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Models for Semantically Resonant Color Generation
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Fig. 1: Three Examples of Visualizations using Semantically Resonant Colors. The figure shows a bar chart (A), a pie chart (B), and an
infographic (C) along with the colors returned by the Concept2Color interface. The bar chart, piechart, and infographics color were
generated by CLIP, RoBERTa, and GPT-based models, respectively. Colors for (A) and (B) were directly generated from the input
categories, whereas, the infographic colors are part of a cohesive palette returned by GPT 4 based on the theme “Mindfulness”.

Abstract—Humans inherently connect certain colors with particular concepts in semantically meaningful ways that facilitate visual
communication. These colors are known as semantically resonant colors. For instance, we associate “sky” and “ocean” with shades
of blue, and “cherry” with red. In this paper, we investigate how language models, including Word2Vec, RoBERTa, GPT-40 mini and
the vision language model CLIP generate and represent nuanced semantically resonant colors for diverse concepts. To achieve this,
we utilized a large dataset of color names and concepts, tailored models for the structure of each language model, and developed
an interactive web interface, CONCEPT2COLOR, as a use case. Additionally, we conducted experiments and a detailed analysis to
assess the ability of these models to generate meaningful colors. Through these experiments, we examined how factors such as
model design, training data and context affect the color output. Our findings reveal the capabilities and limitations of language models
in processing and generating semantically resonant colors for concepts, thus contributing insights into how they depict semantic
color-concept connections. These insights have implications for data visualization, design, and human-computer interaction, where
leveraging effective semantic color generation can enhance communication and user experience.

Index Terms—Tabular Data, Text/Document Data, Datasets, Methodologies, Software Prototype, Domain Agnostic, Color Machine
Learning Techniques
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INTRODUCTION

The role of color in human communication and cognition is profound,
extending far beyond mere aesthetics. Colors can convey deep concep-
tual connections and emotional significance, enabling complex ideas to
be communicated visually. Humans often associate specific colors with
certain concepts, a phenomenon deeply rooted in cognitive processes
and cultural experiences. For example, the calming and serene associa-
tion of the color blue is largely attributed to its prevalence in natural
elements, such as the sky and ocean, reflecting color psychology [52].
In many Eastern cultures, red symbolizes good fortune and happiness,
as seen in weddings and New Year celebrations [52].

Such colors that convey meaning beyond their visual appearance can
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be defined as “Semantically Resonant” colors. These associations span
from concrete objects (e.g., cherry being red) to abstract emotions (e.g.,
“seeing red” as anger), and even to complex ideas like “serendipity,”
which may evoke varied colors based on personal or cultural context.
We define semantic resonance as a color meaningfully supporting a
concept, either through direct association or within a broader commu-
nicative and encoding context. With the advent of advanced language
models, an intriguing question arises: How do these models interpret
the semantics of color when associating colors with abstract and tan-
gible concepts? This paper explores the role of language models in
generating colors from text, aiming to uncover how well these systems
reflect the semantic connections between concepts and color.

Using semantically and contextually resonant colors plays a crucial
role in affective visualization and design, enhancing memorability and
reducing processing time [12,32]. For instance, when data visualiza-
tions like the bar chart shown in Fig. 1, employ colors that intuitively
align with the data categories they represent, it facilitates a more intu-
itive understanding and comparison of the data, even in the absence
of legends. Conversely, the calming colors in the infographic example
in Fig. 1 not only complement the content (mindfulness exercises) but
also reinforce the intended emotional response (calmness). Semanti-
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cally resonant colors have other various applications such as education,
assistive technologies, branding, marketing, creative design, etc.

Despite the benefits of using conceptually meaningful colors, de-
termining the “right” color for a given concept remains a challenge.
Designers traditionally rely on experience, guidelines, or user studies
to choose appropriate colors, but this process is subjective and does not
scale to the countless concepts one might wish to visualize. Different
people or cultures may have varying associations (consider the con-
cept “mourning” associated with black in Western contexts but white
in parts of East Asia). Moreover, many concepts—especially abstract
ones—lack obvious color correspondences. Previous research lever-
aged multi-modal approaches (e.g., image databases [32,34,36,58,64])
and linguistic analyses (e.g., text co-occurrences [64]), but these meth-
ods often struggle with abstract terms or nuanced metaphorical associa-
tions. Moreover, the extent to which language models alone capture and
reflect these semantically resonant colors remains largely unexplored.
There is a need for a more generalizable approach that can handle a
wide range of concepts and capture subtle semantic-color associations
without extensive hand-tuning or curated external resources. Advances
in language models, trained on vast textual corpora, present a novel
opportunity to automate the concept-color mapping process. Models
like Word2Vec [46], RoBERTa [37], CLIP [56], and GPT-based archi-
tectures [53], including both zero-shot and fine-tuned GPT-40-mini
variants, encapsulate rich cultural and commonsense knowledge poten-
tially useful for semantically resonant color generation. The zero-shot
model allows us to evaluate the extent to which general pretraining
alone encodes semantically resonant color associations, while the fine-
tuned version is trained on a curated set of concept—color examples to
better align its outputs with human-like color mappings. By comparing
these models, we assess how well each can suggest colors that “make
sense” for a given input concept, and we identify which techniques most
effectively capture human-like color semantics. In this paper, we ex-
plore two primary research questions: (1) How effectively can different
language models associate semantically resonant colors with diverse
concepts? and (2) How do factors like model architecture, training
data, and concept characteristics influence the semantic-color genera-
tion process? We specifically investigate how concept abstraction and
color-association ambiguity affect model agreement on representative
colors, acknowledging that concrete concepts (“banana”) yield high
consistency, whereas abstract or ambiguous terms (“freedom”,“cold”)
produce variability in associations.

To demonstrate the ecological validity and practical utility of our
approach, we introduce Concept2Color, an interactive system enabling
users to generate and compare color suggestions from various language
models for any input concept. Designers, educators, and visualization
professionals can leverage Concept2Color for semantically resonant,
data-driven color choices, particularly aiding in interpreting abstract
or ambiguous concepts with unclear color associations. We also high-
light a diverse set of real-world use cases spanning educational tools,
affective visualization, branding, and product design, illustrating how
Concept2Color can support nuanced, contextually resonant color as-
signments.

The primary objectives of our research are twofold: (1) to evaluate
the performance of different language models in generating or asso-
ciating colors with concepts and (2) to explore the impact of factors
such as model architecture, training data, context, on the semantically
resonant color generation process. Our findings contribute to a deeper
understanding of language models’ capabilities for generating semanti-
cally resonant colors, potentially informing the development of more
nuanced and context-aware models. Our contributions are as follows:

* We built models that generate colors from textual concepts by
leveraging five different language models.

* We analyzed and evaluated the impact of various factors on the
generated colors.

* We designed and developed Concept2Color, a tool that generates
semantically resonant colors from concepts, along with necessary
user control and practical visualization examples.

Our paper is organized as follows: Sec. 2 reviews related work,

and Sec. 3 presents our color generation approach. Section 4 provides
both quantitative and qualitative evaluation, while Sec. 5 introduces the
Concept2Color interface. Section 6 showcases real-world use cases,
and Sec. 7 and 8 discuss implications, limitations, and future work.

2 BACKGROUND AND RELATED WORK

This section reviews background on semantically resonant color gener-
ation, prior work on language models associating colors with concepts,
and previous efforts integrating language models with visual tasks.

2.1 Color Semantics and Color-Concept Associations

Color semantics refer to intrinsic meanings attributed to colors (e.g.,
sea green — healing, light red — passion) [14,52]. In contrast, color-
concept associations quantify how strongly concepts link to different
colors, producing a distribution across color space [61]. While seman-
tics capture shared meanings, associations reflect individual and contex-
tual variability. Both influence object recognition [71], preferences [55],
and visual reasoning in visualization [32, 63]. Concrete and abstract
concepts alike evoke color associations [32,58], though these are often
context-dependent [61]. Design research, such as Kobayashi’s Color
Image Scale [31], offers curated mappings between colors and psy-
chological descriptors (e.g., “elegant”, “provocative”). These lexicons
use fixed mappings, while data-driven models generalize to broader
vocabularies. Large language models (LLMs) offer a new lens for
studying these mappings. Haber et al. [23] show that LLM embeddings
capture fine-grained distinctions in polysemous terms. Mukherjee et
al. [49] used GPT-4 in a zero-shot setting taking concepts as inputs to
predict association ratings over 58 discrete UW-71 colors. In contrast,
we directly regress RGB values utilizing text embeddings, and our
fine-tuned CLIP model outperforms GPT-4 variants on held-out data
(Tab. 2).

2.2 Color Design in Data Visualization and HCI

Effective color design is essential in data visualization and human-
computer interaction (HCI), enhancing aesthetics, comprehension, and
decision-making [12,20]. Stone [70] proposed a perceptual model that
adjusts CIELAB based on patch size and crowdsourced data to improve
color distinctiveness in practical settings. Building on such foundations,
tools like ColorCook [67], Colorgorical [22], and Palettailor [39] offer
data-driven palette selection. Semantically resonant colors can further
aid chart interpretation [32], memorability [10, 13], and contextual
understanding [50, 62]. Our work advances semantically resonant color
generation by exploring how language models can support color design
in visualization and HCI.

2.3 Multimodal Approaches to Semantic Color Generation

The prevalent approach for color generation using textual descriptions
has traditionally adopted a multimodal strategy. Early methods lever-
aged online image databases (e.g., Google Images, Flickr) to identify
color patterns associated with specific tags [32-34, 36, 58, 64], offering
comprehensive visual cues that facilitate mapping between language
and color. In pursuit of refining these methods, recent studies have
shifted towards utilizing self-supervised learning [29] and generative
adversarial networks (GANSs) [43] to enhance the multimodal color
generation process. For instance, Havasi et al. [24] combined the Open
Mind Common Sense Network with color data to devise a statistical
model for semantic color selection, while Setlur and Stone [64] ex-
ploited natural language corpora (e.g., Google N-gram) to improve
query ranking for image search. Researchers have also explored palette
generation from text [9, 26,35, 64, 66]. GenColor system [28] generate
concept-aligned palettes by isolating dominant colors from synthesized
images.! We explore the power of text embeddings aligned with vi-
sual embeddings through CLIP [56], a vision-language model trained
on large-scale image-text pairs. By fine-tuning CLIP’s text encoder

'While text-to-palette generation was not our primary focus in our Con-
cept2Color interface (see Sec. 5), we incorporate a dedicated text-to-palette
module that uses GPT-based models to create cohesive palettes from a given
theme, complementing our core concept-to-single-color generation.
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Fig. 2: Pipeline for generating colors and palettes from textual con-
cepts. A, B, and C mark the components of Shallow-embedding models
(Word2Vec), Deep transformer-based encoding model (RoBERTa) and
Transformer based vision model (CLIP), and transformer-based genera-
tive models (GPT-4), respectively. The purple-colored components have
trainable parameters. For GPT-based models, we provide functionalities
to generate palettes along with individual colors.

for text-to-color generation, we investigate how language embeddings
grounded in visual representations can enhance the semantic alignment
between concepts and generated colors.

2.4 LLMs for Color Generation and Visualization

The inverse task of generating color names from a given color have
been explored in [26, 60]. Other works have explored color associa-
tion with word-level semantics [6,45,48]. Kawakami et al. [30] first
approached color generation using only textual data by developing
LSTM-based models that process color names to generate correspond-
ing colors. Subsequent research [3,38] has investigated mapping the
text embedding space to a color embedding space using linear trans-
formations with LLMs. LLMs have also demonstrated the potential to
enhance visual data presentation by leveraging linguistic properties and
user intent. Systems like ChartGPT [72] translate abstract linguistic
inputs into precise visual representations, streamlining the visualization
creation process and better capturing user intent. Furthermore, LLMs
bridge linguistic descriptions with perceptual experiences, suggesting
their relevance for creating more user-friendly visualization tools [44].
The development of systems such as C2Ideas exemplifies the seam-
less integration of linguistic insights into the design process, thereby
enhancing user satisfaction and overall workflow [27]. Preliminary
observations indicate that LLMs can adapt their color outputs based
on a specified persona or alignment. For example, when prompted to
adopt a more creative persona, models may generate bolder, unconven-
tional color suggestions, while highly aligned models typically produce
safer, broadly acceptable outputs. Although we do not delve deeply
into persona effects in this paper, we acknowledge this factor as an
intriguing aspect for future investigation [75].

3 GENERATING SEMANTICALLY RESONANT COLORS

Similar colors are often associated to semantically related concepts,
especially when the concepts are abstract. For example, red is associ-
ated with related concepts like danger and anger. In the past decade,
many works in natural language processing [18,46, 53] investigated
establishing relationship between texts through creating semantically
meaningful embeddings. It then makes sense to take advantage of these
pre-trained embeddings and models to create textual embeddings rich
with semantic information, which can be used by a regression model
next to predict colors.

Figure 2 outlines our pipeline for generating semantically resonant
colors from words and phrases. This approach leverages three classes
of language models—(A) shallow embedding (Word2Vec [46]), (B)
transformer-based encoders (RoBERTa [37], CLIP text encoder [56]),
and (C) a transformer-based generative model (GPT-40 mini [54]). Both
(B) and (C) are fine-tuned end-to-end for color prediction. Specifically,
we treat text-to-color generation as a multivariate regression problem:
an input text is embedded, passed through a regression head, and
mapped to RGB values. We optimize the mean squared error loss
combined over the three output channels.

3.1 Input and Output

Our method accepts single words or multi-word phrases in English as
input which we refer to interchangeably as concept or color-name. Both
colorable / concrete concepts, (e.g., “chalk”, “corn”) and non-colorable
/ abstract concepts, (e.g., “serendipity”, “blind love”) can be given as
input. The model outputs a RGB triplet ¢ = (R, G, B) within the range
[0, 255]. When predicted colors appear muted, we optionally enhance
their chroma via a vibrancy multiplier in CIELCh space. This feature is
available through our Concept2Color interface, allowing users to tailor
the color output to their preferences.

Color Name Dataset

We utilized the Color Names dataset [21], a comprehensive collec-
tion of over 30,282 uniquely named colors, each mapped to an RGB
and HEX value. This dataset aggregates user-submitted color names
and their corresponding hexadecimal codes, and is maintained as a
community-driven project to explore the relationship between language
and color. Each entry is a tuple {(C;,¢;)} where C; is a concept and
¢; is its associated RGB value. Concept lengths range from 1 to 6
words, with both median and mean lengths around 2, and a standard
deviation of 0.55. Additional statistics on the dataset can be found in
the supplemental materials.?

3.2 Encoder Models with Regression Head

We embed an input concept to a sequence of word/token embeddings
using different models and then pass it to the Regression Head (RH) to
infer the RGB values.

Shallow Embedding Model: Word2Vec

As a first step, we start with Word2Vec [46], a word embedding model.
Word2Vec [46] learns static vector embeddings by placing semantically
similar words in close proximity in the embedding space. Our dataset
consists of many one or two word texts for which Word2Vec may turn
out to be the ideal choice. We use the GoogleNews-vectors-negative300
version of word2Vec that has 300 dimension vectors for 3 million words
and phrases with a total of 900 million frozen parameters, trained on the
google news dataset of 100 billion words. Word2vec is less suited than
modern large language models for complex or long-form text tasks, but
it is deemed suitable for our text-to-color generation task, especially as
a reasonable baseline against which we can compare the performance
of the more advanced models. With a vocabulary size of 3 million, it
contains representative embeddings of many common phrases. In fact
its embedding table has multiple times more parameters (900 million)
than some of the earlier large language models like BERT or RoBERTa.

For the proposed Word2vec-based model, each concept C undergoes
pre-processing steps (e.g., decomposition into a sequence of words,
standardization to lowercase, etc), and each word of the concept is
converted to 300-dimensional word2vec embeddings, and all sequences
are padded to a fixed length L. Out-of-vocabulary words default to
an average embedding. Next, this sequence of L word embeddings
of size L x 300 is fed into a CNN-based regression head (RH). Al-
corn [5] proposed training a Convolutional Neural Network (CNN) to
estimate the relationship between pre-trained Word2vec embeddings
and their associated colors, effectively bridging the gap between lin-
guistic representations and color perception. We replicate this setting
as a baseline.

Deep Transformer-based Encoder Model: RoBERTa

Though semantically meaningful, Word2Vec embeddings cannot cap-
ture contextual information since the embeddings are static. In con-
trast to Word2Vec, the first generation large language models like
RoBERTa [37] employs a transformer architecture to capture deep con-
textual relationships in the output embedddings. For multi-word con-
cepts such as “golden sunsets melt into dusk”, we expect RoOBERTa’s

2We considered other publicly available color name datasets, including paint
swatches [65], standard HTML color names, and user-defined colors [1,8,47,69].
We ultimately selected this dataset for its broad lexical and visual distribution.
While not used here, alternative datasets may suit other goals.



contextual token embeddings to be superior for color generation. We
fine-tune the ROBERTa-large model (355M parameters) for text-to-
color prediction. A tokenized concept is processed by ROBERTa, whose
output token embedding sequence is consumed by the RH. Fine-tuning
proceeds with small learning rates to adapt the model’s language under-
standing to color prediction.

One of the strongest feature of LLMs is that they can be fine-tuned
using datasets as small as a few thousands as evidenced by BERT [18],
GPT-1 [57] despite having millions of parameters. This is achieved by
starting from well-established weights for millions of parameters learnt
during pre-training which are then fine-tuned to a specific task like
text-to-color generation. Employing conservative learning rates, as dis-
cussed in Section 3.2, ensures the model does not overfit. This strategy
preserves the pretrained features to some extent while simultaneously
allowing the model to learn task-specific nuances.

Transformer-based Vision-Language Model: CLIP

Both Word2Vec and RoBERTa produces semantically meaningful em-
beddings but the color informations are not necessarily encoded in the
embeddings. Their understanding of color depends on how much colors
of concepts are discussed in the text used in their pre-training, which
may be little or much depending on the concept. We hypothesized a
multi-modal model that can encode meaningful embeddings in both
image and text space, would have already encoded color information
in the text embeddings by utilizing the images. CLIP [56] jointly pre-
trains its transformer-based text and image encoders on large-scale
image—text pairs using a contrastive loss, thereby aligning visual and
textual embeddings within a shared space. Notably, its text encoder is
trained from scratch to capture explicit visual-textual associations, ren-
dering it particularly suitable for text-to-color generation. In contrast
to LLMs like RoBERTa—which learn color semantics indirectly from
text—CLIP directly learns to align phrases (e.g., “green leaf”) with
their corresponding visual representations (e.g., an image of a green
leaf).

CLIP is not a generative model, it is designed to assess the similarity
between images and texts via creating embeddings in a shared space.
We first considered using a generative model (e.g., diffusion model [17])
which can take as input the text embedding of a concept from CLIP’s
text encoder, and then generate an image representing the color of
the concept. We would then finetune the CLIP text encoder and the
generative model end-to-end using our dataset. This is a common
pipeline used for text to image generation. Since our target image can
be as small as 1 pixel with the R, G, B values, we opted not to use a
large generative model. Instead we employ the same RH we use for
Word2Vec and RoBERTa here to keep our pipeline simpler to train
and use. The CLIP text encoder (428M parameters) generates visually
informed text embedding of a given concept which we then pass on
to the RH to generate R, G, B values. We opt not to utilize the image
encoder of CLIP for the sake of simplicity and also for keeping our
pipeline consistent across different models.

Regression Head (RH)

The regression head (RH) maps token embeddings from text encoders
to RGB triplets. We tested multiple RH architectures such as linear
layers, multi-layer perceptrons, one-dimensional Convolutional Neural
Networks (CNN). A 1D CNN with global max pooling consistently
achieved the best performance across Word2Vec, RoBERTa, and CLIP.
Formally, RH is defined as:

RH(Ec) = Linear(GMP(Lcom1p(Ec)))

where E¢ is the token embedding sequence for concept C produced by
a text encoder in the previous step and GMP represents a global max
pooling operation.

The convolutional layer employs 128 one-dimensional filters (kernel
size = 1), followed by GMP and a linear projection to RGB space. A fil-
ter transforms each token embedding independently, after which GMP
selects the highest-activated feature per filter. This design emphasizes
the most semantically salient tokens—e.g., for “Burnt Red” we expect

filters to predominantly activate on “red” while a subset may respond
to “burnt” enabling nuanced color modulation. We expect this to be the
case for many concepts in our dataset where one token should ideally
dominate the final color and others should act as modifiers.

Table 1: Comparison of fine-tuning strategies for transformer-based
color generation. RoBERTa performs best with a constant learning rate,
whereas CLIP achieves lowest error using encoder learning rate decay.
Frozen CLIP embeddings yield competitive performance indicating its
visual linguistic understanding.

Model Frozen Learning CIEDE-
Embeddings  Rate Decay 2000 J
Yes - 18.53 £2.14
RoBERTa No Yes 18.31 £2.16
No No 17.0 +0.15
Yes - 16.52 £0.16
CLIP No Yes 16.35 +0.16
No No 16.77+0.15

While the transformers in the text encoders can theoretically learn
such token interactions via self-attention, fine-tuning them with aggres-
sive learning rates risks “catastrophic forgetting” [41] of pre-trained
weights / linguistic knowledge. We observed this empirically: trans-
formers paired with linear layers without convolutional constraints
produced unstable color mappings, leading us to adopt the CNN-based
RH to maintain the integrity of the pre-trained representations.

Fine-tuning Strategies

For RoBERTa and CLIP, we tested multiple fine-tuning strategies to
come up with the most optimal setting for each of them. Table 1 details
the performance of both the models for different strategies using the
CIEDE-2000 metric discussed in Sec. 4.1. We tested the following:

(i) Freezing the encoder and training only the RH. This mirrors
Word2Vec’s static embeddings training, forcing the RH alone
to capture task-specific semantics. We see in Tab. 1 that frozen
CLIP embeddings perform much better than frozen RoOBERTa
embeddings. This is expected since the frozen CLIP embeddings
are already enriched with visual information as CLIP was de-
signed to align text and image embeddings in the same space, but
RoBERTa’s frozen embeddings only have textual information.

(ii) Jointly fine-tuning the encoder and RH together with a conserva-
tive learning rate (e.g., lepe = lrg = 1075). This yielded the best
performance for ROBERTa showing the need to tune its encoder
parameters to learn color information associated to a concept.

Applying an aggressive learning rate for the RH (e.g., [gyy = 1073)
coupled with an exponentially decaying rate of 0.7 for encoder
layers, where later layers (closer to the RH) train faster than
earlier ones. This setting produced the best performance for
CLIP, yielding a balance between retaining the visually enriched
embeddings and learning weights specifically for color generation.
This shows we can still benefit from minor updates to CLIP’s
deeper encoder weights for the text-to-color generation task.

(iii)

3.3 Generative LLM: GPT 40-mini

After exploring encoder-based LLMs, we explore color generation us-
ing decoder-based LLMs, specifically GPT 40-mini and a fine-tuned
version of it. GPT’s architecture is more suited to text-to-text gener-
ation problems as opposed to a regression problem like text-to-color
generation. Nonetheless, GPT has become sufficiently commonplace
that it will be one of the first options a person may think of using while
figuring out a color for a concept in real life. This warrants its inclusion
in our set of models for experimentation and comparisons.

Prompts

We craft zero-shot prompts that instruct GPT to respond as a “color
expert” with the following system message:



“You are a color expert who can generate a color based on
the meaning and context of a given theme and how a human
would visualize that word or phrase in color.

Generate a color for the word or phrase C; based on its mean-
ing and context, as visualized by a human. Provide only the
color name and RGB values in a Python list of dictionary
objects, with each dictionary containing: {‘name’: color
name, ‘r’: R value, ‘g’: G value, ‘b’: B value}.”

Upon receiving responses from GPT we employ regular expressions
to identify any deviations from the expected format.

Fine-tuning GPT 40-mini

We use the OpenAl API to fine-tune GPT 40-mini on the color-names
dataset framing the task as text-to-text generation problem where the
target R, G, B values are treated as text. It optimizes for next token
prediction using cross entropy loss—not ideal for a numerical regression
problem such as text-to-color generation. Nonetheless, GPT 40-mini is
the largest model we employed for this task and it can provide valuable
insight into how good generative models are for regression tasks. We
use the default options on the OpenAl API for the learning rate.

4 [EVALUATION

In this section, we comprehensively evaluate color generation across dif-
ferent language models, demonstrating their ability to generate seman-
tically resonant colors. We also discuss the effectiveness, challenges,
and insights gained from each model.

4.1 Model Training and Performance

We primarily use CIEDE2000 [40] as the evaluation metric for model
performances. It captures the perceptual difference between two colors
quantitatively with CIEDE2000 values less than 1 indicating color
differences imperceptible to the human eye. We compute the mean
CIEDE2000 color difference between the predicted color ¢; and the
actual color ¢; given the concept C;. We also report Mean Absolute
Error (MAE) and R? in Tab. 2.

Training Encoder Models. We first exclude 10% of the color-names
dataset as our final test set and use the remaining 90% for training and
cross-validation. We use the test set only once in the very end to get
final model test scores. We conduct a 10-fold cross validation on the
training set for Word2Vec, RoBERTa, and CLIP. We do not use a fixed
number of epochs, instead we employ early stopping patience =5, i.e.,
if the model does not improve for 5 consecutive epochs based on the
validation metric of CIEDE2000 on the validation set, we terminate
the training. All models required < 15 epochs in all folds. We run
the cross-validation multiple times to figure out the optimal set of
hyper-parameters. The cross-validation results are reported in Tab. 2.

Training GPT Models. For GPT 40-mini, we finetune the model
using the entire training set once. The temperature setting 7' decides
how non-deterministic GPT will be. We experiment with temperature
setting of O to make the model completely deterministic, predicting
always the RGB values it believes to be most probable. We also used the
default temperature setting of 1 for both the models to strike a balance
between creativity and coherence in the generated color suggestions.
With T=1, we ran inference 5 times for each sample and took the
average as the final prediction. Table 2 shows the temperature setting
of 0 to provide better performance according to CIEDE2000 in both
models. The supplemental materials can be referred to for a discussion
on how the predictions by GPT vary with T=1 for the same concept.

Comparative Analysis. Our best-performing model, based on CLIP,
achieves +13.69 improvement in MAE over GPT with zero shot (T
= 1). Notably, all variants of the GPT models get negative or near-
zero test R? signifying the fine-tuned GPT models have over-fit on the
training set while the zero-shot GPT models are not much better than
predicting the mean of the training set. This shows that the text-to-text
generation objective is not suitable for a numeric regression task like
color generation. Unfortunately, that is the only fine-tuning option
OpenAl provides at the moment.

Table 2: Comparison of 10-fold cross-validation (CV) and test-set results
across three metrics. Word2Vec has the highest number of parameters,
but they are frozen by design. CLIP outperforms all models. The param-
eter count for GPT models is not publicly available.

MAE R? CIEDE2000
Model, # of parameters Dev + Dev T Dev +
V) Test V) Test V) Test
Baseline (Mean) - 56.26 - 0.0 - 24.50
40.49 0.40 17.61
‘Word2Vec, 900M 1048 40.92 1001 0.39 1011 17.80
Zero-shot GPT (T=0) - 50.92 - -0.07 - 21.38
Zero-shot GPT (T=1) - 51.40 - 0.03 - 24.08
Fine-tuned GPT (T=0) - 53.11 - -0.21 - 19.97
Fine-tuned GPT (T=1) - 58.35 - -0.17 - 27.77
38.42 0.43 17.0
RoBERTap yge, 355M 1049 38.4 1001 0.41 1015 17.0
37.63 0.47 16.35
CLIP, 428M 1065 37.71 1001 0.46 1016 16.4

All the encoder models significantly outperformed the mean baseline
across all three metrics, indicating their ability to capture meaning-
ful relationships between concepts and colors. Among these, CLIP
achieved the best performance, followed by RoOBERTa, with Word2Vec
ranking third. Both RoBERTa and CLIP benefit from dynamic con-
textual embeddings enabled by the transformer architecture compared
to Word2Vec’s static embeddings. The improvement shown by the
vision-language model CLIP over RoOBERTa can be attributed to the
visual-linguistic relationship it has learnt during pre-training.

4.2 Comparison with Models Enhanced by Google Images

Heer and Stone [26] created a color dictionary based on the XKCD
dataset using probabilistic models and handcrafted rules. Building upon
this, Setlur and Stone [64] introduced the concept of colorability and
proposed a multimodal approach to retrieve representative colors for
36 highly colorable terms using Google Image Search. In this section,
we compare their image retrieval-based results with colors generated
directly from text by our models.

Figure 3 shows a strip plot of CIEDE2000 distances between model-
generated and reference XKCD colors. Overall, GPT-4 models per-
formed best, with the finetuned variant achieving the lowest median
error, followed closely by its zero-shot counterpart. Both models out-
performed the image-based approach of Setlur and Stone [64], despite
relying solely on textual input. The CLIP and RoBERTa models showed
comparable performance to Setlur and Stone, with ROBERTa exhibiting
slightly more variability. Word2Vec produced the largest perceptual
errors, indicating weak alignment with human color naming.

The distribution of errors is notably non-normal, warranting the use
of non-parametric statistical tests. A Friedman test revealed signifi-
cant differences in model performance across all six models (y2=42.54,
p <0.0001). This result held even when excluding Word2Vec (x2=9.94,
p=0.041), and when comparing only Setlur and Stone, CLIP, and
ROBERTa (x2=7.72, p=0.021), suggesting robust differences among
models even within narrower performance ranges.

To identify which model pairs differ significantly, we conducted
Wilcoxon signed-rank tests with Bonferroni correction. These tests
showed that Word2Vec’s predictions differed significantly from all
other models (p <0.001). In contrast, no statistically significant dif-
ferences were observed between the top-performing models (GPT-4
variants, CLIP, RoBERTa) or between these models and Setlur and
Stone’s image-based approach. These findings reinforce the strength of
large language models—particularly GPT-4—in generating perceptu-
ally accurate colors for semantically rich, familiar terms. The strong
performance of zero-shot GPT-4 suggests that such terms are likely
well-represented in its training corpus. While finetuning offered a
modest performance gain, the lack of significant difference suggests
that pretrained language models already encode strong word-color
associations.
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Fig. 3: CIEDE2000 distance between 36 XKCD colors and model-
generated colors. Lower values indicate closer perceptual similarity.
The zero-shot GPT yields the best performance, possibly owing to the
XKCD color terms being well represented in its training corpus.

4.3 Embedding vs Perceptual Distance

We hypothesize that the fine-tuned RoOBERTa and CLIP models learn
to encode color information in the embeddings they generate. This
is not true for the static Word2Vec embeddings that capture seman-
tic relationship but very little color information. To qualitatively test
this hypothesis, we present Fig. 4, where each heatmap visualizes
the absolute difference between the embedding distance and the per-
ceptual color distance for word pairs. A deeper red hue indicates a
larger mismatch between the two distances, while lighter shades denote
stronger alignment. The key idea is — distances in only the embedding
spaces encoding color information should be highly correlated with the
perceptual color distance.

In the Word2Vec model (left panel), we observe many deep red cells,
suggesting frequent misalignment between embedding and perceptual
distances. For example, the pair “banana” and “grape” (both fruits) is
semantically similar, leading to a low embedding distance but colored
yellow and red/green respectively, leading to a high perceptual difter-
ence. In contrast, both RoBERTa (middle panel) and CLIP (right panel),
which were fine-tuned for color generation, show a lighter shade for
the pair “banana” and “grape”, suggesting these fruits’ embeddings
have shifted away from each-other due to encoding color information.
This trend of having more near-white cells, reflecting better alignment
between semantic and perceptual similarities, is evident in general for
both RoBERTa and CLIP.

This contrast highlights how fine-tuning with color-specific objec-
tives helps models like ROBERTa and CLIP generate embeddings that
are more perceptually grounded. The increased number of white cells
in these models demonstrates that they are better able to align em-
bedding similarity with perceptual similarity, essential for generating
meaningful colors for a concept.

banana banana || 05

carrot 05 carmot
celery celery
cherry| 04
05 comhn 04 comfort
com ]
driving | m
emciency 03 efficiency ]
eggplant eggplant| n
grape grape 02
leisure 02 leisure

Word2Vec-based RoBERTa-based CLIP-based

Fig. 4: Heatmaps demonstrating the difference between normalized Em-
bedding Distance and Perceptual Distance of pairwise words. Shades
of red denote the disparity of embedding distance and perceptual dis-
tance. Word2Vec has an average embedding and perceptual distance
difference of 0.34 while the fine-tuned RoBERTa and CLIP have 0.2
and 0.18 respectively, highlighting a strong embedding-color perception
correlation.
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Word2Vec
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RoBERTa
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Fig. 5: Model performances on the four subsets of test set, stratified
by ambiguity and abstractness. All model performances deteriorate as
ambiguity and abstractness of concepts increase.

4.4 Abstract and Ambiguous Concepts.

Concepts vary widely in how consistently they are associated with
specific colors. Two factors that shape these associations are abstraction
(how concrete or grounded a concept is) and the ambiguity caused by
many competing color associations that a concept might evoke. We
operationalize and quantify both properties to better understand how
they affect model performance and human perception.

Abstraction of Concept. We define abstraction as the degree to
which a concept is concrete or sensory-based, following prior work
in psycholinguistics. To quantify, we use concreteness ratings from
Brysbaert et al. [16] and Muraki et al. [51]. For multi-word expressions,
we first check if an entry exists in Muraki et al.’s dataset; if not, we
compute a part-of-speech—weighted average of individual word con-
creteness scores using Brysbaert et al.’s norms. Nouns and adjectives
are given higher weight, as they tend to carry more semantic content.

Ambiguity of Color. Concepts exhibit color ambiguity due to
real-world chromatic variability (e.g., apples being green and red), sub-
jective associations (e.g., sadness linked to blue or grey), or polysemy
(e.g., apple the fruit vs the company) . While related to the notion of
colorability presented in [64], our focus is conceptually the inverse.
We propose a measure to quantify the color ambiguity of concepts.
We compute word2vec embeddings for £k = 10 color terms (e.g., red,
yellow, etc.) and for the words in the target concept. We then calculate
the association between a word w and the i-th color-term, a;,,, via
softmax on the cosine similarities. We hypothesize a word has high
color ambiguity if its association score with more than one color-term
is high. The ambiguity of a word w is then defined as the normalized
Shannon’s entropy:

- Z{F:[ aiw log(ai,w)
log(k)

The ambiguity of a concept is the average ambiguity of its constituent
words. Lower values indicate stable color associations, while higher
values suggest ambiguity.

To validate this approach, we evaluate 20 objects identified by
Tanaka et al. [71] as having high (e.g., taxi, fire engine) or low (e.g.,
dog, lamp) color diagnosticity. Our ambiguity scores achieve a high
Spearman rank correlation of -0.77 (p < 1.07 x 10~5) with Tanaka et
al.’s diagnosticity classification. Finally, we determine a threshold equal
to the mean value computed from the 10 high- and 10 low-diagnosticity
objects to classify any concept as ambiguous or non-ambiguous.

Model Performance across Varying Levels of Abstraction and
Ambiguity. To assess the influence of abstraction and ambiguity on
color prediction, we partition the test set into four subsets based on
the binary attributes of abstraction and ambiguity. While the overall

Ambiguity(w) = (1)



Fig. 6: Two segments of the Concept2Color interface. A, B, C, and D mark the input module, palette review and adjustment module, concept
alternative module, and example visualization modules, respectively. The left panel shows Concept2Color 1 powered by Word2Vec, RoBERTa, and
CLIP; the right panel shows Concept2Color 2 powered by GPT-40-mini (finetuned and zero-shot).

ranking of model performance remains consistent across these sub-
sets, as shown in Fig. 5, all models achieve peak performance on the
low-ambiguity, low-abstraction subset (deeper hue in all models). In
contrast, performance systematically degrades as either abstraction or
ambiguity increases, indicating that higher levels of these attributes are
directly associated with greater prediction difficulty (lighter hues on
the right).

5 THE CONCEPT2COLOR INTERACTIVE INTERFACE

Building on the insights from our evaluation of language models for
text-to-color generation, we developed the Concept2Color interface to
translate these capabilities into a practical, user-friendly tool. The in-
terface allows users to generate semantically meaningful color palettes
from natural language input, drawing on the strengths and behaviors
of the models analyzed in previous sections. Designed to support
domains such as data visualization, graphic design, and web design,
Concept2Color enables users to generate, refine, and preview concept-
driven palettes interactively.

In the following we present the guidelines that drove our interface
design, its architecture and modules, and usability study results.

5.1 Design Guidelines

To align the interface with our goals, we established the following
design guidelines:

DG1: Tailoring to Model Strengths. The interface should leverage
the distinct capabilities of each underlying language model.

DG2: Flexible Color Adjustments. Users should be able to refine
generated palettes while maintaining semantic relevance.

DG3: Semantically Aligned Alternatives. The interface should
suggest related concept-based alternatives to foster creative exploration.

DG4: Practical Visualization Examples. Incorporating real-world
visualizations can improve the usability and relevance of generated
colors.

5.2 Interface Architecture and Modules

The Concept2Color interface is a web-based system with a Python
backend and a D3.js frontend. Following DG1, the system is split
into two segments: the first leverages models Word2Vec, RoBERTa,
and CLIP, while the second is optimized for generative models (GPT-
40-mini, both finetuned and zero-shot). Each segment comprises a
combination of the following modules:

Multi-Concept Input Module (Fig. 6-A, left & right). This module
allows users to enter comma-separated concepts into a textbox. A radio
button interface lets users select from the available models. Addition-
ally, users can opt for more vibrant color outputs via a checkbox. Input
validation ensures a maximum of 10 concepts. This module supports
DG1 by aligning input structure with model type and supports DG2 by
allowing users to preview and iterate on color generation.

Theme-Based Input Module (Fig. 6-A, right). Unique to the GPT
segment, this module lets users specify a single high-level theme (e.g.,
“sunset”) to generate cohesive palettes where all colors are semantically

related to the theme. This supports DG1 by leveraging GPT’s strength
in holistic, theme-driven generation.

Palette Review and Adjustment Module (Fig. 6-B, left & right).
To support DG2, this module presents the generated colors as labeled
swatches, with hex codes for each. Users can manipulate the brightness
of individual colors via sliders and view the palette on a color wheel.
A reset button reverts colors to their original state. For theme-based
palettes, we also show information on palette harmony to support
designers in assessing color balance.

Concept Alternatives Module (Fig. 6-C, left). To facilitate DG3,
this module displays alternative concepts and their associated colors
for each original input, based on semantically related terms retrieved
via the WordsAPI [2]. Clicking an alternative updates the palette in
real-time. A reset button allows users to return to the original selection.
This encourages exploration while maintaining semantic alignment.

Example Visualizations Module (Fig. 6-D, left & right). In line
with DG4, this module provides example visualizations, including bar
charts, pie charts, doughnut charts, and scatter plots. Users can switch
between chart types and refresh them with adjusted palettes using an
“Update Chart” button. This supports practical applications and allows
users to preview the visual effect of the selected colors.

5.3

We conducted an in-person usability study to assess the effectiveness
and overall usability of Concept2Color. Our evaluation focused on both
quantitative measures using the System Usability Scale (SUS) [73] and
qualitative feedback to understand user satisfaction and identify areas
for improvement.

Participants. Eight participants (age 25-34) voluntarily took part in
the study. All held at least a Bachelor’s degree, and there was an equal
gender distribution. Most participants identified as Asian or Asian
American. Full demographic details are available in the supplement.

Procedure. A research team member first introduced the system and
explained its functionality. Participants completed a brief demographic
questionnaire and were asked to interact with the interface through a set
of predefined tasks, including generating palettes using both concept
and theme-based inputs, adjusting palette brightness, and exploring
example visualizations. Participants then completed the SUS question-
naire and answered open-ended questions about their experience.

Usability Results. The interface received a high average SUS score
of 85.93, indicating excellent usability. As shown in Fig. 7, most users
strongly agreed that the interface was easy to use, well-integrated, and
quick to learn. Participants reported high confidence in using the system
and low perceived need for support.

Qualitative Feedback and Suggestions. Participants described the
interface as intuitive and visually appealing. The input structure, color
feedback, and visualization modules were particularly praised. Theme-
based palettes were frequently cited as “cohesive” and “aesthetic”,
especially for inputs like “ocean”, “sunset”, or “forest”.

Several participants highlighted the usefulness of the color adjust-
ment sliders, describing them as “fine-grained and responsive”. There

Interface Evaluation



I think that T would like to use this system frequently.
I found the system unnecessarily complex.

I thought the system was casy to use.

I think that T would need the support of a technical person
to be able to use this system.
I found the various functions in this system were well
organized.

I thought there was too much inconsistency in this system.

1 would imagine that most people would learn to use this
system very quickly.

1 found the system very cumbersome to use.
I felt very confident using the system.

I needed to learn a lot of things before I could get going
with this system.

Fig. 7: Concept2Color interface mean usability ratings on the SUS scale.
Error bars represent standard error. (1=Strongly Disagree, 5=Strongly
Agree).

was some variation in the perceived usefulness of the example charts:
while some found them essential for imagining real-world use, others
felt the charts could be more tailored to design use-cases beyond data
visualization. Suggestions for improvement included incorporating
more nuanced synonym suggestions in the alternatives module, adding
tooltips or explanations for palette harmony, and, expanding model
options, including multilingual support. Overall, participant feedback
confirmed the value of the system.

6 UsEe CASES

We applied our text-to-color generation models across diverse use cases
in data visualization, UI design, and content creation—domains where
color helps convey meaning, guide attention, and enhance user expe-
rience [59]. Using five model architectures within the Concept2Color
interface, we show how semantically guided color selection supports
contextually meaningful design. These examples demonstrate practi-
cal value across workflows and are detailed, along with prompts and
outputs, in the supplemental materials.

6.1

Color plays a central role in effective data storytelling by highlighting
meaning and guiding visual attention [12]. Traditional tools often rely
on manual color choices, which can lead to inconsistency, cognitive
overload, or even unintended bias. Concept2Color streamlines this
process by automatically generating semantically meaningful colors
from natural language labels, enabling more coherent, contextually
aligned narratives. The example in Fig. 8-A shows an application for
a financial or business dashboard, where we used Concept2Color to
assign meaningful colors to abstract categories: ‘Revenue growth” —
light green, “Market risk” — brick red, “Government regulations” —
blue, and “Consumer trends” — pink, all within a pie chart. In contrast,
Fig. 1-A presents a bar chart colorized by Concept2Color using more
tangible categories.

Data Visualization and Storytelling

6.2 Infographics Design

Infographics also benefit from this approach, as illustrated in Fig. 8-
B. Unlike rigid, keyword-based highlighting, Concept2Color reflects
the nuanced semantics of each term, assigning colors that reinforce
both tone and message. In the infographic, stress-related phrases like
“High Workload” and “Lack of Support” are mapped to red-orange
hues that convey urgency, while terms such as “Reduced Absenteeism’
and “Higher Retention” are paired with calming blues and teals to rein-
force a sense of stability and improvement. The phrase “Benefits of a
Mentally Healthy Workplace” is rendered against a vibrant yellow back-
ground—an energizing color that draws attention and highlights the
positivity of the message without distracting from the overall narrative.

>

6.3 User Interface Design

Color plays a pivotal role in user interfaces (UI), influencing user
experience, mood, and readability [25]. Our method enables adap-
tive UI design by dynamically adjusting interface elements based on
semantic meaning or user sentiment. This is especially relevant for

mood-adaptive applications and context-aware notifications. Prior work
in affective computing has explored emotion-aware interfaces [12]; our
models extend this by enabling open-domain color mapping for any
word or phrase, without relying on predefined lists. For example, in
Fig. 8-C we used Concept2Color to color-code message types in an
email inbox UI: “Urgent alerts” (e.g., “Security Warning”) — red,
“Updates” (e.g., “Shipping Update”) — grey, “Positive emails” (e.g.,
“Payment received”) — green, and “Warnings” (e.g., “Low balance”)
— orange. In practice, a fine-tuned model like ROBERTa can ana-
lyze incoming messages and apply contextually appropriate colors to
highlight urgency, helping users scan key information more efficiently.
Lightweight models like Word2Vec can run on mobile devices for real-
time, low-latency color adaptation. This boosts ecological validity: as
users naturally express emotions and priorities through language, a Ul
that responds in the same color language feels more engaging.

6.4 Education and Cognitive Science (Memory Aids and
Knowledge Visualization)

Text-to-color mappings can enhance education by using color as a cogni-
tive aid. Research shows that color-coded materials improve recall and
reduce cognitive load [19]. Our models automate this by dynamically
assigning semantically meaningful colors to key terms in textbooks or
e-learning content. For example, an e-learning platform could high-
light different types of cells in relevant colors, reinforcing memory
through semantically meaningful visual associations (see Fig. 8-D for
an example we created with the help of Concept2Color). This supports
cognitive theories that multi-sensory encoding—combining verbal and
visual cues—strengthens memory [19]. Unlike manual color schemes,
Concept2Color scales across curricula, ensuring consistency while
adapting to new terms and offers a scalable, data-driven way to improve
retention, comprehension, and semantic organization in education.

6.5 Creative Design and Semantic Search

Mapping language to color unlocks new possibilities in design, brand-
ing, and digital art. Concept2Color automates color selection based on
semantic meaning, supporting creative workflows where color reflects
intent. Designers can input keywords like “innovative,” “trustworthy,”
or “eco-friendly” to generate cohesive palettes aligned with brand mes-
saging. Beyond branding, artists can use text-to-color mapping for
expressive purposes—such as children’s storybooks, poetry visualiza-
tions, or synesthetic art (see Fig. 8-E for an example)—assigning colors
that match the emotional tone or cultural meaning. For instance, pos-
itive words may appear in warm tones (gold, orange), while somber
words use cool hues (blue, gray), allowing dynamic, sentiment-driven
color schemes. Text-driven color search also enhances creative ex-
ploration. Designers can query terms like “vintage” or “futuristic”
to retrieve relevant palettes, bridging abstract concepts with visual
output. Tools like Adobe’s Generative Recolor [4] already point to
this trend. Concept2Color’s semantic search extends such capabilities
with context-aware mappings powered by advanced language models,
adapting to emerging language and domain-specific terms.

6.6 Brand Identity and Marketing

Color plays a crucial role in brand identity and marketing, shaping
consumer perception and emotional engagement [42]. Concept2Color
provides a data-driven method for selecting brand colors based on tex-
tual descriptors, aligning messaging with visual identity. Branding
agencies often define company personalities through keywords (e.g.,
“youthful,” “energetic,” “disruptive”), which our models can instantly
translate into colors. Prior research shows that aligning brand colors
with perceived traits (e.g., green for eco-friendly, blue for security)
boosts consumer trust and purchase intent [42] (see Fig. 8-F). Addi-
tional applications include sentiment-driven social media management,
where customer reviews are color-tagged, e.g., red for urgent com-
plaints, gold for praise, gray for neutral feedback, and text analytics
in advertising. Ultimately, Concept2Color brings the affective power
of color into marketing and branding, enhancing visual consistency,
engagement, and creativity.
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6.7 Assistive Technologies

In accessibility and assistive technology, text-to-color mappings of-
fer an additional communication channel, especially for users with
cognitive or linguistic differences. Color cues can enhance attention
and comprehension, particularly for neurodivergent individuals [11].
For example, educators often use color-coded visuals to support chil-
dren with autism spectrum disorder (ASD). Our system extends this by
dynamically coloring text based on emotional or functional meaning,
helping ASD users interpret language cues. A communication aid might
display “I need a break™ on a calming blue background, while distress
messages appear in soft red—mirroring tools like emotion badges [7]
(see Fig. 8-G). Users with dyslexia or language-processing disorders
may benefit from consistent color-coding of names or sentiment-tinted
tooltips for complex vocabulary. Unlike static tools, our models support
a broad vocabulary, including idioms and slang. Context-aware color
cues help reduce cognitive load and ambiguity.

7 DISCUSSION, LIMITATIONS, AND FUTURE WORK

Our study investigates how language models generate semantically
resonant colors, revealing their capacity to model links between lin-
guistic meaning and visual perception—echoing findings that language
and color processing are intertwined in the brain [68]. The ability of
language models to reproduce intuitive color associations suggests they
have learned such mappings through large-scale text training.

Evaluation Strategies. We focused on two aspects: objective color
quality, using CIEDE2000 on ~3,000 human-annotated concept—color
pairs, and system usability via a standard study. Since our dataset [21]
reflects aggregated human judgments, strong model agreement on held-
out test data serves as a proxy for human alignment. While this suggests
early semantic resonance, validation through a full-scale human prefer-
ence study remains important yet resource-intensive. A key limitation
of our current evaluation is the lack of testing with professional design-
ers, which we plan to address in future work. We aim to involve both
expert (e.g., designers, artists) and non-expert participants to assess
contextual appropriateness, subjective appeal, and creative potential.
We also aim to compare model outputs with curated systems such
as Kobayashi’s Color Image Scale [31], examining alignment with
historically validated affective mappings.

Dataset Biases and Model Scope. A central limitation of this work
lies in the models’ training data, which is largely English-language and

Western-centric. This can lead to cultural and linguistic biases in color
associations. Future efforts should incorporate multilingual and cross-
cultural corpora to produce more inclusive and diverse associations.

From Colors to Palettes. We focused on generating single colors
for concepts, but an important extension is palette generation. Models
could be fine-tuned on text—palette datasets, or current outputs post-
processed using color theory. This would expand the utility of semantic
color generation in applications where harmony and contrast are critical.

Accessibility and Contrast. While Concept2Color produces se-
mantically resonant hues, practical use also demands sufficient contrast
and perceptual separability (e.g., “banana” vs. “carrot” in Fig. 1, or the
purple contour in Fig. 8D). We plan to apply lightness or saturation
adjustments to meet WCAG 2.1 thresholds [74], and include fall-back
palettes optimized for legibility (e.g., ColorBrewer [15]). A contrast-
checking module will help ensure outputs are both semantically aligned
and visually accessible in real-world settings.

8 CONCLUSION

This paper presents a comprehensive investigation into how language
models generate semantically resonant colors, revealing their capacity
to capture complex associations between language and visual percep-
tion. By evaluating a range of models—including both pretrained
and fine-tuned architectures—we show that language models can pro-
duce color associations that align with human intuition. Notably, we
find that even general-purpose models like ChatGPT can yield color
mappings that rival more specialized and labor-intensive image-search
approaches, while downloadable models such as CLIP (when fine-
tuned) offer even stronger performance, making them attractive for
deployment in practical workflows.

Our analysis highlights not only the cognitive alignment between
model-generated and human associations but also the limitations in-
troduced by training data biases and model scope. To support broader
exploration, we developed Concept2Color, an interactive tool that
visualizes model outputs and enables users to generate semantically
meaningful colors for a wide range of concepts. Overall, our findings
contribute to a growing understanding of how language models can
encode and express perceptual meaning. This work opens new avenues
for future research in palette generation, cross-cultural analysis, and
interdisciplinary evaluation, advancing both theoretical inquiry and
practical applications in human-computer interaction and beyond.



9 SUPPLEMENTAL MATERIALS

All supplemental materials are provided in the PCS Submission System
as a .zip file. The description and location of all supplemental materials
are provided as a separate document named “Supplemental Materials
Details.pdf” inside the zipped folder.
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