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Abstract— Cone-beam computed tomography is beginning to 

emerge as a widely used technique for medical imaging.  However, 

here has been growing concerns with regards to the X-ray dose 

delivered to the patient. Low dose CT has thus been gaining 

substantial interest. It can be achieved by lowering the X-ray dose 

per projection and/or reducing the number of projections 

acquired.  In this work we focus on the latter and provide some 

new insight on how to identify favorable (or salient) views that 

maximize the information used within an iterative reconstruction 

framework. Based on prior knowledge on the object to be scanned, 

we propose an optimization framework that can automatically 

identify a minimal set of projections that can capture the salient 

object features. Our results indicate that these generalized views 

result in better image quality than evenly distributed projections.  

Index Terms—Iterative CT, low-dose CT, view optimization  

I. INTRODUCTION 

Cone-beam CT has emerged as a major X-ray imaging modality 

both in terms of image quality and scan time. A popular 

cone-beam CT reconstruction method is the FDK [1] algorithm, 

which provides high resolution results but requires several 

hundreds of patient X-ray projections. With the growing 

concern about the potential risk of X-ray radiation exposure to 

the human body, dose reduction in cone-beam scanning (and 

other modalities) has become a significant research topic. Dose 

reduction usually involves lowering the X-ray energy per 

projection and/or reducing the total number of projections. Both 

methods typically suffer from low signal-to-noise ratio (SNR) 

in the reconstructions. Iterative reconstruction schemes, 

matched with suitable regularization methods were shown to 

cope well with these few-view or high-noise scenarios [2][3][4].   

The work presented here focuses on one specific low-dose 

CT measure: reducing the number of projections. It capitalizes 

on the fact that in standard radiography physicians and X-ray 

technologists typically have a good idea, often based on 

standards, at what patient orientation the radiograph should be 

taken to reveal the desired insight. We denote these views as 

salient views. We propose to formalize and generalize the 

concept of salient views for CT reconstruction, and use iterative 

CT reconstruction to cope with the potentially irregular and 

sparse view distribution. To identify the salient views we 

analyze prior reconstructions, locate the salient features, and 

determine the projection(s) at which these features differentiate 

best. Once the salient views are obtained, we use a set-covering 

framework to accelerate the search for the optimal scanning 

configuration and trajectory that covers all of these views.  
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Our paper is organized as follows. Section 2 discusses related 

work. Section 3 describes our framework. Section 4 presents 

some initial results, and Section 5 ends with conclusions. 

II.  RELATED WORK 

In iterative reconstruction algorithms, the volume voxels 

represent the unknown variables and the projection pixels 

represent the known variables. Algebraic techniques formulate 

the reconstruction problem as solving a linear system. However, 

in the few view case, this linear system may be underdetermined. 

There will be many plausible solutions which make it difficult 

to converge to the true solution. This implies a lower bound on 

the number of projections. Herman and Davidi [6] demonstrated 

that in the few-view case, a reconstruction algorithm can 

generate misleading results. Sorzano et al. [5] showed that some 

evenly distributed overabundant views were crucial to help the 

few-view case. Recently, regularization methods [2][3][4] have 

been proposed to help iterative reconstruction in few projection 

case and they were able to generate very promising results .  

Scott et al. [7] present methods for view planning with visible 

light. They show that based on prior knowledge, some views are 

more important because they can capture salient information 

about the object, while other views have less pronounced 

effects. The optimal placement of cameras – in our case X-ray 

source-detector pairs – is known to be NP-hard. Hence, we 

propose a set-covering problem formulation in our framework.  

III. APPROACH 

The central underlying theory to the optimal X-ray view 

selection problem we propose is that in the context of CT, a 

sharp discontinuity (an edge) can only be reliably reconstructed 

(from the projection data alone) if some X-ray in some of the 

projections is tangent to this curve [8]. We can determine these 

edges from prior information, typically existing scans or atlases. 

Once these salient rays are identified, we use the set-covering 

algorithm to find the set of views that contain them, and perform 

CT reconstruction via an iterative scheme.      

A. Feature parameterization  

The Radon transform is the fundamental concept in CT. The 2D 

Radon transform represents an object in terms of its line 

integrals (projections). Its continuous 2D Radon transform is: 

dsststftRf )cossin,sincos(),(  (1) 

where t is the distance of the line from the origin and φ is the 

angle of the normal of the line with the x-axis and . 

Equation (1) can be reformulated as a 2D integral:  
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Figure 3. (a) shows the prior volume, (b) shows the gradient with 

arrows indicating direction and intensity indicating strength, (c) 

shows the plane detection and the unique points to represent planes. 

(d) shows the planes after thresholding. The black dot is the origin.  

(a) (b) 

(c) (d) 

(a) 

Figure 1: Reconstruction from optimal views. (a) Phantom. (b) 
Reconstruction from 8 salient and 5 extra views. (c) Hough transform of the 

edge image. 

(b) 

(c) 

dydxpyxftRf )(),(),(  (2) 

where       tyxp sincos  (3) 

The Radon transform defined in equations (2, 3) is similar to 

the Hough transform which is well known for the detection of 

lines. It can be proven that these two transforms are equivalent 

[9]. We have used the Hough transforms representation since it 

is more convenient to compute its discrete form.  

In the prior 2D data, we define edges as features that need to 

be covered by projections. To parameterize edges, we apply the 

Hough transform to the gradient image ∇f rather than the 

original image f. Then each gradient represents the normal n = 

(nx, ny) of a 2D edge. The updated equation is: 

dydxpyxftRf )(|)),((|),('  (4) 

  
tynxnp yx
 (5) 

Equation (4, 5) can be approximated by discrete integration. 

Fig 1(a) shows an example: a collection of geometrical 

primitives. A point cluster in (c) is due to a 2D line in (a). The 

intensity of a point in this feature space is defined by computing 

. Finally, (b) is a reconstruction using views due to the 

8 major clusters and 5 further views.    

Next, we generalize the edge-based feature space to 3D. In 

3D space, edges generalize to small iso-value planes and we 

define these planes as features. Whether the plane normal is 

positive or negative is irrelevant. Then we end up with two 

parameters. One is the normal of the iso-value plane, the other 

the signed distance to the origin. The 3D Radon transform, 

similar to the 3D Hough transform, is defined using the integral 

of a 3D plane. Given a plane with normal n and the signed 

distance to the origin, t, the 3D continuous Radon transform is:  

dydzdxpzyxftRf )(),,(),( 3n  (6) 

where               DCzByAxp3
 (7) 

Equation (7) denotes a 3D plane defined by n and t. The 

signed distance from origin to plane in (7) is:  

 

222222

000

CBA

D

CBA

DCBA
t  

(8) 

Then the plane that goes through a given point (x0, y0, z0) with 

normal (nx, ny, nz) is defined as: 

0)()()( 000 zznyynxxn zyx
 (9) 

 

 

There exists a unique vector p whose vector field will define 

the normal of the plane and whose length will indicate the 

location of the plane starting from the origin (see Fig. 2):  
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Thus we can merge the two parameters n and t into a single 

3D point p. This point p is on the integration plane and at the 

shortest distance from the origin to the plane. Fig. 3 shows a 

simple example. Assume we know the object to be scanned 

(here a simple square object) and roughly know its extent and 

position (Fig. 3a). We first take the gradient image (Fig 3b). By 

performing discrete integration based on equations (6, 7, 10), 

we get plane-point pairs in 3D space (Fig. 3c). These planes are 

the image-space equivalents to the points in the Hough 

transform. We can cluster in either domain, but we prefer to 

cluster in the image domain since we observe better spatial 

coherence there. Next, we use thresholding to reduce the noise, 

which will leave only high intensity planes, as shown in Fig. 3d.  

The discrete computation can be noisy. Furthermore, in the 

clinical case, the planes are usually not as strong as in this 

phantom case. To get better feature extraction in noisy cases, we 

apply k-means clustering [10] to extract features. 

Figure 2.   3D plane parameterization 
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B. Set-Cover Problem 

After extracting the prominent edges, we optimize the view 

positions to cover these features. The overall mindset behind 

our method is that if there are no rays to cover the strong edges, 

then it will be difficult for a reconstruction algorithm to produce 

them and for a (later) regularization method to restore them.  

We reformulate the dose minimization problem into the 

well-studied set-cover problem. We first generate a large 

number of views as candidates to choose from. Each view will 

cover a number of planes in the prior. Thus we make each view 

a ―set‖, while the planes that need to be covered form 

―elements‖. The optimization objective is to find the minimum 

number of views that cover all salient planes. Assuming that 

each view exposes the same dose onto the patient, minimizing 

the number of projections will then also minimize X-ray dose. 

The set-cover problem (SCP) was one of Karp's 21 

NP-complete problems [11]. A mathematical model for the SCP 

is usually described by a 0-1 matrix. S. Let A(aij) be an m-row, 

n-column, zero–one matrix. We say that a column j covers a 

row i if aij = 1. Each column j is associated with a nonnegative 

real cost cj. Let I = {1, ... , m} and J = {1, ... , n} be the row set 

and column set, respectively. The SCP can be stated as: 

})(min{
1

n

j

jj xc
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(13) 

where xj =1 if set j is selected, otherwise xj =0.  

In order to generate matrix A(aij), we test a large number of 

projections. If we assume that all projections have the same 

source-axis and detector-axis distance, the possible projection 

locations should be on a sphere and can be parameterized by the 

longitude φ and the latitude λ. Their ability to cover the strong 

edges in the prior volume is stored in A(aij). 

This procedure is computational intensive and makes for the 

most time consuming part of the framework. We generate the 

set-cover problem by GPU simulation. Here we illustrate how 

to test whether one projection will cover a given plane.  

The input is the projection geometry, φ and λ and a point p, 

which uniquely define a plane. A projection has width w and 

height h. Output will be 1 for ―cover‖ and 0 otherwise.  

The projection will cover the plane if, and only if, there exists 

a ray that satisfies the two following conditions: 

1. The viewing ray is orthogonal to the plane’s normal.  

0viewdp  (14) 

2. The viewing ray hits the plane’s center (the point 

defined by p).   

||
||

viewview dd
sp

sp  (15) 

We implemented the computation in CUDA (the 

programming API for GPUs).  The CUDA kernel will launch 

w×h  threads to test the two conditions in Equations (14, 15). If 

there is one thread that satisfies the two conditions, the result is 

written as 1 for ―cover‖.   

C. Ant Colony Optimization 

SCP can be solved by many algorithms and the ant colony 

algorithm is one of the fastest solvers [12][13]. It is inspired by 

the observation of real ant colonies. In SCP, a large amount of 

artificial ants are searching for an optimal solution defined by 

equation (11).  Each artificial ant chooses a set one by one until 

it achieves a complete cover defined by equations (12, 13). The 

probabilities for choosing different sets are partially based on a 

pricing method. Additionally, the probability for choosing one 

set will increase if a large amount of ants choose it. See [12][13] 

for more details of the ant colony optimization for set-covering. 

D. Iterative Reconstruction 

We use the SART algorithm with GPU-accelerated forward 

projection and back-projection. As motivated in [5][6], we need 

to place additional projections around the object if the 

projections are too few. In this case, we first evenly distribute 

36 projections around 360 degrees. Then we replace the 

projection positions with the nearest of the salient views. 

IV. RESULTS 

For our experiments, we used a cone-beam simulator with 

source-axis-distance=1000mm and detector-axis-distance= 

5000mm. The detector resolution was set to 1024×768 with 

pixel size 0.388mm×0.388mm. For the view generation, we 

sampled 200 projections along the longitude dimension across 

360 degrees and sampled 7 projections along the latitude 

dimension within ±8 degrees. After we obtained favorable 

views, we applied additional shift to the prior, to test the 

performance on a different instance of the similar dataset.  We 

used non-local mean filtering in regularization to eliminate 

streaks in few-view CT reconstructions.  

The first experiment is a cube. The prior volume is an 8
3
cm 

cube with shifted 1cm×2cm×3cm from the scanning center. We 

set the threshold to be 85% maximum value in the feature 

extraction stage. This resulted in 12 planes and k-means 

clustering reduced the number of planes to 6 (4 of them are 

shown in Fig. 3d). The ant system returned 4 views which 

would cover these 6 planes. We applied a 1cm×1cm×1cm shift 

to the prior and used the SART algorithm with relaxation factor 

=1.0. Fig. 4 shows the central axial slice of the reconstructed 

256
3
 volume after 30 iterations. We observed that Fig. 4a (with 

view optimization) converged to a box but Fig. 4b (with evenly 

distributed projection) did not. Although the object scanned had 

a small perturbation from the prior, the cone beam aperture was 

still able to capture desired edge.  

Figure 4. Reconstructed cube from 4 projections using the SART 

algorithm (a) with salient views and (b) without salient views.  

(a) (b) 
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Figure 6. View planning for a neck dataset from 28 projections (showing 

only central slices).  (a) Prior data. (b) Feature space. (c) Reconstruction 

with view optimization. (d) Reconstruction without view optimization.  

(a) 

(c) 

(b) 

(d) 

 
Our next example is a hand dataset (Fig. 5). Fig. 5a shows the 

center axial slice of the prior data. Fig. 5b shows the center 

(axial) plane of the feature space. The pattern reveals that the 

dataset has strong horizontal and diagonal edges. We set the 

threshold to be the 70% maximum value in the feature 

extraction stage. This resulted in 118 planes, reduced to 100 

with the k-means clustering. The ant system returned 33 views. 

We applied 0.5cm×0.5cm×0.5cm shift to the prior and used 

SART with =0.2. Figure 5 shows the corresponding slice of 

the reconstructed 256
3
 volume after 30 iterations. We observe 

that Fig. 5c (with view optimization) shows sharper bone 

boundaries than Fig. 5d (with evenly distributed projections). 

The final example is a neck dataset (Fig. 6a) which was 

extracted from the NIH visible human dataset. The central slice 

of the feature space is shown in Fig. 6b. The threshold was set to 

70% which resulted in 245 planes, reduced to 200 by the 

k-means. The ant system returned 28 views. We applied a 

0.5cm×0.5cm×0.5cm shift to the prior and then applied 50 

iteration of SART with =0.2. We see that view optimization 

(Fig. 6c) can resolve details better (see the blobby structure in 

the center), with reduced streak artifacts and more sharpness.   

All of our experiments were conducted on an NVIDIA GTX 

480 GPU, programmed with CUDA 3.2 runtime API and with 

an Intel Core 2 Duo CPU @ 2.66GHz. Table I show the 

performance of the different stages of our framework. The most 

time consuming part is the SCP generation which would be 

even slower without GPU acceleration. 

 
TABLE I 

PERFORMANCE (SECONDS) 

Dataset 
Radon/Hough 

transform 
K-mean 

clustering 
SCP 

generation 
Ant Colony 

Optimization 

Cube 15 0.01 5 0.01 

Hand 16 2 72 11 
Neck 16 3 53 9 

V. CONCLUSIONS 

We have proposed an efficient framework to optimize the total 

number of projections for iterative CT reconstruction, using 

prior object information to generate salient views. Our initial 

results show that our view selection algorithm is quite effective 

especially when the object has unevenly distributed strong 

edges. The framework is also more effective when the object 

scanner’s shape and position are closer to the prior volume. 

In future work, we would like to employ regularization [2][3] 

to further improve the quality of the reconstructions. We also 

plan to implement the ant colony optimization on the GPU, for 

faster processing. Finally, we plan to use deformable 

registration to apply some advanced prior knowledge to the CT 

reconstruction. 
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Figure 5. View planning for a hand dataset from 33 projections (showing 

only central slices). (a) Prior data. (b) Feature space. (c) Reconstruction 
with view optimization. (d) Reconstruction without view optimization.  
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(c) (d) 


