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Figure 1: The XplainAct interface, illustrated here using the opioid dataset. (A) Choropleth map highlighting Coconino County,
Arizona (bold black outline) and counties with similar opioid-related socioeconomic indicators with their respective opioid death
rates colored according to the legend on the right; (B) Feature explanation panel using LIME to reveal the contribution of each
socioeconomic factor to the opioid death rate in Coconino County; (C) Parallel coordinates plot comparing Coconino County’s
multidimensional profile (red line) with its socioeconomic peers (blue lines) and highlighted on the choropleth map (A); and (D)
Slider group for defining contextual similarity criteria to Coconino County’s profile.

ABSTRACT

Causality helps people reason about and understand complex sys-
tems, particularly through what-if analyses that explore how in-
terventions might alter outcomes. Although existing methods em-
brace causal reasoning using interventions and counterfactual anal-
ysis, they primarily focus on effects at the population level. These
approaches often fall short in systems characterized by significant
heterogeneity, where the impact of an intervention can vary widely
across subgroups. To address this challenge, we present XplainAct,
a visual analytics framework that supports personalized causal anal-
ysis by enabling interventions at the individual level within subpop-
ulations. We demonstrate the effectiveness of XplainAct through
two case studies: investigating opioid-related deaths in epidemiol-
ogy and analyzing voting inclinations in the presidential election.

Index Terms: Explainable AI, Causality, Personalization, Visual
Analytics.

1 INTRODUCTION

The advancements of machine learning and artificial intelligence
in recent years have created a growing need for tools that can ef-
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fectively support the understanding and modification of complex
systems. Traditional analytical methods, which rely on correla-
tion, merely observe how variables tend to change together. In con-
trast, causal reasoning goes a step further by determining whether
changes in certain variables can causally influence others. Here,
independent and dependent variables are often viewed as treat-
ment and outcome variables, respectively, with the effect com-
monly quantified as the average treatment effect (ATE).

The Average Treatment Effect (ATE) is commonly used in ob-
servational studies. In standard causal inference settings, each indi-
vidual receives only one treatment or exposure, meaning that only
one outcome is observed, while the outcome under the alternative
treatment—the counterfactual—remains unobserved. The ATE es-
timates the causal effect at the population level by conceptually
treating individuals exposed to the alternative treatment as stand-
ins for the unobserved counterfactuals. This estimand has proven
effective in one-size-fits-all analyses, such as determining whether
smoking causes cancer [3], sleep deprivation leads to cognitive
impairment [1], or anthropogenic greenhouse gas emissions drive
global warming [15].

Despite the usefulness of the ATE in uncovering general pat-
terns, its averaging process can obscure critical variation in hetero-
geneous systems. A treatment that appears beneficial on average
may be ineffective—or even harmful—for certain subgroups within
the population. For instance, Manson et al. [13] found that hormone
therapy benefited younger postmenopausal women but posed risks
for older women. Similarly, Kravitz et al. [11] showed that the risk
of gastrointestinal bleeding from aspirin use varied significantly de-
pending on a patient’s age and history of peptic ulcers.
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The examples above underscore the need to account for vari-
ations in individual responses to interventions. Yet, existing ap-
proaches face two key challenges. First, due to regulations and
ethical concerns, it is often infeasible to apply certain interven-
tions—such as assigning students to underperforming schools to
study the effects of poor educational environments—thus limiting
the use of randomized trials. Second, explainability is essential for
building practitioner trust. Many AI-based personalization tools op-
erate opaquely, and practitioners often distrust recommendations
that lack a clear rationale. This poses a barrier to adoption in high-
stakes domains like clinical medicine [21]. These challenges un-
derscore the need for systems that can personalize, explore, and
interpret intervention effects—motivating the development of a vi-
sual analytics tool to support human-in-the-loop causal analysis.

In this work, we propose XplainAct, a visual analytics frame-
work designed to support the formulation, estimation, and interpre-
tation of intervention effects, with particular emphasis on response
heterogeneity. We demonstrate how XplainAct can recommend the
most effective interventions to shift outcome values toward desired
targets through two illustrative usage scenarios.

2 RELATED WORK

Causal inference is primarily approached through two frameworks:
Structural Causal Models (SCM) by Pearl [16] and the Potential
Outcomes (PO) framework by Rubin [19]. SCM uses graphical
models to elucidate causal structures and interventions, while PO
relies on statistical methods to approximate randomized trials us-
ing observational data. Based on the two frameworks, a grow-
ing number of methods has been developed focusing on heteroge-
neous effects in recent years. Methods such as Causal Trees [2] and
Causal Forests [22] address heterogeneity by recursively partition-
ing the data to identify subgroups with distinct treatment responses.
Hill et al. [9] offer a flexible probabilistic approach to estimate the
conditional average treatment effect (CATE) using Bayesian Ad-
ditive Regression Trees (BART). Although powerful, these meth-
ods face interpretability challenges, particularly in scenarios that
require domain-specific user interpretation.

Visual analytics systems have emerged to enhance user under-
standing and interaction with causal inference processes [25, 10, 6].
Wang et al. [23] introduced one of the earliest interactive visual
frameworks for causal reasoning, featuring causal networks and
”what-if” simulations. This work was later extended to identify
subgroup-specific causal networks in heterogeneous datasets [24].
Guo et al. [7] developed Causalvis, a Python-based visualization
toolkit that supports confounder adjustment, cohort refinement, and
exploration of heterogeneous treatment effects. Fan et al. [4] pro-
posed a visual analytics approach for discovering and comparing
causal graphs across multiple outcome variables in health data.
CausalChat [26] expands causal reasoning chains with the help of
large language models, while CausalPrism [27] introduces a novel
algorithm to generate interpretable subgroups exhibiting significant
treatment effects.

Despite these advances, existing visual analytics systems often
fall short in supporting the analysis and interpretation of personal-
ized interventions within subgroups, limiting their utility in highly
heterogeneous contexts. XplainAct builds on insights from these
prior methods to address this gap.

3 XPLAINACT

During XplainAct’s design phase, we collaborated with NIH public
health experts to understand their needs for visualizing and inter-
acting with personalized interventions. Their feedback informed
the following four design goals (DG):

• DG1: Specify intervention and estimate outcomes. Xplain-
Act should allow analysts to apply interventions to a unit of

Figure 2: Explanations supported by SHAP. (a) Waterfall plot show-
ing cumulative contributions from each feature. (b) Beeswarm plot
showing SHAP values of each data point.

interest and estimate potential outcomes under various treat-
ments. Besides, the system should also convey the uncertainty
of these outcome estimates.

• DG2: Identify subgroups. Since individual responses vary
based on feature attributes (covariates), XplainAct should en-
able users to identify relevant subgroups to account for hetero-
geneity during intervention analysis.

• DG3: Explain intervention results. To support reasoning and
build trust, the framework should elucidate how each attribute
contributes to the outcome and reveal the sources of variation
in predicted results.

• DG4: Show feature-to-space relations. XplainAct is moti-
vated by contexts where units are distributed geographically,
thereby requiring visual tools that can help users to recognize
familiar spatial patterns and intuitively link descriptive features
to locations.

XplainAct uses Python on the backend, employing Flask for han-
dling HTTP requests, DoWhy for causal inference, and additional
libraries for machine learning algorithms. The front end is built
with JavaScript, using D3.js to create interactive visualizations.

3.1 Visual Components

XplainAct has three views: the Choropleth Map view (A), the Ex-
planation view (B), and the Intervention view (C) (see Fig. 1).

The Choropleth Map view visualizes outcomes across geo-
graphic units using two sequential color schemes to differentiate
polarities. In the opioid dataset we use as a case study, shades
of purple represent higher values of opioid-related deaths, while
shades of green indicate lower values. A neutral or medium out-
come value is depicted in light yellow. Hovering over a geographic
unit reveals a tooltip showing the unit’s precise outcome value. Typ-
ically, users explore areas exhibiting extreme values, notable spatial
patterns, or regions with which they have high familiarity (DG4).

The Explanation view supports both local and global explain-
ability for intervention results (DG3). It integrates two explainable
AI tools—LIME and SHAP—to provide complementary interpre-
tations from distinctive perspectives.

For local explainability using LIME (Local Interpretable Model-
Agnostic Explanations [18]) (see Fig. 1(B)), the interface displays
a vertically arranged diverging bar chart alongside a table in the
bottom-left corner. The table shows the predicted outcome along
with a variability interval derived from a set of perturbed samples
(DG1). In the bar chart, each bar represents a feature, with its
length indicating the magnitude of the feature’s contribution to the
prediction. Red bars indicate features that increase the prediction
(e.g., education index > 1.92), while blue bars indicate features that
lower the prediction (e.g., poverty index > 16.7). LIME approxi-
mates the model locally by learning a simple, interpretable model
around the instance of interest—allowing users to understand which
features are driving the prediction in that specific context.



Figure 3: Workflow of XplainAct for analyzing personalized interven-
tions. Each block represents a view, and each edge denotes an in-
teraction between views.

Alternatively, users can switch to a waterfall plot generated us-
ing SHAP (SHapley Additive exPlanations [12]) for a different per-
spective on local explanations (see Fig. 2(a)). A SHAP waterfall
plot explains a single prediction by decomposing it into additive
contributions from each input feature. Starting from the model’s
baseline (i.e., the average prediction across the dataset), the plot
shows how each feature pushes the prediction higher or lower, us-
ing bars whose lengths represent the magnitude of the contribution.
These contributions are computed based on Shapley values, which
quantify the average marginal effect of each feature across all pos-
sible subsets of features. The resulting plot highlights how much
each feature contributed to the final prediction and in what direc-
tion, using a consistent color scheme to distinguish positive and
negative influences.

Global explainability is visualized using SHAP beeswarm plots
(see Fig. 2(b)), where each data (i.e., county) is shown as a scatter
point. The horizontal axis represents the SHAP value, indicating
how much a feature contributes to the model output for each in-
stance. Features are listed vertically, ordered by their overall impor-
tance (i.e., the average absolute SHAP value across all instances).
Each point is colored by the corresponding feature value, transition-
ing from low (blue) to high (red), thus revealing how different value
ranges influence predictions. The beeswarm plot effectively com-
bines feature importance with value distribution in a single view,
for both granular and high-level insight into model behavior.

The Intervention view has two modes: profile mode and inter-
vention mode. The profile mode features a slider group and a par-
allel coordinates plot (PCP) (see Fig. 1(c, d)). Slider values, re-
flecting the feature values of the unit ui, correspond to a prominent
red polyline in the PC plot. Additionally, the ten nearest neighbors
of ui, based on feature attributes, appear as thinner blue polylines.
In intervention mode (see Fig. 4), users can adjust the subgroup
via a dedicated slider on the far left (DG2). The PCP is enhanced
with translucent red rectangles on each axis to indicate the value
ranges defining the selected subgroup. In this mode, only the poly-
line of the selected unit (shown in red) and its counterfactual poly-
line (shown in blue) are displayed, with the intervention attribute
highlighted by a blue axis title.

3.2 Interactions

Fig. 3 depicts the iterative process of XplainAct, operationalized
through the dashboard interface shown in Fig. 1. Starting with a tab-
ular dataset, the choropleth map visualizes the spatial distribution
of the outcome variable, helping analysts identify areas of interest
(Step 1). When a unit of interest ui – a county – is selected, the
map highlights ui with a thicker black outline and shows its peers
based on feature similarity. This is reflected in the profile mode of
the intervention view, where the sliders and the PCP are updated

accordingly (Step 2). Subsequently, users can either customize fea-
ture attributes using the sliders or request a local model explanation
for ui by clicking the Get Explanation button. The resulting expla-
nation is then displayed in the explanation view (Step 3).

In Step 4, with the insights gained from local explanations, users
can switch to intervention mode to specify and simulate an interven-
tion by clicking the axis of the desired intervention variable in the
PCP (DG1) and setting the desired intervention value (see Fig. 4).
The generated counterfactual unit u′i represented by the blue poly-
line then reflects the impact of the selected intervention – the treat-
ment – on all other variables downstream on the causal graph (see
Section 3.3) (DG1). In this process, the values of the treatment’s
causal parents remain unchanged – only the values for the causal
children are affected (DG3). Users can also adjust the subgroup by
modifying the number of nearest neighbors (DG2).

XplainAct enables analysts to iteratively engage in a loop of
proposing personalized interventions, estimating outcomes, and
generating explanations through Steps 2 to 4. Once a unit is speci-
fied (Step 2), the feature importance shown in the explanation view
provides insights that help analysts identify which feature attributes
to target for intervention (Step 3). Analysts can then refine the sub-
group and apply interventions accordingly (Step 4).

3.3 Algorithms
The subgroup to which ui belongs is determined based on its K
nearest neighbors, with a default value 10 when initialized. The
neighbors are identified using Locality Sensitive Hashing (LSH) [5]
for efficient similarity search.

All data associated with the identified subgroup is then used to
compute counterfactual outcomes—i.e., predicted under alternative
interventions. For this purpose, we use the fixed causal graph estab-
lished during the initialization phase (see supplemental material),
and estimate model coefficients using only the subgroup data in-
volved in the current investigation. To support counterfactual infer-
ence, we fit an invertible Structural Causal Model (ISCM), defined
by a set of structural functions F = { fv|v∈V} where each function
models the causal mechanism for a node v:

Xv = fv
(

Xpa(v),Nv

)
where Xv – an endogenous variable – is a child node in the causal
graph, Xpa(v) – the exogenous variables – operate as parent nodes in
the causal graph, and Nv denotes the noise term.

Aiming to fit an Interpretable Structural Causal Model (ISCM),
we implement Pearl’s three-step process [17]. For simplicity, we
assume linear functional forms. Under this assumption, the result-
ing coefficients approximate local effects, capturing how individual
responses vary in reaction to the intervention.

4 CASE STUDIES

We demonstrate the capabilities of XplainAct by presenting two
usage scenarios that employ real-world datasets. Visuals for these
two investigations can be found in the supplementary material.

The Opioid Death Dataset focuses on the the relation between
opioid-related deaths and social factors. It combines 10 key so-
cioeconomic attributes sourced from the County Health Ranking
database [20] with opioid death data from the CDC WONDER
database [14]. It covers over 3,000 US counties. In the dataset, each
county is characterized by 11 attributes: food environment index,
primary care physicians rate, violent crime rate, HIV prevalence
rate, education index, poverty index, percent insufficient sleep, av-
erage mental unhealthy days, percent frequent physical distress,
opioid dispensing rate. Opioid death rate is the outcome variable
and other variables are treatment variables.

The Presidential Election Dataset centers on the correlation
between voting inclination and socioeconomic drivers. The dataset



Figure 4: Bob simulates an intervention on increasing household
homeownership.

includes 9 carefully selected socioeconomic attributes from a 2016
US election dataset [8] and each data point is a US county. The
attributes are: percent rural population, percent minority popula-
tion, percent population physically inactive, percent household own
home, number of unemployment, percent population age 65 and
older, violent crimes per 100k, education index, and percent pop-
ulation Black. The outcome variable is vote percentage difference
with positive value leaning towards the Republican’s candidate and
negative value leaning towards the Democrat’s candidate.

4.1 Case Study 1: Opioid-Related Death Dataset

We follow Taylor, a public health enthusiast who is deeply con-
cerned about the opioid crisis in her home of Boone County, West
Virginia. She turns to XplainAct in hopes of understanding why
her county is struggling with high opioid mortality and identifying
actionable steps that could help reduce the death rate.

She begins by analyzing the choropleth map to understand how
opioid-related deaths vary across counties. By exploring several
high-death-rate areas (shaded in purple) and low-death-rate areas
(shaded in green), she compares their attribute distributions in the
PCP. This exploration gives her an overview of how different at-
tributes appear to correlate with opioid mortality, helping her form
initial hypotheses about potential risk factors.

Next, she decides to focus on Boone County and its cluster by se-
lecting it on the choropleth map. The map highlights Boone and its
peer counties, and the PCP immediately reveals several concerning
patterns shared across the cluster: high levels of insufficient sleep,
a large number of mentally unhealthy days, and low education lev-
els. These trends stand out as potential contributing factors to the
cluster’s alarmingly high opioid death rate.

To explore potential mitigating strategies, Taylor switches to the
intervention mode of the PCP. In this mode, she interacts with the
model to simulate the effects of various hypothetical interventions.
After experimenting with different attributes, she discovers that the
opioid death rate can be significantly reduced by lowering the num-
ber of mentally unhealthy days. Further exploration reveals that de-
creasing the percent of insufficient sleep also reduces the number of
mentally unhealthy days, leading to an additional drop in the opioid
death rate. This causal chain offers actionable insights for design-
ing targeted interventions to address the crisis in her community.

To better understand Boone County’s situation, Taylor turns to
the explanation view. The waterfall plot generated using SHAP
highlights key factors contributing to the high opioid death rate, in-
cluding high percent of insufficient sleep, a high number of mentally
unhealthy days, elevated HIV prevalence rate, and a high violent
crime rate. The first two attributes confirm the trends she observed
earlier, while all four collectively reveal the underlying challenges
contributing to the opioid crisis in Boone County and its peers.

Based on these findings, Taylor recommends that Boone County
promote better sleep habits through public health and workplace
initiatives, expand access to health services, and address broader is-
sues like crime and education. She also suggests that other counties
with similar patterns could apply these priorities to reduce opioid-
related challenges.

4.2 Case Study 2: Presidential Election Dataset
In this study, we follow Bob, a Republican campaign staffer, as he
uses XplainAct to investigate why the Democratic Party secured
a 53% lead in Webb County, Texas. His goal is to uncover factors
influencing voter turnout and explore strategies to boost Republican
support by mobilizing the “right” voters in future elections.

Bob begins his exploration by examining the choropleth map,
which provides a geographic overview of election results across
the country. In Texas, most counties lean Republican, except for
South Texas, where Webb County is located. Upon clicking Webb
County, he observes that counties with similar attributes are mostly
concentrated in South Texas and California, and—except for Se-
ward County, Kansas—nearly all are Democratic-leaning. He then
proceeds to the intervention mode, where he adjusts the number
of neighbors considered for Webb County. This helps him assess
whether Webb’s voting trend reflects a broader regional pattern or
represents an outlier.

Meanwhile, the pattern shown in the PCP draws Bob’s atten-
tion. The subgroup of Webb County is characterized by a low rural
population, a low percentage of residents aged 65 and older, and
a high percentage of minority residents. It also shows relatively
low values for unemployment rate, violent crime rate, percentage
of Black population, and education index. Bob agrees that many
of these attributes align with his understanding of Webb County.
However, some characteristics do not match common stereotypes
of a Democratic-leaning county, prompting his curiosity about how
each attribute influences the vote difference.

Bob then turns to the explanation view to examine the LIME and
SHAP summary plots for Webb County. These plots decompose the
impact of each attribute on the county’s vote difference. Bob dis-
covers that both LIME and SHAP identify the percentage of minor-
ity population as the most significant factor contributing to Webb’s
Democratic lean. Specifically, the SHAP waterfall plot shows that
Webb County’s 95% minority population alone contributes a -72.48
shift from the national average vote difference of 32.01. This places
Webb as a Democratic stronghold, consistent with common expec-
tations. Other attributes—such as low rural population and moder-
ately low homeownership rate—further reinforce this alignment.

Conversely, Webb also exhibits characteristics typically associ-
ated with Republican support, such as a low percentage of Black
residents and a moderately low education index. To his surprise,
Bob notices that within Webb’s subgroup, a low percentage of el-
derly residents pushes the county further toward the Democratic
side—contradicting the common perception that the Republican
Party performs strongly among older voters. This suggests that
Webb County may follow a unique age-related voting pattern.

With this knowledge in mind, Bob now seeks to explore potential
strategies for improving Republican performance. He toggles the
PCP to intervention mode, where the interactive interface allows
him to simulate changes and observe their impact on the vote dif-
ference. First, he adjusts the percentage of minority population and
finds that decreasing this attribute predicts an increase in Republi-
can votes. He also explores the effect of increasing the proportion
of homeowners, which results in a positive shift toward the Repub-
lican Party. While population structure cannot be directly changed,
the intervention suggests that policies or campaigns targeting home-
owners and encouraging them to vote could be an effective way to
gain traction for the Republican Party in Webb County. Armed with
these insights, Bob is prepared to recommend targeted strategies to
improve Republican performance in future elections.

5 DISCUSSION AND CONCLUSION

We presented XplainAct, a visual analytics framework for explor-
ing causal heterogeneity through individual-level interventions and
subgroup analysis. Two case studies demonstrate its ability to pro-
vide interpretable, context-specific insights through an interactive



dashboard and explanation tools.
A current limitation of XplainAct is its use of a uniform causal

graph across subgroups, which may miss subgroup-specific struc-
tures. Future work should explore dynamic graph generation and
more flexible models, such as Causal Forests or Bayesian methods,
to improve analytical depth. Scalability to larger datasets and robust
validation of causal assumptions also remain important directions.
Yet, overall, XplainAct advances visual frameworks for interpreting
decision-making in complex, heterogeneous settings.
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