   

IV. OUR APPROACH 

The algorithm we present is not necessarily a new clustering 
algorithm; but a modification of an existing incremental 

clustering algorithm, used in [9], to make it more amenable 
to GPU acceleration. The incremental k-means algorithm 
has the desirable property of selecting a good value for k 
(i.e. the value of k does not need to be predetermined). The 
way the algorithm is structured, however, does not map very 
well to a parallel implementation. 

A. INCREMENTAL K-MEANS 

Figure 3 shows pseudo code for the incremental algorithm 

of [9]. It starts by selecting the first point from a dataset of 

N points and making it the initial cluster center. The next 

point is then selected and compared to the initial cluster 

center using some distance metric. If this point is close 

enough to the cluster center (i.e. within some threshold), it is 

placed into the cluster. The center is then updated by taking 

the average of the coordinates of each point in the cluster. If 

the point is too far from the cluster center (i.e. outside of 

some threshold), then the point becomes a new cluster 

center. The next point in the dataset of N points is then 

selected and compared to the two cluster centers. This 

process is repeated until all points have been clustered. 

As this algorithm is running, it uses some heuristics to 

identify clusters that will likely be outliers. More 

specifically, it will keep track of small clusters which have 

not been updated for a while, and mark them as outliers. A 

second pass is then performed to re-cluster the points in the 

“outlier” clusters. During the first pass, each point is only 

compared to the cluster centers that came before it. In the 

second pass, the outlier points can be clustered into any of 

the cluster centers that were formed during the first pass. 

B. PARALLEL INCREMENTAL K-MEANS 

When applied to a big data setting, the incremental 

algorithm can become quite slow. The points toward the end 

of the dataset will have to be compared against all of the 

cluster centers that came before it. This becomes 

extraordinarily compute intensive; especially when the 

points are of high dimensionality and the cost of computing 

the distance metric takes a non-negligible amount of time. 

The incremental nature of this algorithm makes it 

unclear how to efficiently map it to GPUs. One approach we 

considered was to parallelize over the cluster centers. In this 

approach, a point would be compared to each cluster center 

in parallel. Then a parallel reduction operation would take 

place to find the closest cluster center. There are a few 

problems with this approach. Toward the beginning of the 

algorithm, when there are not many clusters, the GPU would 

be highly underutilized. Also, we would iterate through all 

the points in a sequential fashion. We have found, in our 

experience, that it is better to parallelize over the largest 

parts of an algorithm, and since there is an order of 

magnitude more points than clusters, this algorithm 

contradicts this rule of thumb. Finally, this strategy still 

requires that we perform a second pass to re-cluster outliers.  

Figure 4 presents the parallelization strategy we 

adopted, in the form of pseudo code. It follows the original 

sequential algorithm described in the previous section until 

we have C cluster centers chosen from the pool of 

unclustered points – C was determined through empirical 

evaluation to yield the best run time performance. Then we 

compare, in parallel, all points to each of the C cluster 

centers. Each point is either labeled with the cluster center 

that it belongs to, or it is labeled as unclustered. Essentially, 

we are performing the parallel k-means clustering algorithm 

described in [1] where k=C and the criteria for inclusion into 

a cluster is that the distance between a point and a cluster is 

below a user defined threshold. The C cluster centers are 

then updated in parallel. Following, all points are compared, 

again in parallel, to the updated cluster centers. This process 

repeats until the points converge, or a predefined number of 

iterations, Max_iterations, have been performed. 
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Make the first point a cluster center 

While number of unclustered points > 0 

Perform sequential k-means until C clusters emerge  

Num_Iterations = 0 

While Num_Iterations < Max_iterations 

 In Parallel: Compare all points to C centers 

 In Parallel: Update the C cluster centers 

 Num_Iterations++ 

End  

     Output the C clusters  

End 

Fig. 4: Our parallel incremental clustering algorithm 

We then record the C cluster centers to an output buffer, and 

repeat the sequential algorithm to obtain a new set of C 

cluster centers, followed by another parallel clustering step 

using these new C centers.  

This strategy essentially merges the incremental k-

means algorithm with a parallel implementation of the 

traditional k-means algorithm, where k=C. The advantage 

here is that the sequential part of the algorithm never 

compares a point to more than C cluster centers. Another 

advantage to this approach is that we no longer need a 

second pass. Since every point is being compared to every 

cluster, a second pass would be unnecessary.  

We chose C=96 through experimentation. We found that 

96 clusters gave a good balance between CPU and GPU 

utilization. Conversely, with more than 96 clusters, the 

algorithm would become CPU bound. With less than 96 

clusters, the GPU would be underutilized. It was also 

important that the number of clusters be a multiple of 32 to 

avoid divergent warps. See Section 5 for more detail. 

Finally, the limit Max_iterations was also determined 

experimentally. We found a value of 5 to be effective, but 

note that most iterations converge much earlier.  

C. CLUSTER VISUALIZATION 

For the visualization of the evolving high-dimensional data 

clusters we aimed for a display that can show these clusters 

intuitively. A low-dimensional embedding into the 2D 

plane, as provided by MDS, is such a visualization and we 

chose Glimmer MDS [10] for this purpose. Glimmer MDS 

is a multilevel dimension reduction and visualization 

technique. It is an iterative algorithm where points are 

embedded (i.e. reduced to a 2D layout) in the current level 

based on the embedding of the points at a previous level. It 

consists of three main stages: (1) restriction, (2) 

interpolation and (3) relaxation. The restriction stage is to 

build the multilevel hierarchy by randomly assigning each 

point to a certain level. The interpolation phase is to 

compute the current level’s points’ coordinates by 

interpolating them into the lower dimensional space where 

the embedding of all points from the previous level is fixed. 

Finally, the relaxation stage is to take all points into 

consideration and move them around to achieve a globally 

minimum stress value. For the interpolation and relaxation, 

Glimmer MDS adopts a stochastic force algorithm. The 

main advantage of this algorithm is that the final embedding 

of a point is only decided by a small number of points. Even 

though the set of those referential points changes at every 

iteration, its size remains unchanged and thus the 

computation cost is also fixed. This property makes 

Glimmer MDS quite amenable to GPU acceleration. 

Next we need to finalize what to visualize. Since the 

number of points is massive, if we visualize all of them the 

visualization will become cluttered. Since after clustering 

the points each cluster center is a fairly tight representative 

of its members, it is reasonable to only visualize the cluster 

centers. Further, we also only visualize significant clusters – 

those that have more than M members – we chose M=10. A 

histogram visualizes the size distribution of the clusters and 

a transfer function maps the number of members of each 

cluster to the color of its displayed cluster center.   

The range of the number of members in each cluster can 

be vary widely (in our application, from 1 to 317,786). 

Moreover, the cluster sizes may not be evenly distributed 

across this range. Therefore a linear transfer function would 

not effectively capture the difference. By applying a 

piecewise transfer function, however, we can exercise more 

control over how points are colored. Since we only have one 

parameter (i.e. the number of members in each cluster) that 

distinguishes the cluster centers, we link it only to its color 

saturation change. We use a color map from white to blue; 

with small clusters mapped to mostly white and large 

clusters to saturated blue. By incorporating this visualization 

component into our parallel incremental clustering 

algorithm we can provide a streaming experience where we 

initially visualize the first C cluster centers, and update the 

view with new cluster centers as they are formed. 

V. LOW LEVEL DETAILS 

We implemented the parallel clustering algorithm described 

in the previous section using CUDA. The distance metric 

we used in this implementation is the Pearson distance 

metric dxy=1-xy where ρxy is the Pearson correlation 

coefficient. We will now describe how we compare each 

point to C=96 cluster centers in parallel. 

For our CUDA function, we launch N/32 thread blocks 

of size 32 × 32; where N is the number of points. Each 

thread block compares 32 points to 96 cluster centers. The x 

coordinate of each thread tells it what point it will be 

operating on; while the y coordinate tells it what cluster 

center the point will be compared against – each thread 

processes three cluster centers. The points and the cluster 

centers are stored in memory as two matrices (see figure 5). 

Both matrices have an x dimension of 450 –the number of 

bins in the mass spectrum. The naïve approach would be to 

map each thread to a point and have it iterate along the x 

dimension of the point and its corresponding cluster center 

(a) 
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c1 = Centers[tid.y]  // First 32/96 loaded by thread block 
c2 = Centers[tid.y + 32] // Second 32/96 loaded 

c3 = Centers[tid.y + 64] // Final 32/96 loaded 

pt = Points[tid.x] 

 

[clust, dist] = PearsonDist(pt, c1,c2,c3) 

[clust, dist] = IntraColumnReduction(clust,dist) 

 

//first thread in each column writes result 

If(tid.y == 0) 

Points.clust[tid.x] = clust 

Points.dist[tid.x] = dist 

End If 

Fig. 6: CUDA kernel for clustering. Each thread block 

compares 32 points to 96 clusters (i.e 3 clusters per thread) 

 

(1) 𝐷𝐵 =
1

𝑛
 max(

𝜎𝑖 + 𝜎𝑗

𝑀𝑖𝑗

𝑛

𝑖=1

) 

Fig. 5: Access pattern for naïve GPU clustering. (a) Per warp access pattern of the “Points” matrix. (b) Per warp access 

pattern of the “Centers” matrix. 

(b) (a) 

to compute the Pearson distance. This, however, leads to an 

un-coalesced access pattern. We can see in figure 5(a) that 

the access pattern is quite sparse for the memory layout of 

the “points” matrix. This results in 32 separate data transfers 

for each warp. The access pattern for the cluster “centers” 

matrix is better, as seen in figure 5(b). Since every thread in 

a warp is accessing the same data at the same time, this 

results in one data transfer per warp.  

  The latency due to the poor memory access is the 

primary bottleneck of this application. To improve the 

throughput of the access to the points matrix, we load a 32 × 

32 block of the points matrix into shared memory in a 

coalesced fashion (i.e. transpose the access pattern in figure 

5(a)). Once the data is in shared memory, we can use almost 

any access pattern and still have a high throughput. This 

technique could also be used to improve the throughput of 

the cluster centers matrix. Unfortunately, there is not 

enough shared memory to handle both matrices without a 

drop in occupancy, and hence, overall performance.  

Figure 6 shows the pseudo code for our GPU accelerated 

clustering algorithm. The optimizations presented in this 

section are implemented in the PearsonDist function and are 

omitted for brevity. Each thread computes the Pearson 

distance between a point and three cluster centers – resulting 

in 96 cluster centers per thread block. Increasing the per-

thread workload in this way helps the CUDA scheduler hide 

latency from costly memory transfers. Although the choice 

of 96 clusters was influenced by the dataset, what is 

important is that performance is often improved by 

increasing the per-thread workload. The PearsonDist 

function returns the cluster that is closest to the thread’s 

point, and the corresponding distance value. Since every 

column in the thread block operates on a separate point, and 

every thread within a column operates on the same point, an 

intra-column parallel reduction takes place to find the 

cluster with the minimum distance. By doing this, we arrive 

at one cluster center and one distance value per column. We 

can then compute the new cluster centers by using a parallel 

segmented scan algorithm [13]. Computing the cluster 

centers, however, is small enough that a simple 

implementation using the “atomic add” function is suitable.      

VI. RESULTS 

We implemented our parallel k-means clustering algorithm 

on a server with 4 Tesla K20 GPUs. We also implemented 

the sequential algorithm presented earlier. The user-defined 

threshold was set to a Pearson distance of 0.3 throughout.   

We measure clustering quality using the Davies-Bouldin 

(DB) index [5] (equation 1). It is a measure of intra-cluster 

distance, σ, as well as the distance between cluster centers, 

Mij for the total number of clusters, n. With the DB index, 

the lower the score, the higher the quality of the clustering. 

 In our experiments we noticed that the sheer size of our 

datasets was the main performance bottleneck. With 

millions of points, each call to the GPU would take between 

2-4 seconds. Since the GPU was being called thousands of 

times, this was still a very time consuming process. By 

removing points that were considered “close enough” to 

their respective cluster centers, the size of the dataset would 

decrease with every call to the GPU. This optimization, 

which we call sub-thresholding, drastically reduced the 

computation time. By setting the sub-threshold to 0.2, for 

example, any point that has a Pearson distance of less than 

0.2 for their current cluster will become ineligible for re-

clustering (i.e. the point will stay in that cluster even if a 

closer cluster is introduced later). This effectively prevents 

points with a low intra-cluster distance from moving to a 

new cluster in a future iteration. As a result, these points can 

be removed from consideration. 

Thread Block Points Matrix Thread Block Centers Matrix 
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Fig. 7: Timings of parallel and sequential incremental k-

means algorithm Fig. 8: Timings of the multi-GPU parallel incremental k-

means algorithm (ST: 0.15) 

Size Seq. Par.  ST: 0.3 ST: 0.2 ST: 0.15 

10k 0.527 0.539 0.540 0.537 0.529 

50k 0.546 0.590 0.548 0.554 0.539 

100k 0.550 0.584 0.600 0.570 0.544 

200k 0.564 0.587 0.640 0.593 0.564 

DB scores measuring the cluster quality (lower is better). Quality 

of sub-thresholding (ST) is also presented. 

TABLE I: DB SCORES OF CLUSTERS 

Table 1 compares the DB index of our parallel clustering 

algorithm to the sequential algorithm. Table 1 also shows 

how different sub-threshold levels affect quality. 

Unexpectedly, clustering with no sub-threshold does not 

produce the best results. This suggests that there is some 

discrepancy between what is locally optimal (i.e. each point 

lies in cluster where it is closest to the cluster center) and 

what is globally optimal (i.e. producing clusters with a low 

intra-cluster distance and a high inter-cluster distance).  

Intuitively, this makes sense. Because the points are of 

high dimensionality, it is likely that if k points find clusters 

that are closer, they will be in k separate clusters. Within 

each cluster, a single point will have a small impact on the 

intra-cluster distance. The cluster that is losing k points, 

however, is going to suffer a large increase in its intra-

cluster distance if those points were relatively close to the 

center. In addition, the k updated clusters will have a smaller 

inter-cluster distance. 

Figure 7 shows how the timings scale with increasing 

datasets for the different implementations. The graph 

compares the sequential to the parallel implementation with 

differing values for the sub-threshold. Here we can see the 

effectiveness of our sub-thresholding optimization. As the 

dataset increases, the sub-thresholding optimization helps to 

suppress the explosion in compute time required.  

We also implemented a multi-GPU solution. This 

solution is very similar to the parallel algorithm presented 

earlier. The only difference is that the dataset is distributed 

to each GPU equally. One step is added after the GPU 

clustering call to merge per-GPU cluster centers. The rest of 

the algorithm remains unchanged. We can see, from figure 

7, that the compute time required grows at a super-linear 

rate with respect to the size of the dataset (i.e. doubling the 

size of the dataset requires more than double the compute 

time). Another interpretation of this graph is that halving the 

size of the dataset requires less than halve the compute time. 

This super linear growth rate is what makes this 

algorithm a good candidate for multi-GPU acceleration. We 

can see in figure 8 that using two GPUs requires less than 

half the compute time when compared to one GPU. This 

level of speed-up is rarely seen when implementing a multi-

GPU solution. We observe it here because each GPU is 

working on half the dataset. We do not, however, observe a 

similar increase in performance when moving from two to 

four GPUs. This suggests that there is a diminishing rate of 

return in the multi-GPU approach. 

In figure 9 we show some visualizations generated 

during the incremental k-means clustering. For each row, 

the top scatterplots are the MDS layouts of the cluster 

centers and the bottom histograms show the distributions of 

the number of members of all clusters. The two numbers 

under each figure indicate the number of significant cluster 

centers being visualized (i.e. having more than 10 members) 

and the total number of clusters processed.  

From the visualizations, we notice two interesting facts. 

First, several clusters are forming in the MDS layout. We 

believe this is due to the low threshold enforced by the 

incremental k-means algorithm. Some clusters are actually 

close but not close enough to form one single cluster. 

Second, the ratio of the significant clusters (i.e. number of 

members more than 10) over the total clusters being 

processed is getting smaller. In the beginning the ratio is 

82.3% but toward the end is only about 1%. From the last 

two figures we also see that of the first 165,984 clusters, 

4,000 of these are significant (>10 points), while for the 

second 165,984 clusters only 200 are significant. This is 

because most of the big clusters were generated during the 

early rounds and most of the clusters produced in the late 

iterations only have a small number of members. This is a 

major advantage of the visual feedback – users can easily 

determine when partial clustering results are sufficient to 

perform a subsequent analysis step. 

Lastly, we note that the clusters appear rotated from plot 

to plot. This is purely due to the MDS layout algorithm that 
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does not prefer certain layout orientations. Future work will 

use anchoring to maintain the same orientations throughout. 

VII. CONCLUSION 

We have presented a novel approach to parallelizing a 

sequential incremental k-means clustering algorithm. We 

observed an order of magnitude speed-up over the 

sequential version. Our results also show that the compute 

time required for parallel implementation grows at a slower 

rate compared to the sequential implementation. The 

compute time required to cluster the entire 8 million points 

dataset on four GPUs was just under two hours; whereas the 

sequential implementation required several days for this. 

Future work will include an out of core approach to 

handle larger dataset sizes. At 8 million points, our system 

is at the limit of what it can store in RAM. We would also 

like to examine the effects of load balancing techniques on 

performance. In the multi-GPU approach, points are not 

necessarily removed from the datasets on each GPU in a 

balanced way. One load balancing solution would be to 

redistribute points onto each GPU after every call to the 

parallel clustering function. Additional experimentation is 

needed to determine if the latency of this extra memory 

transfer is small enough to reach a net gain in performance.  

For completeness, a multi-core CPU solution should also 

be analyzed. The sequential incremental algorithm is non-

parallelizable and adapting this algorithm to expose 

parallelization comes at a cost of increasing the total amount 

of work (i.e. comparing every point to every cluster versus 

every point to a subset of clusters in the sequential version). 

GPUs are powerful enough to overcome this extra work and 

achieve speed-ups over the sequential implementation. It is 

unclear whether a multicore solution will be able to 

overcome this extra work as well. A more complete analysis 

is left for future work. 

We believe providing visual feedback while the 

clustering algorithm is running can be very helpful. It can 

allow users to fine tune the clustering parameters and 

process. In the context of big data (where processing takes a 

long time) streaming visualizations can provide users with 

immediate feedback. Visualizing results is also more 

intuitive than raw text data and can increase the chance of 

spotting patterns that might otherwise go unnoticed.   
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Figure 9: Cluster visualization. The number below each image is the number of cluster centers being visualized vs. the 

total number of cluster centers. The centers not visualized are those that have a population of less than 10 members.  
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