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ABSTRACT 
Cluster analysis (CA) is a powerful strategy for the exploration of 
high-dimensional data in the absence of a-priori hypotheses or 
data classification models, and the results of CA can then be used 
to form such models. But even though formal models and classifi-
cation rules may not exist in these data exploration scenarios, 
domain scientists and experts generally have a vast amount of 
non-compiled knowledge and intuition that they can bring to bear 
in this effort. In CA, there are various popular mechanisms to 
generate the clusters, however, the results from their non-
supervised deployment rarely fully agree with this expert 
knowledge and intuition. To this end, our paper describes a 
comprehensive and intuitive framework to aid scientists in the 
derivation of classification hierarchies in CA, using k-means as 
the overall clustering engine, but allowing them to tune its 
parameters interactively based on a non-distorted compact visual 
presentation of the inherent characteristics of the data in high-
dimensional space. These include cluster geometry, composition, 
spatial relations to neighbors, and others. In essence, we provide 
all the tools necessary for a high-dimensional activity we call 
cluster sculpting, and the evolving hierarchy can then be viewed 
in a space-efficient radial dendrogram. We demonstrate our 
system in the context of the mining and classification of a large 
collection of millions of data items of aerosol mass spectra, but 
our framework readily applies to any high-dimensional CA 
scenario. 
Keywords: Visual Analytics, High-Dimensional Data, Visual 
Data Mining, Visualization in Earth, Space and Environmental 
Sciences. 
Index Terms: I.3.8 [Computer Graphics]: Applications.  

1 INTRODUCTION 
Clustering is the process of partitioning a collection of data points 
into separate groups, according to some measure of similarity. 
The term cluster analysis (CA) was first used by Tryon [20] and 
encompasses a number of different algorithms and methods to 
achieve this goal. CA can be utilized to discover associations in 
high-dimensional (N-D) data without a prior model or classifica-
tion rules - the structures are discovered as the clustering proceeds. 
Hence, there is high potential for discovering unexpected 
associations. The so evolved hierarchy can then be labeled by the 
user and the decision boundaries be used for a more informed 
separation of a future data collection of similar nature. In this 
respect, CA can be considered a learning mechanism [16].  

The result of CA is usually a hierarchy, with intra-cluster simi-
larity decreasing towards the root. There are a number of metrics 
for measuring the similarity among two separate clusters [13], 
such as the distance of the two closest points in the two clusters 

(single linkage), the distance of the two furthest points (complete 
linkage), or the average distance between all pairs of points in the 
two clusters (un-weighted pair-group average), and others. Ward 
has proposed a different approach based on the analysis of 
variance (ANOVA) to evaluate the distances between clusters 
[23]. In fact, the distance measure used has a great effect on the 
shape of the aggregated clusters. For example, the single-linkage 
scheme tends to create long and stringy clusters, while Ward’s 
method generates many clusters of small size. However, these 
data aggregation preferences may not always match the true 
hierarchical organization of the data, particularly not when there 
are close ties which are nevertheless rejected due to these purely 
algorithm-driven choices. Clearly more intelligence is needed in 
the clustering process, which, however, is not available in 
encapsulated form - by the very definition and nature of CA. On 
the other hand, injecting live expert input and intuition into an 
ongoing analysis process is one of the main motivations behind 
visual analytics. By taking advantage of this non-compiled 
domain expertise one can non-linearly steer the CA into a more 
favorable constellation. In order to make this undertaking as 
effective as possible, the expert must gain a comprehensive 
picture of both the data and the current status of the process. Our 
work proposes a highly visual framework to accomplish this, with 
a strong emphasis on conveying as much of the structure of the 
data as possible, in non-overwhelming ways.   

The opportunities gained from involving users into a classifica-
tion and aggregation task has been recognized in a number of 
recent works in the KDD (Knowledge Discovery and Data mining) 
community, such as [1][25], and has been quite successful. In 
many cases these works offer some visual support, mostly in form 
of 2D plots or 3D height fields, to allow users to cast the final 
decision in defining the cluster boundaries and separations, which 
can be non-trivial in the presence of noise and ambiguities. Many 
of these approaches perform a number of trials, performed with 
different clustering parameter settings, and the system described 
in [8] offers a convenient glyph-based summary matrix to 
visualize the gist of these trails, both for refinement and for 
selection. None of these systems attempts to visually convey the 
N-D space all at once – only the result of (iterative) projections 
into a displayable space (2D/3D) is shown. On the other hand, 
systems such as parallel coordinates [11] and star coordinates [12] 
offer visual frameworks that allow users to interactively and 
directly explore these high-dimensional spaces, either just for data 
viewing or to isolate existing clusters and build hierarchies. 
However, the curse of dimensionality can pose limits to both of 
these approaches relatively early. In the projection approaches, the 
iterative sub-space projections from N-D to 2D/1D and the 
associated growth in the number of required trials makes high data 
dimensionality of, say, greater than 100 difficult. On the other 
hand, the visual coordinate displays require a sufficient amount of 
screen space per dimension, which also imposes limits. A suitable 
way to deal with this problem is to use a space-efficient pixel map 
for data display and/or principal component analysis (PC) or other 
related techniques for dimension reduction.    
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An important goal when dealing with visual interaction 
techniques, in which experts are asked to apply their domain 
knowledge, must be the interpretability of the displayed 
information. This is where dimension reduction can cause 
problems since these types of techniques often rotate or warp the 
data into a new axis system where the relationship of data vector 
values to the original data attributes is difficult to discern.  

The domain application for which our system has been 
developed is atmospheric science, where the data is composed of 
450-dimensional mass spectra of aerosol particles acquired by a 
state-of-the-art SPLAT (Single Particle Laser Ablation Time-of-
Flight) mass spectrometer [26]. The goal is to employ clustering 
as a mechanism to learn the composition of particles for 
subsequent automated classification of new particle acquisitions, 
using the learnt spectra hierarchy. In addition, the classification 
hierarchies so obtained are novel in their own right, producing 
new insights in the compositions of aerosols, which are influenced 
by climate, pollution, and other factors. Thus with the domain 
expert tightly integrated into the visual analytics loop, such a 
clustering system must allow a data-oriented information display 
and manipulation, in the presence of very high-dimensional data. 
This setting rules out a direct use of PCA, while the high data 
dimensionality requires a pixel-map display and makes an 
iterative projection framework less attractive. Our paper describes 
such a framework, meeting all of these design goals. Our system 
provides a variety of interaction capabilities that allows experts to 
delineate clusters virtually in N-D space – a process which we 
refer to as cluster sculpting and N-D viewing. 

Our paper is structured as follows. In Section 2, we will discuss 
existing related work, Section 3 presents an overview of our 
system, and Section 4 outlines the system components. Section 5 
describes our domain application in more detail and then shows 
the system in action. Finally, Section 6 ends with conclusions and 
an outlook onto future work.  

2 RELATED WORK 
In addition to the more clustering-oriented works already 
mentioned in the introduction, much research has been published 
on the visualization of N-D data. One way to distinguish these 
methods is by the strategy they use to overcome the problems that 
arise from the limited dimensions available for display. Pixel-
based techniques [14] create an N×N matrix of scatter plots in 
which each coordinate pairing is displayed, while force-directed 
methods and multi-dimensional scaling have been employed to 
“flatten” the N-D space into 2-D [4][15][17]. On the other hand, 
Star Coordinates (SC) [12], Parallel Coordinates (PC) [11], and 
RadViz [9] flatten the axes of the N-D space into 2D. While in PC 
an N-D data point reduces to a piecewise linear curve, in SC and 
RadVis, an N-D point reduces to a 2D point whose coordinates 
are given by the average coordinate value in the multi-spoke 
radial coordinate system. In the latter, due to the averaging points 
distant in N-D may still fall into a small region in 2-D, which 
requires a closer inspection of the points before cluster assignment. 
A survey of these techniques is presented in [5]. 

Both Parallel Coordinates and Star Coordinates have been 
extended into interactive clustering applications [19]. The 
reduction of the data into a 2D scatter plot (an arrangement of 
lines in Parallel Coordinates, an array of dots in Star Coordinates) 
can cause points or lines to be obscured (overdrawn) by other 
such elements, but various strategies exist, such as zooming, 
brushing [6], axis reordering [18], and filtering  [3], to alleviate 
these problems. Fisheyes and hierarchical brushing [6] can be 
employed to make the display scalable.  

The capability of allowing expert users to guide the clustering 
(also called semi-supervised clustering) has been promoted by 
[22][25] and others. Kreuseler and Schumann [15] use a similarity 
matrix in conjunction with a bottom-up approach to create a 
binary tree. They then cluster the nodes of this tree by ways of a 
user-defined discrete 1-D heterogeneity scale acting on the 
computed similarity measures at each node. In contrast, our 
system takes this interaction mechanism a step further by allowing 
users to influence the similarity weights directly in N-D space, in 
an implicit manner via our data-centric interface. This allows an 
earlier control over the composition of the generated clusters, 
which is desirable for larger N (Kreuseler used the car data base 
where N=6). Similar to Kreuseler [15] and Wilson [24], we also 
use a radial dendrogram to display our hierarchy in a space-
efficient manner by placing the root into the center. But our 
approach tightly integrates the dendrogram into the clustering 
framework. Users are able to move and re-cluster nodes within the 
hierarchy.  

3 OVERVIEW 
The main idea of our system is that while there are many 
clustering algorithms, none will give a one-size-fits-all result. It is 
ultimately only the domain expert who can identify suitable 
clusters, and our system aims to provide an effective visualization 
and manipulation framework for this. First, a set of first-guess 
clusters is presented to the user who then can merge, split, and re-
organize these clusters using his expert knowledge, intuition, and 
domain requirements. The ultimate goal is to learn the clustering 
rules from these examples, which will then provide a better pre-
clustering for future datasets to minimize further tuning, and 
enable eventually real-time automated classification.  

Hierarchical clustering can be conducted in a top-down or bot-
tom-up fashion. In a top-down approach the data space is continu-
ously subdivided into sub-clusters until further subdivision of an 
individual cluster is no longer meaningful (by some metric or user 
decision), while the bottom-up approach starts with the collection 
of isolated data points and continuously merges them until the 
single (root) cluster is obtained [7]. The top-down approach is 
typically more intuitive and also faster, since it allows one to stop 
once all sub-clusters have reached non-divisible group status. The 
SPLAT device can easily acquire 100s of thousands of particles in 
a single session. Therefore, in order to reduce the data, we use an 
initial automated and reasonably fine-grained bottom-up pre-
clustering for data reduction (similar to [28]), but then switch to a 
more refined top-down strategy supervised by the user (this stage 
is described in this paper). The data size at this stage is on the 
order of 100s to 10,0000s of data points. The scientist uses the 
system to carefully cluster the sample dataset, creating the 
hierarchy. Here, the clustering algorithm (k-means, single-link, 
complete-link, and CURE [7]) that is applied can be user-
specified at every level of the hierarchy, and various linked 
visualizations are provided to monitor the shape of the clusters as 
well as the composition of the hierarchy. In addition, clusters can 
be reshaped and regrouped at any time. Once the classification 
hierarchy is defined over the sample dataset, the entire collection 
of data points is classified using the rules learnt from this training 
session, yet outliers will also be presented to make sure nothing is 
missed. Support-vector machines (SVM) [21] are then used to 
encode and learn these rules.   

4 SYSTEM COMPONENTS 
We now introduce the system components, while Section 5 will 
show these in context of an actual clustering session. The overall 



interface is depicted in Figs. 1-3 (note that Figs. 1, 2, and 3 are 
screen captures taken at different stages of the classification to 
enable depiction of all functionalities), with the labels indicating 
the various components, as described as follows. 

4.1 The Point Map 
The Point Map displays each data vector (the mass spectrum) as a 
horizontal line of colored pixels, one per axis direction. The color 
mapping is according to value, normalized from 0 to 1, and the 
color is mapped from blue to red. The point lines are grouped by 
the smallest cluster they are in (the leaf nodes of the hierarchy). 
Within each cluster, the points are sorted by their distance to the 
center of the cluster, but users can also sort the points by value in 
the particular dimension or by particle sizes.  

The user may double-click on any such cluster to make it the 
active cluster. The histogram window and the PC window then 
display the information of this active cluster. The user may click 
on any particle to set the initial cluster center for k-means. 

When the k-means clustering iterations terminate, it is possible 
that some of the sub-clusters only have a very small number of 
points. These points would be considered as outliers, but should 
not be discarded as they may be the kind of rare gemstone-type 
information the scientists is looking for. We collect these outliers 
into a special cluster which we call odd-lots to bring these points 
to the user’s attention.  

4.2 The Dendrogram 
The dendrogram represents the current status of the cluster 
hierarchy. It is a flat version of the radial dendrogram of 
SpectraMiner (see Fig. 3 and the description in Section 4.7). 
When the mouse pointer is over the point map, the (neighbor) 
cluster closest to the data point under the mouse is emphasized in 
the dendrogram as a blue box. On the other hand, when the user 
moves the mouse pointer over a leaf cluster in the dendrogram, its 

nearest neighbor cluster is emphasized. Finally, the user can also 
merge or move clusters by selecting nodes in the dendrogram.  

4.3 The Neighbor Map 
This window is designed to show the neighborhood relations 
between data points or clusters. Two modes are associated with 
this window. The first mode is the neighbor mode. As mentioned 
above, when the mouse pointer is over the point map, the 
neighbor leaf-cluster closest to the point is emphasized in the 
dendrogram. In addition, the distances of all data points to the 
cluster center of the emphasized cluster are illustrated in the 
neighbor map as bar length. Each bar has one of three colors, 
green, blue, and red. The currently active data point is rendered in 
red, while the points with green bars have the same neighbor than 
the current data point. In other words, their nearest neighbor is the 
one that is shown emphasized in the dendrogram. Points with 
other neighbors have blue bars in the neighbor map. This 
information can be helpful to discover points that are incorrectly 
classified or some patterns of clusters. Also, it helps to better 
picture cluster relationships in N-D space. Moving the mouse 
around to dynamically change the neighborhood map in many 
cases reveals useful information. 

The second mode is the particle size mode (not shown here) 
where the measured size of the particle can also be displayed in 
form of a (vertical) 1D plot. The user may then sort data points by 
particle size which is often helpful. 

4.4 The Histogram Window 
The histogram displays the density values of each dimension. The 
x-axis is the dimension number. For the y-values, we sum up all 
values for each dimension and then normalize from 0 to 255. The 
users can set weights to particular dimensions to compress or 
stretch the cluster in N-dimensional space along the cluster axis. 
This gives rise to a weighted k-means effect. The user can select 
to see either the original histogram or the weighted histogram. 

Figure 1. The ClusterSculptor interface 



Figure 2. EigenMap with SVM 
plane and major dimensions. 

Once the user changes the weights in this histogram, the PCs are 
recomputed according to the new weights and displayed in the PC 
window (described next). 

4.5 The Principal Component (PC) Window 
The PC window shows the first principal component as a default. 
The first PC represents the axis along which the variance of the 
dataset is the greatest, that is, the first PC has the greatest 
eigenvalue.  

The user may choose what to display in this window, either 
eigenvectors or eigenvalues. The user may also select other 
principal components to be displayed instead of the first PC. In 
Fig. 1 the dot products of the first PC and the individual axes are 
shown (blue is positive and green negative). The longest bar 
indicates the axis of greatest alignment.    

Our system provides an option to scale the PC by the histogram. 
This is shown in Fig. 5A. Here, we show (top to bottom) the 
histogram, the point map, the three largest PCs, and the 
eigenvalues. We observe that none of the major PC axis 
dimensions (the data axes of greatest alignment) has significant 
activity in the actual dataset. Both the histogram and the point 
map show that there are not many values along these dimensions 
(recall that blue encodes a value of zero). In order to adjust for 
this situation, we allow the user to scale the PC by the histogram. 
The new configuration is shown in Fig. 5B. This rescales the 
space along these directions, yielding tighter clusters. Note that 
this operation creates a standardized rescaling compared to the 
more user-controlled re-scaling facilitated by weighting the 
histogram. Finally, the scaling is also helpful for the EigenMap 
discussed in the next section. 

4.6 The Eigen Map 
The point map is useful for comparing the N-D vectors on a per-
component basis. However, this plot does not convey the spatial 
relationships very well. The neighbor map was intended to 
illustrate these spatial relations better, but it still lacks the 
immersive effects of a true 3D display. We can use the PCs to 
create such an illustration. Let us take the three PCs with the 
largest eigenvalues and project our dataset onto these PC axes. 
Since the PCs represent the most variant axes in N-D space 
(usually the eigenvalues decay fast), we can perceive clusters 
more easily, in this, what we call EigenSpace. This display is 
shown in Fig. 2 below and 
the color of the points 
displayed corresponds to 
the leaf node’s color in the 
dendrogram (the EigenMap 
shows the point cloud of 
the active cluster). Finally, 
in order to ground the user 
in the true data space, we 
project into this PC-based 
coordinate system the 
closest data dimension axes. 
Such a projection is found 
by taking the dot product of the axis vector with each PC vector.  

As mentioned in the previous section, the best depiction of the 
space’s occupancy is obtained by first weighting the PCs with the 
histogram and using these to construct the EigenMap. This in turn 
also creates a more significant projection of the true data axes. 
Recall that in Fig. 5B we identified dimension axes 62, 30, and 81 
as the axes most aligned with the weighted PCs and therefore 
most associated with data variations in the cluster. These are 
drawn in blue into the EigenMap cube of Fig. 2. Finally, we can 

also project the hyper-plane optimally separating the clusters 
(once it is classified) and computed via SVM.  

4.7 Cluster Information Window 
Our interface provides a variety of information and selection 
options beside the display area. The first such panel is the Cluster 
Information Window. There, the user can view all information 
with regards to the active cluster, active data point, and active 
dimension as well as other necessary attributes. This window also 
shows information about every dimension axis. In the second 
panel, the users may choose various display options, what 
information to display or not, etc. In the third panel the user can 
control the classifier itself: set weights, the threshold, the number 
of the cluster center, and so on. The next panel controls the 
EigenMap, and the last panel allows for managing the dimensions. 
Here, the user may create a new dimension or sum several 
dimensions which the expert considers to be conjunctively related. 
This function highly depends on the user’s prior knowledge and 
intuition and influences the clustering in an expert-driven way.  

4.8 SpectraMiner 
Finally, SpectraMiner (see Fig. 3) presents the current state of the 
classification in an interactive hierarchical circular dendrogram. In 
addition to this display, SpectraMiner offers the user a wide range 
of additional tools which have been described in [10][27]. Initially, 
SpectraMiner holds the results from the non-supervised pre-
clustering, and the initial hierarchy is created by using one of the 
similarity metrics mentioned in the introduction. The user then 
selects a sub-branch (or the entire hierarchy) and ports it to 
ClusterSculptor for closer visualization and refinement.  

 
Figure 3. The SpectraMiner interface. 

5 VISUAL ANALYSIS EXAMPLE 
In this section we illustrate our system in greater detail, using a 
real visual analytics session (enumerated in Fig. 5) as a 
demonstration example. We begin with describing our domain 
application in greater detail, motivate the move to the interactive 
clustering or cluster refinement environment described here, and 
then show the sequence of actions associated with this task, richly 
illustrated.     

5.1 Domain Application 
SPLAT [26] is a single particle mass spectrometer that is used to 
characterize the properties of ambient atmospheric particles in 
real-time. These particles impact our climate, and when inhaled 
our health. They are found to have a wide a range of sizes and to 
be composed of a large number of substances. Because the impact 



of atmospheric particles on public health and on climate strongly 
depend on their compositions and sizes it is important to know 
these quantities in great detail. SPLAT is capable of measuring 
the size and composition of 20 particles per second in while 
sampling ambient air directly. It records, for each particle the time 
of detection particle size and a mass spectrum consisting of signal 
amplitudes of 450 mass units. The relative intensities of these 450 
amplitudes carry the pertinent information to identify the 
particle’s composition. During typical field deployments SPLAT 
operates 24 hours per day recording millions of data points.  

SPLAT is also designed to detect airborne bacterial and viral 
warfare agents whose concentrations are expected to be extremely 
low. In this application, the success depends on timely high 
precision detection and identification of rare events that is 
embedded in a vast amount of data/background.  

The goal is to employ the overall system as a mechanism to 
learn the composition of particles for subsequent automated 
classification of new particle acquisitions, using the learnt spectra 
hierarchy. In addition, the classification hierarchies so obtained 
are novel in their own right, producing new insights in the 
compositions of aerosols, which are influenced by climate, 
pollution, and other factors. 

5.2 Motivation 
Our experience with SpectraMiner most often reveals that the 
statistically based classification results are not satisfying. It is 
common to find at the completion of the clustering process that 
particles of identical compositions were separated into a number 
of different classes and that particles of different compositions 
reside in the same cluster. Yet to the expert’s trained eye, the mass 
spectra contain sufficient information to accomplish a proper 
classification. An expert’s view of the data reveals that in the vast 
majority of the cases typical clustering problems that are found 
could have been avoided were it possible for the expert to input 
his/her knowledge to steer the classification into the proper 
conclusion.  

Example: In single particle mass spectrometry it is not 
uncommon to find cases in which one of the substances is 
contained in a number of particle types, which otherwise are 
significantly different. If that substance happens to produce a high 
amplitude signal in the mass spectrum every one of the particle 
types that contain that substance are most often found to be jointly 
clustered. This is a result of the fact that the few high-amplitude 
coordinates tend to dominate the classification process, while the 
low amplitude peaks that could have been used to differentiate 
between particle types are in essence ignored. Sodium and 
potassium are two alkali metals that are commonly found in a 
number of atmospheric particle types. The presence of even a 
small amount of alkali metals produces very high signal 
intensities making proper classification difficult.  

Fig. 4(a) presents a screen capture of the SpectraMiner 
dendrogram of data generated from 36,000 lab generated particles. 
To produce this hierarchy, we use an off-line k-means clustering.  
Here we focus on nodes A and I composed of clusters 1, 2 and 50 
to 57 respectively. Node A represents two types of sodium 
containing particles sodium nitrate (SN) and sodium chloride (SC) 
and node I includes three types of organic compounds, lauric acid 
(LA), pyrene (PY) and exhaust soot. These classes contain 
substances that are commonly found in atmospheric particles. Fig. 
4(b) shows the content of the 9 clusters these data were classified 
into, clearly illustrating the difficulties mentioned earlier. In the 
following we show how this can be remedied, via cluster 
sculpting. Both the A-node and the I-node in Fig. 4(a) will be 
refined.  

 

 
Figure 4. (a) A dendrogram of 36,000 laboratory generated 
individual particle mass spectra. The data were classified into 61 
clusters are presented here in a circular hierarchical tree format. 
The two nodes and the 9 clusters that are the subject of this paper 
are identified and marked.  (b) Bar graph showing the content of the 
2 nodes and 9 clusters that are being re-clustered in this paper. In 
node A the most of the two sodium containing particles are in 
clusters 1. In node I 3 types of carbon containing were separated 
into 7 clusters one of which is strongly mixed. 

5.3 A-Node Cluster Sculpting 
Fig. 5A shows the 6,000 two sodium containing particle types. 
The major dimensions from each three PCs do not have many 
values in the point map and the histogram. So we can assume that 
they are not important dimensions, even if there is a big variance 
along those dimensions. We also see that there are only 3-4 
significant eigenvalues, which means that the first three PCs 
represent the sub-space quite well.   

Next, for the reasons stated above, the expert seeks to reduce 
the role that sodium (the largest peak) plays in the classification of 
the node. Therefore, he sets the weight of this dimension to 0.01. 
Following, he scales the PCs by the histogram. Now only the 
major dimensions in the PCs are active in this adjusted space (see 
Fig. 5B). 

Fig. 5C shows the EigenMap of the cluster with the data axes 
for element 30, 81, and 62. From this display the somewhat 
irregular shape (two arms, with one having a kink) of the cluster 
becomes apparent.  

Now an attempt is made to classify, via k-means, the node into 
two clusters. The result is shown in Fig. 5D. The result is less than 
satisfactory. Next, Fig. 5E shows the outcome when 5 k-means 
seeds are used and we see that this classifies well. However, the 
pink node is still misclassified here. It should really been divided 
into two separated clusters.  

Fig. 5F takes a closer look at the pink node, making it the active 
cluster. In the associated PC setting, the 24th data dimension 
emerges as a major dimension for all three PC coordinates, 
indicating that the points are highly correlated with the 24th 
element in the mass spectrum. This strong impact of this element 
on the classification can be overcome by setting the weight for the 
24th dimension to 0.05. This allows a projection into another 
subspace, shown in Fig. 5G, where the element dimension pointed 
to by the brown arrow is the main direction. We can now easily 
see two different types of clusters in this pink node. We also see 
that there are two different types of clusters in the point map. 
Sorting the point map along the main element dimension allows a 
fairly good differentiation of these two clusters.   

Next we examine the interplay of neighbor map, point map, and 
EigenMap. Fig. 5H (a) shows the EigenMap of the whole dataset. 
Fig. 5H (b) has the mouse pointer traveling over the bottom half 
of the data points (note, the red line in the neighbor map is the 
current data point). We see that the purple node is the nearest 
neighbor (highlighted in the dendrogram on the bottom) for the 
current data point – this part is the portion marked by a rectangle 



A. 6,000 two sodium containing particle 
types (A node in Fig 4). The major 
dimensions from each of the three PCs do 
not have many values in point map and 
histogram. Also, there are only 3-4 significant 
eigenvalues. 

B. The expert reduces the effect of Sodium 
(the largest peak) by setting the weight of 
this dimension to 0.01. Then the PCs are 
scaled by their histogram values. Now only 
the major dimensions in the PCs are active 
in this adjusted space.

C. EigenMap with new PC 
coordinates from Fig B. This 
map shows two separate 
clusters. 

D. Attempt to classify into two 
clusters using automatic k-means 
clustering with two centers. It fails.

E. Using automatic 
k-means clustering 
with five cluster 
centers. In general, 
this classifies well. 
However, the pink 
node is mis-
classified here. It 
should be divided 
into two separated 
clusters. (a) the 
dendrogram, (b) the 
Eigen map. 

F. A closer look onto the pink node. Now, the pink 
node is the active cluster. The 24th dimension is a 
major dimension for all three PC coordinates. 

G. By setting the weight for the 24th 
dimension to 0.05, other major 
dimensions emerge in the PC. The 
EigenMap reveals two different types of 

Figure 5. A typical analysis and 
classification session (continued 
below) 

in the EigenMap. Next, as shown in Fig. 5H (c), when the mouse 
pointer travels over the top half of the data points, the blue node 
emerges as the nearest neighbor for the current data point – this 
part is the circled part in the EigenMap. Now see Fig. 5I for a 
closer look. There are still some green bars in the upper part of the 
marked line of neighbor map, but even if those parts are closer to 
the purple cluster in Euclidean distance, they should belong to the 
circled part in Fig. 5H. This decision is made when confirming the 
cluster shapes in the EigenMap display and looking closely at the 
point map. Fig. 5I (b) is the result of clustering using Fig. 5I (a). 
Finally, Fig. 5I (c) is the EigenMap of the pink node separated by 
an SVM plane. We see that the two clusters are divided well.  

Fig. 5J shows the entire node after the cluster-sculpting. Now, 
the active cluster is the whole dataset. Even if there are six 

clusters here, we only want to classify into two well-separated 
clusters. We can merge red, purple, and green into one new cluster. 
In the same way, we can merge yellow, blue, and orange into one 
new cluster. Fig. 5K shows the final result after the merging. 

Finally, Fig. 5L shows the SVM Plane for the resulting 
separation, and Fig. 7 (b) left shows the new composition of the 
re-clustered node A. We see that the compositions of the two 
clusters are now pure, which means that the refinement procedure 
just performed has yielded a good classification rule.     

Looking at the complex EigenMap shape of the resulting two 
clusters as well as at the numerical neighborhood map conflict, it 
is unlikely that automated algorithms would have found this 
separation, at least not easily. 

 



H. (left) Cooperative displays: neighbor 
map, point map, and EigenMap (a) 
EigenMap of the whole dataset. (b) The 
mouse is traveling over the bottom half of 
the data points. The red line in the 
neighbor map is the current data point, 
and the purple node is the nearest 
neighbor (highlighted in the dendrogram). 
These points are contained in the 
rectangular part in the EigenMap. (c) 
When the mouse indicates the top half of 
data points, the blue node is a nearest 
neighbor for the current data point. This 
part is contained in the circled part in the 
EigenMap. 

I. (a) Graphical method to classify the 
data into two clusters. Note there are still 
some green bars in the upper part of the 
marked line of neighbor map. But even if 
those parts are closer to the purple 
cluster in Euclidean distance, they should 
belong to the circled part in Fig. 11.  This 
decision is made by the expert, applying 
his domain knowledge. (b) The result of 
clustering using (a). (c) EigenMap of the 
pink node with the SVM plane. The two 
clusters are divided well. 

J. (left) The entire 
node, viewed after 
cluster-sculpting. 
We want to merge 
these into two 
well-separated 
clusters.  

K. The final result after 
merging clusters.

L. (left) 
Support 
Vector 
Machine 
Plane for the 
resulting two 
clusters. 

Figure 5. (continued from previous page) A typical analysis and classification session  

Figure 6. The result of the classification of the mass spectral 
data of the carbon containing compounds particles (I node in 
Fig. 4 (a)) into 3 clusters. This classification used several 
sculpting techniques by the domain experts. The neighbor 
map is now in the particle size mode.  

  

5.4 I-node Cluster Sculpting 
Returning to Figure 4 we note that the I-node represents a case in 
which particles of the same type were classified into a number of 
clusters and others were not properly separated. Figure 6 shows the 
mass spectra of the 5,548 particles that reside in node I. Here the 
mass spectra are dominated by a relatively high intensity in three 
coordinates and a classification to achieve complete separation is 
not possible on the basis of mass spectral intensities alone. In this 
case we take advantage of our a-priori knowledge of the fact that 
virtually all exhaust soot particles have a size that is nearly 100 nm. 
We use the program to sort the particles by size (left vertical panel) 

and use that property to identify and isolate 2872 out of the 2916 
soot particles in this node. The rest of the data are easily classified 
once the spectra are sculpted to yield the nearly pure, three clusters 
shown in Figure 6.  

5.5 Exporting to the full hierarchy   
Once the data have been classified, they are exported back to 
SpectraMiner where they replace the previously classified data 
providing the user access to a wide range of data visualization and 
mining tools. Fig. 7(a) shows the dendrogram with the re-clustered 
data. In Fig. 7(b), we can see the classification result is much 
improved over the result shown in Fig. 4(b). 
 

 
Figure 7. (a) The dendrogram containing the re-clustered A and I 
nodes. (b) A bar graph showing the content of the clusters as they 
are imported back into SpectraMiner.   



5.6 Implementation and Performance 
C# and DirectX were used for the implementation. For larger 
datasets and more expedient interaction, we are planning to 
implement the visualization part and clustering part on GPU. Using 
an Intel Core 2 CPU 2.00 GHz, NVIDIA GeForce Go 7400 
machine, we get the following (reasonably interactive) 
performance. 
 

Algorithm # of data points # of dimensions Time(sec)
K-means 4000 450 6 
K-means 400 450 5 

Single-link 400 450 20-25 
Complete-link 400 450 15-20 

CURE 400 450 10-20 

6 CONCLUSION AND FUTURE WORK 
We have described a complete system for visual analytics of mass 
spectroscopy data, but our framework generalizes readily for any 
high-dimensional cluster analysis task. The components assemble 
into a versatile tool for interactive cluster analysis of very high-
dimensional data. The system empowers users with N-D aug-
mented vision capabilities, which allows them to sculpt clusters 
directly and intuitively in N-D data space. It attempts to give users 
a direct rendition of the N-D space, and not just many projections 
into pairs of two dimensions. This more direct approach is 
appropriate since we seek to address data of high dimensionality, 
where a matrix of projections would not scale well. At the same 
time, the linked visualization of the created cluster hierarchy in a 
radial dendrogram forms a synergistic alternative view on the data. 
These coordinated visualizations of the different aspects of the 
evolving data landscape allow expert users to immediately assess 
the carved-out relationships and make quick modifications. Our 
system’s overall interactive behaviour and large degree of freedom 
allows domain scientists to feel deeply immersed into the analysis 
process, which promotes creative data exploration. The analytical 
discourse we have narrated in this paper has demonstrated the 
power that comes with pairing domain experts with intuitive data-
centric interactive N-D visualization tools that help them 
experience and appreciate their data at the full bandwidth of 
dimensional complexity.  

Further enhancements of the present system include the exten-
sion of the cluster sculptor to better incorporate temporal aspects 
(for now time is just another dimension). We also plan to add 
graphical attributes, such as specularity and texture, to use these to 
encode node strength and variation in the cluster sculptor. This will 
provide better data scalability by replacing a large cluster of 
similar spectra lines by a single one without losing the context of 
population strength. In addition, we would also like to add more 
interaction capabilities to the EigenMap window, such direct 
marking of clusters and smoothly transitioning from one subspace 
display to another. An overview window, in which the overall 
“cluster landscape” is shown, is also currently being implemented. 
Here, multi-dimensional scaling can be used to position similar 
clusters in close neighborhoods, and the similarity of two clusters 
can be defined by the summed distance of well-scattered cluster 
members. A special icon can visually summarize, for each cluster, 
its shape and composition. 
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