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Abstract—Gaining a true appreciation of high-dimensional space remains difficult since all of the existing high-dimensional space

exploration techniques serialize the space travel in some way. This is not so foreign to us since we, when traveling, also experience the

world in a serial fashion. But we typically have access to a map to help with positioning, orientation, navigation, and trip planning. Here,

we propose a multivariate data exploration tool that compares high-dimensional space navigation with a sightseeing trip. It decomposes

this activity into five major tasks: 1) Identify the sights: use a map to identify the sights of interest and their location; 2) Plan the trip:

connect the sights of interest along a specifyable path; 3) Go on the trip: travel along the route; 4) Hop off the bus: experience the location,

look around, zoom into detail; and 5) Orient and localize: regain bearings in the map. We describe intuitive and interactive tools for all of

these tasks, both global navigation within the map and local exploration of the data distributions. For the latter, we describe a polygonal

touchpad interface which enables users to smoothly tilt the projection plane in high-dimensional space to produce multivariate

scatterplots that best convey the data relationships under investigation. Motion parallax and illustrative motion trails aid in the perception

of these transient patterns. We describe the use of our system within two applications: 1) the exploratory discovery of data configurations

that best fit a personal preference in the presence of tradeoffs and 2) interactive cluster analysis via cluster sculpting in N-D.

Index Terms—High-dimensional data, coordinated and multiple views, zooming and navigation techniques, data transformation and

representation, data clustering, visual analytics

Ç

1 INTRODUCTION

HIGH-DIMENSIONAL (high-D, N-D) data have become
ubiquitous in a wide range of domains, such as science,

finance, business, demographics, biology, and the like. Still,
to date the interactive exploratory analysis of high-dimen-
sional data remains a challenging undertaking, mostly due
to the fact that high-D space is difficult to comprehend for
humans. The following may serve as an explanation. It is
widely thought [10] that human perception of the 3D
physical world we live in is learned during infancy. During
this time an unconscious inferential chain is established
which is used to transform the input coming from the eye’s
optical system into the perception of 3D shape and relations.
Nevertheless, this inferential process is by far not perfect and
is based on many—not always fulfilled—assumptions.
Numerous visual illusions readily demonstrate this. Since
in our formative years as infants the concept of multivariate
data spaces greater than 3D is typically not encountered or
deemed relevant, no unconscious inferential reasoning chain
for it is being learned and so we have now, as adults, a very

hard time understanding and navigating a world of
dimensionality greater than three.

It is often the navigation and orientation in high-D space
that is most confusing to users, and likely for this reason most
existing high-D data visualization systems perform their
space navigation via the high-D version of the Manhattan
distance, that is, only exchange one dimension at a time. This
makes the exploration of multivariate relationships invol-
ving more than two dimensions difficult. Our system aims to
overcome these shortcomings by providing a truly multi-
variate navigation interface in which users can transition
across multiple dimensions at once intuitively.

Frequent tasks in data exploration are 1) the exploratory
discovery of data configurations that best fit a personal
preference in the presence of tradeoffs, and 2) a data
partitioning (e.g., a clustering) that best fits an exploratory
domain model. Our framework has been specifically
developed to aid users in performing such operations
directly in high-D space. It allows users to start from a key
configuration, such as a projection or clustering, and then
modify this standard configuration at their own will to
locally optimize and fine-tune it. Here, a key projection can
be obtained via any standard view optimization method
such as projection pursuit or PCA, while a key clustering can
be generated through the use of any standard clustering
method, such as k-means, affinity propagation, and others.

Hence, the goal of our system is not to replace automated
projection or clustering, but give users the ability to
interactively refine the outcome of these automated routines
or even tune their parameters so as to better fit their specific
goals and expectations. As such, our system allows free-style
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out-of-the-box thinking but employs modern tools (i.e.,
cluster/projection algorithms) to do the rough work. Any
results may then be captured into a formal model, such as
SVM [17], HMM [9], or logic model [8].

Besides performing local operations, analysts also need
to maintain a global overview of the high-D space, in terms
of its highlights and features (called landmarks). Here, we
are inspired by the emerging paradigm of photo-tourism [23]
which uses maps to reference, index, and arrange large
GPS-tagged photo collections, allowing for better manage-
ment and sharing of these vast pools of data. Likewise, our
framework also arranges the acquired visuals (the projec-
tions) of both key sites and user-discovered sites (called
snapshots) into a spatially coherent reference frame. How-
ever, since in contrast to GPS-tagged photos our space
spans a coordinate space greater than 2D and so does not
allow for a direct 2D mapping, we define a projection
similarity measure as a function of their orientation in
hyper space and then use MDS for layout. This layout or
map enables a better appreciation of the spatial relations
among these high-D landmarks and snapshots, which can
be subspaces, clusters, or a collection of optimal data points.
Tours can then be built to narrate the findings to others.

Our system adheres well to Shneiderman’s information-
seeking mantra [20]: “Overview first, then detail on demand.”
Our extensible map of landmarks and snapshots provides the
overview, while the detail (the landmarks/snapshots) can be
interrogated with our local navigation tools. In the following,
Section 2 discusses relations to existing work. Section 3
presents an overview while Sections 4 and 5 describe the map
building and the local navigation frameworks, respectively.
Finally, Section 6 illustrates the use of our system via two
specific usage scenarios and Section 7 ends with conclusions
and future work.

2 RELATION TO EXISTING WORK

2.1 Visualization and Navigation

Various methods for comprehensive high-D data visualiza-
tion have been proposed. The method of Parallel Coordi-
nates [11] shows the entire space at once, but it serializes the
dimensions, requiring an axis reordering to see alternative
relationships in the variables. Space embeddings, such as
Multidimensional Scaling (MDS) [15], also visualize the
entire space, but their plots do not convey the data points in
the context of their native attributes and thus all orientation
hints are lost. Conversely, scatterplot matrices (SPLOM) [14]
give an undistorted view, but they can only maintain two
dimensions per tile and therefore cannot show multivariate
relationships easily as these are distributed across the
matrices. ScatterDice [5] gives users insight into 3D
relationships by elegantly transitioning between two
SPLOM tiles in a continuous fashion, which gives rise to a
dynamic 3D point cloud projection display. Our local data
explorer can be thought of as a generalization of this
concept, enabling direct transitions in high-D space.

GGobi [4] uses projection pursuit [6] to generate interest-
ing multivariate projections. Here, the dynamic transitions of
the projection (hyper) plane allow users to experience high-D
topologies as the “Grand Tour” [1] travels through hyper-
space, but there is no clear notion of a self-guided tour. This is a

significant shortcoming because “data explorers” want to
actively control the exploration process. Our framework
allows this self-initiated navigation control.

Most predominant are data axis-aligned 2D scatterplots.
Since the number of such scatterplots grows in N2, a
number of authors have described methods to select more
informative axis pairings given some criteria and only show
these to the viewer—as opposed to show the entire SPLOM.
The rank-by-feature system by Seo and Shneiderman [19]
allows users to specify certain statistical criteria, such as
correlation coefficient, scatterplot uniformity, and others,
while Sips et al. [21] define a class consistency measure. The
resulting bivariate scatterplots adhere to the common
assumption that users will not understand scatterplots in
which the data points are plotted as linear functions of more
than two data variables, giving rise to multivariate scatter-
plots. Yet such projections, known as biplots, have been used
in the statistics community for nearly 40 years [7] and are
also available in the popular statistics package R. Typically,
biplots are composed of a 2D coordinate system spanned by
the two major principal component (PCA) vectors. The data
samples are displayed as points and the variables are
drawn as vectors or axes, expressed in terms of the PCA
vectors or, as in GGobi, the basis vectors identified by
projection pursuit. We will show that biplots indeed can
lead to ambiguities and so deserve some caution. But we
also show that these ambiguities can be resolved by
allowing users, via an interactive navigation environment,
to fine-tune the projections in light of the given task.

Overcoming projection ambiguities by ways of interac-
tion has also been utilized in star coordinates [13]. Here, users
can manually rotate and scale data axes to isolate data
points or clusters that may originate from distant N-D
locations but are ambiguously mapped to the same 2D area
due to their similar dimension vector sums. These capabil-
ities have been further advanced by Teoh and Ma [26] in the
interactive construction of decision trees for high-D data
classification. In our system the data axes do not require a
direct manual manipulation, but change as a result of the
user interacting with the multivariate navigation interface.

Finally, Yang et al. [28] construct maps of 2D axis-aligned
projections as high-D space overviews, using the data
correlations along the dimensions for the MDS layout of
dimension glyphs. The glyphs are graphical representations
generated by wrapping the 1D scatterplot along a dimen-
sion into a spiral. In contrast, our framework renders the
glyphs from generalized 2D scatterplot projections and then
lays them out via MDS using a correlation metric based on
spatial similarity. This conveys the spatial relations among
these projections, and so aims to render a better under-
standing of the high-D data space. Any local similarity in
terms of the data relations is a secondary effect.

2.2 Dimension Management and Data Subspaces

A common remedy to manage the complexities of high-D
space is to perform dimension reduction via PCA and the like
and focus on the dimensions of most prominent variation. In
[17] we used the three most dominant PCA vectors which
resulted in 3D point clouds. We then exploited motion
parallax to aid users in the perception of 3D relationships and
enable them to perform visually assisted cluster analysis in
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3D—called cluster sculpting. We now generalize this work to
allow for cluster-sculpting in high-D.

The iPCA framework of Jeong et al. [12] seeks to help
users understand how the original data dimensions con-
tribute to PCA space and also to the data clustering. Via a
slider interface, users can interactively manipulate the
contribution of each individual dimension and then observe
the impact as transient changes in the scatterplot visualiza-
tions. In contrast, our framework enables users to perceive
these contributions directly in the navigation interface.

However, once the number of dimensions grows large,
global dimension reduction techniques are suboptimal. It is
often better to discover the subset of the dimensions most
relevant to a local clustering task, also called subspace
clustering [18]. The ENCLUS framework by Cheng et al. [3]
proposes entropy-based criteria to find interesting and
minimal-dimensioned subspaces with high densities of data
points. We make use of ENCLUS to extract the various
subspaces from the high-D space, and then use our map as
an intuitive framework to organize these subspaces and
visualize their spatial relationships.

3 OVERVIEW

We demonstrate our system via two usage scenarios—a
selection task and a clustering task—in conjunction with two
data sets—a college ranking data set and an image
segmentation data set. Both are discussed in Section 6. Our
interface consists of two screens: 1) the global sight map which
arranges both the landmark and the snapshot N-D projec-
tions (i.e., the sights) according to a spatial neighborhood

metric, and 2) the local sight explorer which allows users to
explore each of these projections via our high-D navigation
interface. Any interesting views encountered there can then
be inserted as snapshots into the map.

Global sight map (see Fig. 1). The sight map shows a
number of projections each augmented with a set of colored
bars arranged along the x- and y-axis. These bars indicate
the relevance of the corresponding dimensions for this
view, and they also allow users to quickly sense groupings
and assess spatial similarities of neighboring views.
Controls are available to 1) set the MDS layout metric,
and 2) pick among different projection bases, such as PCA
and projection pursuit, as well as clustering algorithms. The
landscape map is linked with the local sight explorer. Users
may 1) insert a new snapshot view acquired in the sight
explorer, 2) specify an arbitrary tour passing through a set
of mapped projections, and 3) use the map as an orientation
aid by visualizing the current view in the explorer as a
glyph that moves according to the map navigation path.

Local sight explorer (see Fig. 2). It consists of three major
components allowing users to explore a given sight selected
in the map: 1) scatterplot display, 2) a polygonal touchpad
interface to control the scatterplot projections, and 3) in-
formation about the projection plane vectors. The polygonal
touchpad enables users to smoothly tilt the projection plane
in high-D space and so produce multivariate scatterplots
that best convey the data relationships under investigation.
Motion parallax and illustrative motion trails further aid in
the perception of these transient patterns.

A video is available at [31] to show the system in action.
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Fig. 1. Global sight map. On the left is the map with sight glyphs. The glyphs are distanced apart by a metric based on the similarity of the orthogonal
N-D projection vector pairs generating the scatterplots in the glyph interior (see text for the similarity values for glyphs #1-4). Users can automatically
generate interesting sights and insert new sights generated with the local sight explorer interface (see Fig. 3). Each glyph is decorated by bar charts
showing the N-D coordinates of its projection vector pair (currently the user selected glyph #5 to have its vectors displayed in the vector component
bar chart, control panel bottom).



4 THE GLOBAL SIGHT MAP

After running ENCLUS to identify subspace clusters we

employ projection pursuit (or PCA) to determine interesting

scatterplot views in each of these subspaces. An interesting

view is a 2D projection of the potentially high-D subspace

that separates dense structures in the data well. These views

can be general projections, i.e., they do not need to be

aligned with the data axis vectors. The original projection

pursuit [6] finds these views unsupervised via numerical

optimization of a metric called P-Index which is the product

of two parameterized measures: global spread and local

density. Projection pursuit typically starts from the two

major principal axes, two data axes, or two random

orthogonal vectors. Some randomization in the numerical

optimization and initial axis selection will yield a set of

good views. We obtain one such set for each subspace.
We allow users to tune the P-Index parameters and so

define the desirable characteristics of the views added into

the global sight map (see Fig. 1). All sights on the map are

characterized by one or more dense structures that are well

separated and so already provide a good appreciation of the

subspace clusters and their shapes. Touring the sight with

the local sight explorer will then enable more comprehen-
sive insight into the high-D structure of the clusters.

Map construction. To construct the map, given M views,
we first compute the M �M distance matrix for all pairs of
projection views and then determine their positions in the
sight map via MDS. For this we need a metric to determine
these pairwise distances. Each view Si, 1 � i �M, has two
orthogonal N-D axis vectors which we call projection plane
axis (PPA) vectors, PPAx and PPAy. In case of subspace
decomposition, dimensions that are not contained in a
subspace will have a zero value in the N-D vector. To
characterize each view by a single vector Si we concatenate
PPAx and PPAy into a vector of length 2N . Then, for two
projection views S1 and S2 we compute their similarity as the
Euclidian distance of S1 and S2. Note that view rotations and
also axis reflections will be rated as dissimilar in this scheme.
This is intended because these dissimilarities show semanti-
cally different relationships, e.g., sorting college data by low
versus high tuition, or can be part of a tour. If this is not
desired, one may take the absolute values of the PPA vector
components before computing the distance matrix.

Sight glyph design. The sights are abstracted into
glyphs, which are constructed by their scatterplot projec-
tions and augmented by N-D space location information.
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Fig. 2. Local sight explorer interface. The dynamic scatterplot display is controlled by the N-D touchpad polygon. Both are currently in a standard
biplot configuration (using the two major PCA vectors as a projection basis). The PCA bar chart in the vector component display shows the
magnitude of the 10 PCA vectors, and the other two bar charts show the components of the two major PCA vectors here selected for projection
(these vectors can also be generated via projection pursuit techniques).



The latter is not required for conventional 2D sightseeing
maps, but it is needed here since the nonlinear MDS
embedding does not allow for a meaningful placement of
orientation “beacons” in the map, at least not without
further distortion. Instead, we choose to make the sights
themselves our orientation beacons. We place bar charts on
the left vertical edge and on the bottom horizontal edge, one
bar for each dimension. In this chart, the x-axis and y-axis
bars encode the components of the PPAx and the PPAy

vectors, respectively. They indicate the significance of a
data attribute for this projection axis. Both bar charts have
their origins placed at the lower left corner of the sight
glyph, which is similar to a standard x-y plot. We use a faint
color to represent negative axis directions, reserving bar
height to encode magnitude. Fig. 3 shows the augmented
glyph for a given projection. A more detailed bar chart with
axis labels appears in the local sight explorer (Fig. 2) and
optionally also in the global sight explorer interface (Fig. 1)
where it gets updated upon selecting or hovering over a
sight glyph. The simple bar charts provide for a compact
glyph representation that is both intuitive and comparable
across sights. It also scales well to a large number of sights.
On the other hand, the single annotated chart in the control
panel gives more detailed information when needed. Users
can also query dimension names and values by hovering
over the corresponding bar location in the sight glyphs.

Map interaction. The sight map forms the “tour map”
and the local sight explorer is available to examine each
sight or “destination” in detail. Clicking on one of these
destinations activates the current view, denoted by coloring
its frame red, and the scatterplot view is loaded into the
local sight explorer where it can be manipulated. Users can
examine any view in the tour map in this way, but they may
also use the distance and orientation information to connect
the sites in some order. In this way, the map allows “tour
designers” to plan an exploration tour for “customers.” So,
unlike when traveling with the Grand Tour, “tourists” now
have a map by which they can compare the location of the
sights and predict the time for travel. The tour can be
accelerated by simply clicking on the next icon along
the tour. These steps often are revisited after gaining
insights into a certain destination.

Discussion. In Fig. 1, we have taken the absolute values of
the PPA vector components such that rotation or reflection
about a data axis will not affect the similarity measure. Thus,
only magnitude determines the layout in this example. We
observe that the bar chart augmentation conveys much

information on the differences in N-D projection orientation,
both on a local and on a global scale. We also see that views
with similar N-D space orientation—indicated by similar
axis bar chart configurations—indeed cluster in close
neighborhoods. This is further confirmed by comparing
some numerical similarity distances. In Fig. 1, view 2 and 3
(see annotations in red) have roughly the same similarity
score and they also have similar map distances with respect
to view 1 (0.68 versus 0.70), while view 1 and view 4 have a
much larger score (2.68—higher values map to lower
similarity). It is interesting to see that the scatterplots of
even nearby views are often quite different. This is due to the
quick transitions in the projections of high-D structures
which can be readily experienced in the local sight explorer’s
dynamic scatterplots.

5 THE LOCAL SIGHT EXPLORER

The local sight explorer interface, shown in Fig. 2, consists
of three dynamic visualization panels (the multivariate
scatterplot display, the data axis vector display, and the vector
component bar chart display), one interaction interface (the
touchpad polygon), and two control panels (one each for the
scatterplot and the touchpad). More specifically:

The dynamic multivariate scatterplot display (de-
scribed in Section 5.2) projects—in biplot style—both the
data and the axes of the active dimensions into the PPA-
vectors, which form the x- and y-axes of the display.

The data axis vector display visualizes the projections
and labels of the active dimension axis vectors in isolation.

The vector component bar chart display features three
bar charts. The bottom chart shows the PCA spectrum
where each bar represents the magnitude of the correspond-
ing PCA vector. The PCA spectrum conveys the extent of a
cluster in terms of the data dimensions. Users can select any
two of these vectors, or vectors obtained by projection
pursuit, as initial PPA vectors. For PCA, typically one
would use the two most significant PCA vectors, but often
there might be more than two major vectors, as is the case
here. The other two bar charts show the x (red) and y (blue)
components of the current PPA vector pair, as set via the
touchpad. A faint color indicates a negative direction.

The N-D touchpad polygon (described in Section 5.1) is
here configured with 10 vertices, one for each active
dimension. It is used to control the orientation of the two
PPA vectors by simply translating the two corresponding
pointers in the polygon’s interior. In this current initial
configuration these vectors are the two major data PCA
vectors. This is a standard biplot setting and both pointers
locate in the polygon center—note that the blue x-axis
vertex occludes the coinciding red y-axis vertex. The inner
and outer rings of the polygon are due to the vectors
representing the x-axis and the y-axis of the scatterplot,
respectively. The shading of the vertices indicates the
weight of the dimension axes, which in this case corre-
sponds to the PCA vector components. The weighting
ensures that the local space explorations enabled by moving
the vertices stay reasonably close to the distribution spread
of the selected PCA (or projection pursuit) vectors—select-
ing another basis will yield a different view orientation
neighborhood.
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Fig. 3. Sight glyph (#5 in Fig. 1) showing the projection scatterplot and
along its sides the relevance of the data dimensions in the x and y PPA
vectors that generate the scatterplot. The corresponding vector
component bar char display is shown in Fig. 1, control panel (bottom).



The two control panels are used to configure the

touchpad polygon and the scatterplot display, respectively.

5.1 The N-D Touchpad Polygon

5.1.1 Basic Theory and Operation

The N-D touchpad interface (see Fig. 4) builds on a

paradigm we proposed in 2008 [8]. A similar interface

was also proposed shortly after by Talbot et al. [25]—they

call it Linear Combination Widget—designed for building

ensemble classifiers in machine learning. Our interface

extends the familiar 2D interaction mapping on mouse

touchpads often found on laptops to support higher

dimensions. As mentioned above, the N-D touchpad

consists of two N-sided equilateral polygons—one each

for the PPAx and PPAy vectors. Using geometrical

arguments, the method of generalized barycentric coordi-

nates of Meyer et al. [16] can be used to interpolate a value

in the polygon interior from the values assigned to its

vertices. Referring back to Fig. 4, the interpolation weight wi
of vertex vi for an interior point p is

wi ¼
cotð�Þ þ cotð�Þ

p� vik k2
: ð1Þ

Given N vertices the interpolated value pv at p is then

pv ¼
XN

i¼1

viai where ai ¼
wiPN
k¼1 wk

and
XN

i¼1

ai ¼ 1: ð2Þ

This mechanism allows one not only to interpolate spatial

coordinates in the native 2D polygon domain, but also to

interpolate vectors of higher dimensions by assigning these

vectors to the vertices (see, e.g., [22]). More formally, with N

being the number of dimensions, we can write this expres-

sion in matrix form as P ¼ VA, where V is an N �M matrix

of M column vectors vi, A is the M-long column vector with

coefficients ai, and P is the N-long column vector that is

being interpolated. TypicallyM ¼ N and each vertex has one

dimension unit vector assigned to it.
The touchpad then enables a user to vary the PPAx and

PPAy vectors, and consequently the multivariate projec-

tions, by transitioning a pointer (one each for PPAx and

PPAy) within the polygon. By moving the pointer closer to a

certain dimension, the dimension’s weight will grow larger

in the vector, effectively “attracting” that dimension axis to

this PPA-vector. Moving the x-axis and y-axis pointers

toward different dimension vertices (or combinations of
these) will visualize their correlations in the scatterplot.

When mapping a view’s PPA-vectors to the touchpad,
we first multiply each dimension vector by its dot product
with the PPA vectors and use the resulting vectors in V .
Then, we compute A ¼ V �1P for both x and y pointers.
While this will not always yield coordinates consistent with
the 2D spatial constraints of (1), automated reordering of
the vertices via quick trial and error can often help. This
procedure places the pointers in a general position within
the touchpad polygon. All of the examples shown in
Section 6 have successfully used this mapping.

The interpolation function defined by the method of
generalized barycentric coordinates is smooth, which in turn
guarantees smooth transitions in the dynamic scatterplot
display. However, the geometric weight equation (1) is only
valid for movements strictly inside the polygon. Any point
contained on or very close (within a small margin "—we use
0.05) to the polygon boundary will give rise to numerical
instability. In these cases we fall back to linear interpolation
along the corresponding edge. This has been suggested by
Meyer et al. and is desirable for our purposes because in this
case we wish to enable the user to only vary the scatterplot as
a function of the two edge variables.

5.1.2 Extended Theory

Although the above mapping has worked well in our initial
work [8], the touchpad as described above cannot specify all
possible PPA vector orientations in a high-D data space once
the number of dimensions grows beyond 3. This is also true
to some extent for the widget proposed by Talbot et al. Per
our definition, a PPA vector is a unit vector in a data space
that is bounded by a hyper-box normalized to [�1]—one can
always scale the result back during display. The PPA vector
orientation is defined by the coordinates on a hyper sphere
of M � N dimensions and radius 1, where N and M are the
dimensionality of the data and the hyper sphere, respec-
tively. The hyper sphere is uniquely specified by the set ofM
orthogonal data axis vectors, and the more axis vectors are
included, the greater the dimension range of the PPA vector.
The number of unique hyper spheres is given by N!/(M!(N-
M)!). Thus, a hyper sphere with M ¼ 1 dimension can only
specify a single PPA vector orientation—the one along the
defining data axis. Table 1 lists all such configurations for
the 4D case (N ¼ 4): the dimensionality M of the hyper
sphere, the number of unique hyper spheres for eachM, and
the associated dimension sets. For M ¼ 1 there are four 1D
hyper spheres, for M ¼ 2 the hyper sphere is a 2D disk and
there are six unique axis-aligned disks, and for M ¼ 3 there
are three unique 3D spheres.

One might ask, why not just chooseM ¼ N and use anN-
sided polygon as the touchpad. This is an inferior choice
since such a general polygon will not allow the specification
of all possible PPA-axis orientations. For example, assuming
an ordered (data axis! polygon vertex) configuration (see
Fig. 5a), one could not specify a PPA vector that is a linear
combination of data axes 1, 2, and 4 without including effects
of data axis 3 as well. In fact, any polygon with M > 3 will
give rise to uncovered orientation angles. Furthermore, the
order of the vertices also matters when M > 3. As Table 1
indicates, forM ¼ 4 there are three different vertex orderings
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Fig. 4. N-D touchpad interface. Using generalized barycentric coordi-
nates, the interpolation weight of dimension axis vertex vi for a PPA
pointer p is related to angles � and �, and is inversely related to the
distance jp� vij.



each giving access to different, but partially overlapping

regions of the 4D space. To illustrate, consider the interior

point p in Fig. 5a. Switching vertex 1 with vertex 4 to change

the vertex order from 1234 to 4231 will achieve weight

coefficients, and therefore PPA vector orientations, not

possible with the original vertex ordering. In general, there

are M!=ð2 �M) such orderings. Here, we divide by M and 2

since the vertex order is circular and due to this, the direction

of the ordering is also irrelevant.

5.1.3 Full Operation

Only the complete set of all possible unique vertex config-

urations can ensure that all PPA vector orientations in the N-

D hyper sphere can be covered. The touchpad interactions

associated with these (forN ¼ 4) are listed in the bottom row

of Table 1. Setting the vertex weights to negative numbers

enables all hyper sphere segments to be reached.
Users can select the hyper sphere currently navigated by

assigning the corresponding dimensions to the touchpad

vertices. Picking these dimensions from the scrollable

attribute list is done using the ‘�’ and ‘�’ buttons in the

touchpad configuration controls (see Fig. 2).
Note that the configuration of Fig. 5a treats all vertices

equally when navigating the space. However, if one wishes

to control the influence of, say, dimension 3 more subtly,

reaching into a subspace that is only mildly influenced by

dimension 3, then one could either move vertex 3 farther

out (Fig. 5b) which would yield a nonequilateral polygon or

add a small weight to vertex 3 (Fig. 5c) and use this weight

in the generalized barycentric interpolation. We have

chosen to use the latter option (Fig. 5c) in our implementa-

tion to ensure a fixed geometry of the touchpad polygon.

This weight can be user controlled via a simple slider at

each vertex. Equation (2) can then be rewritten as follows:

pv ¼
XN

i¼1

viciai where ai ¼
wiPN
k¼1 wk

and ci ¼
biPN
k¼1 bk

1: ð3Þ

Here, the bi are the additional weights at the vertices, which

are subsequently normalized to yield the vertex coefficients

ci. We initialize these weights using the two selected PCA

vectors. More specifically, for PPAy we use the first such

vector, while for PPAx we use the second one. We then

compute the dot product for each dimension vector with the

respective PCA vector to obtain the weights. A similar

procedure applies if the PPAy and PPAx vectors are

instead obtained via projection pursuit.
This weighting places the PPA pointers into the touchpad

center when they are assigned—during initialization—to

the PCA or projection pursuit vectors. By giving higher

weights to more relevant dimensions, the space navigation

tends to stay better on target with respect to the spread of

the interrogated point distribution. This is demonstrated in

Fig. 6 where we show, for a fixed PPA pointer position, the

corresponding scatterplots for both the unweighted (Fig. 6a)

and the weighted case (Fig. 6b). The latter shows the

distributions much more clearly and well spread out.
A reordering of the vertices can be accomplished by

selecting a dimension on the list and then using the “up”

and “down” buttons in the touchpad configuration controls

(Fig. 2). A good vertex ordering is one in which more highly

correlated dimensions are adjacent to one another in the

touchpad. This will enable navigation to the subspace in

which the correlated structure is well expressed. Of course,

there can be multiple such structures and with conflicting

orderings. We have recently developed a framework [30]

for dimension ordering in parallel coordinates that lays out

dimensions by their correlations into a 2D map and then

allows users to configure routes through this dimension

space. A traveling salesman solver assists by configuring

the shortest route—the one in which the sum of correlations

is maximized—taking into account any preferred sub

routes. Work is underway to tie this with the touchpad.
Finally, although users are permitted to freely move

about the space choosing the PPA-vectors via the touch pad

interface, one must still enforce that the two PPA-vectors

remain mutually orthogonal. To ensure this, for example,

when moving the PPAy pointer, we project this vector onto

a vector PPAy0 that is closest to a vector orthogonal to the

current PPAx pointer (or vice versa)

PPAy0 ¼
y0

jy0j y0 ¼ PPAy � ðPPAx � PPAyÞPPAx: ð4Þ

Fig. 9 shows the adjusted pointer as a dark blue dot (near

the unadjusted aqua dot).
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Fig. 5. Influence of dimension 3 on the interpolation of point p:
(a) standard influence, (b) reduced influence by stretching vertex 3 far
out, (c) reduced influence by assigning a small weight to vertex 3.

TABLE 1
The Set of Hyper Spheres with Dimensionality 1-4 for a 4D Space and Their Touchpad Navigation and Setup Schemes



5.2 The Dynamic Multivariate Scatterplot

5.2.1 Basic Operation

This plot projects both the data and the axes of the active
dimensions into the PPAx and PPAy vectors which are
aligned with the x and y direction of the plot, respectively.
The projection is done by a simple dot product. Apart from
data correlations, the plot also shows which dimensions are
not or only mildly expressed in the data relationships. They
project as very short axes in the axis plot. The touchpad is
used to locally tilt and transform the PPAx and PPAy

vectors in such a way that individual dimension axes can be
pulled apart, aligned, or their influence increased or
reduced, such that correlations, tradeoffs, and preferred
configurations in the data can be revealed.

In [8] we showed that the dynamics of motion can be
very useful in revealing interesting high-dimensional
patterns. This is akin to the perceptual depth cues in 3D
viewing situations where motion parallax has been shown
to provide stronger depth cues than stereo vision—at least
for scene objects not in the very-near range [27]. Motion
parallax has also been exploited in the projection pursuit of
GGobi’s Grand Tour. However, in the Grand Tour users are
mostly confined to watching motions until interesting
projections appear. While there is some level of interactive
navigation control, users cannot change the projection
plane orientations in arbitrary ways. Our N-D touchpad,
on the other hand, provides significantly more freedom in
that respect. The direct navigation that it affords allows
users to easily transition to these interesting projections and
at the same time it also gives them a sense of location and
orientation, which is important for navigation tasks.

5.2.2 Extensions

We have extended the basic framework described in
Section 5.2.1 in three important ways. As an illustrative
example, we use a simple dynamic exploration of a network
traffic data set. This data set was obtained from the MAWI
Working Group Traffic Archive [33]. It represents traffic data
captured over an hour, in tcpdump format. The data set
contains 15 dimensions and we have chosen source IP,
destination IP, and time stamp for the exploration.

Color-label enabled N-D tracking. In our experiments
we found that color labeling can provide an important

tracking clue for users. So, before transitioning the projec-
tion plane, we divide the current projection into grid cells
and assign a unique color to each. In practice we randomize
colors such that no identical color is assigned to neighbor-
ing cells. We assign this same color to all N-D points
projected into this cell, no matter if overplotting has
rendered them occluded. Upon transitioning, this color will
then identify patterns evolving from previously coinciding
points. Fig. 7 shows three screen captures of this dynamic
exploration while the user fixes the PPAx vector onto the
source IP dimension and moves the PPAy vector from
destination IP to time stamp. Fig 7a shows the random
colorization of the data points projected as a function of
source IP versus destination IP only. When we then move
the y-axis point from the destination IP dimension to the
time stamp dimension we can easily observe the N-D
trajectories of the exposed data points by their identical
color labeling (Figs. 7 and 7c). The data points labeled with
the same color tell us that there were packet exchanges
between the same source IP and destination IP over some
period of time. Some are short and some are longer, as can
be easily compared by the length of the colored streak line.

Motion trail enabled N-D tracking. The color labeling
is most effective for point distributions that are somewhat
striated in N-D space (as is the case for the network data
set). For more generalized data topologies, we simulate
the streaks by adding a motion trail to the color labeling.
We find that this conveys the trajectory of the points
during the projection plane transitioning very well. The
motion trail is rendered as a thin equicolored tail attached
to the current point position. This effect is provided in
both the scatterplot and the touchpad. We informally find
that the dynamic exploration with the motion trail reveals
trajectory patterns that are difficult to identify otherwise,
as is shown in Figs. 8 and 11. The motion trail frees the
user from having to transition back and forth repeatedly.

6 APPLICATION EXAMPLES

As mentioned, TripAdvisorN-D informally relates high-D
space exploration to the activities undertaken before and
during a sightseeing trip. It decomposes this procedure into
five major tasks:
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Fig. 6. Effect of using distribution-sensitive weights for the dimension axes (the inserts show the corresponding touchpad polygons): (a) no weights
can result in poor projection quality once the PPA pointers are moved away from the initialized views, (b) weighting ensures that the space
exploration maintains good spatial distribution patterns.



1. Pick the sights: use the map to identify sights and
landmarks of interest along with their location

2. Plan the trip: connect these landmarks and sights of
interest along a specifiable path.

3. Go on the tour: travel along the route.
4. Hop off the bus: experience the sights, look around,

zoom into detail, take snapshots of interesting
personal observations.

5. Orientation and localization: regain bearings using
landmarks, correct for mapping errors.

We demonstrate our framework via two different task
scenarios: 1) the exploratory discovery of data configura-
tions that best fit a personal preference in the presence of
tradeoffs, and 2) the interactive cluster analysis via cluster
sculpting in N-D, refining clustering results obtained with
unsupervised methods to fit personal goals. The two
application examples that we have chosen to demonstrate
our framework were selected for their intuitive themes.
The first example uses mainly the local sight explorer, while
the second makes use of the complete framework.

6.1 Discovering Preferred Data Configurations

A good representative example for a selection task involving
a large and diverse set of competing factors is that of selecting
a college or university to study at. Here, one must balance
among many different goals, such as academic standing of
the schools, tuition, academic, and social environment, the
cost of housing and travel, reputation, tradition, and so on.
This is inherently a multivariate data exploration problem.
Tradeoffs will certainly have to be made, but in this process
one would desire to have all facts on the table at all times to
preserve a full mental picture. The data set we use is an
amalgamation of data obtained from two different sources:
the College Prowler website [34] and US News & World
Report [35]. The former ranks each school across the 20 most
relevant campus life topics. We took the top 50 colleges from
US News and eight topics from College Prowler, including
academics, athletics, campus housing, local atmosphere,
nightlife, safety, transportation, and weather. These attri-
butes are ranked from Aþ to D� and consequently we
mapped the range (Aþ to D�) to values (1.0 to 0.0). We also

added two further dimensions—2009 US News score and

tuition. Both are also normalized to (1.0 to 0.0). We shall
denote a dimension as Xi.

The shortcomings of biplots. The sight explorer in Fig. 2

shows a standard biplot of the data, generated by projecting
all data points and dimension axes into a basis spanned by
the two major PCA vectors. We only label a select number

of schools to minimize text clutter, and Table 2 lists the
scores of these schools for the 10 attributes we chose. As
prescribed, biplots allow one to appreciate multivariate

relationships in the data. However, we can make a number
of interesting observations. For example, although USC-

Viterbi has the highest tuition (X10) of the five schools it
plots near the coordinate system origin, while Texas A&M
which has a low tuition plots in the higher region along this

dimension. This due to the fact that USC-Viterbi also has a
high transportation score (X7) which points the other way
in the biplot and so “pulls” the school to the center.

Conversely, Texas A&M has a low transportation score and
so is “pushed” into the high-tuition direction. In contrast,

Georgia Tech, places well in these respects.
Can we make biplots more robust? While it goes

undisputed that biplots are a powerful mechanism to
convey multivariate relationships, their static layout that is

pinned to the PCA vectors gives users no means to resolve
and become aware of the fallacies they potentially produce.
Our touchpad navigation interface delivers just that—an

instrument by which biplots become interactive and tunable,
allowing users to explore and verify the plotted relation-

ships and also personalize the multivariate projections to fit
their own objectives. We shall illustrate this process next,
with the best college search as a usage scenario.

Usage scenario. Let us follow Ben, a high school

counselor with visualization experience through the process
of selecting a well-suited college for Tim, an honors student
at the high school. First, to gain an overview of the data, Ben

prepares a standard sight map using projections onto PCA
vectors (see Fig. 2). Based on this initial map, he now

decides to explore the data set further with Tim, augment-
ing the map with additional snapshots.
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Fig. 7. Color-label enabled N-D tracking using the network traffic data set. (a) Initial scatterplot of dest_IP versus src_IP—all packets projecting onto
similar (x, y) coordinates are assigned the same color, (b) tilting the projection plane to reveal time relationships—formerly superimposed packets
now visualize as shorter or longer streaks along the y-axis, (c) tilting the plane further reveals individual packets.
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Fig. 8. Best College selection example. (a)-(d) show four subsequent interactions in the touchpad along with the generated dynamic scatterplot, See
caption for a detailed description of each.



Fig. 8 demonstrates Ben’s exploration path in his
mission. He learns from Tim that at the moment his overall
preferences are low tuition and a good US News score, but
that he has no clear preference beyond these attributes and
has an open mind. Fig. 8a shows Ben transitioning the
PPAx vector from the tuition to the US News score
dimension—all other dimensions have small weights on
the PPAy vector and so have little influence. As visualized
by the motion trail trajectory, some data points (green
circled) move significantly from left to right while other
data points move into the opposite direction. In fact, these
two groups are crossing during the transition. These (green
circled) schools are the ones to watch. They have good US
news scores but also relatively low tuition, compared to
other well-ranked schools (blue circled) that did not move
much since they have both high tuition and high US News
score. Having identified these “nuggets” Ben is now ready
to consider other factors, assisted by Tim. He first brushes
these (green circled) schools to better follow their paths.

Next, Figs. 8b, 8c, and 8d show a set of explorations (see
captions) in which Ben and Tim identify a set of viable schools
and, using the motion trails, also learn about tradeoffs each
school has with regards to the various factors. Large motion
blur indicates high tradeoff because the score changes rapidly
when transitioning from one factor to the other.

The explorations leave the touchpad vertices in an
ordering that already reveals certain factor groups in which
tradeoffs appear tolerable. In the setup shown in Fig. 9 there
are three factor groups: 1) weather, US News score, and to a

lesser extent nightlife, 2) athletics, academics, and to a lesser
extent campus life, and 3) tuition. This requires a 7-factor
visualization that respects these tradeoffs. It can be
achieved by moving the PPAx and PPAy pointers away
from the boundary (Fig. 8d) and into the polygon (Fig. 9) at
the locations that quantify the degree of acceptable tradeoff.
Ben also transitions back and forth with the touchpad to get
a sense for the biplot mapping error.

The significance of the variables is also apparent in the
scatterplot where the length of an axis indicates the amount
of impact this attribute has in the view. For example, the
weather (X8) and US News score (X9) dimensions are
aligned with the x-axis direction at similar length, but
nightlife (X5) is less significant and so has a reduced length.
Local atmosphere (X4) has a very small length, meaning
that it is not considered an important criterion here.

This multivariate scatterplot is essentially the end
product of the exploration session. It tells Ben that USC
Viterbi has the best score all together but that it also has the
highest tuition. He points out to Tim that Georgia Tech and
UC Berkeley also have relatively good scores for all factors
significant to him, but at lower tuition costs than USC. Tim
now decides that he really values athletics and academics
more than weather and US News score, and so he picks
Georgia Tech. We recall that this school was also quite
stable in the transitions, and so seems well factor-balanced.

Discussion. Transitions enabled by moving across a
traditional scatterplot matrix in a row/column-wise fashion,
as elegantly implemented in ScatterDice, can only change
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TABLE 2
Attribute Values for a Subset of Five Schools from the College Data Set

Fig. 9. Final multivariate scatterplot for the Best College selection example, considering seven (significant in this configuration) factors at the same
time. Panel (a) shows the touchpad, panel (b) shows the scatterplot. Based on the prior excursions we create two 3-factor groups in which tradeoffs
are tolerated: (weather, US News score, and with less importance nightlife) and (athletics, academics, and with less importance campus life). Tuition
plays a special (but less weighted) role and is placed as a seventh isolated factor between these two. We see that given the two first factor groups,
USC-Viterbi seems to be the best college but it has the most expensive tuition. Georgia Tech (despite somewhat higher tuition cost) and UC
Berkeley also appear to be good alternatives. Given all these options, the student decides that he actually values athletics and academics higher
than weather and US News score and so he picks Georgia Tech.



one variable at a time, with another one fixed. Our touchpad
provides a more flexible, holistic interface—it is essentially
an N-D slider. Any subset of dimensions can simultaneously
influence the scatterplot projection, and the interactive
touchpad makes this interaction very direct. It unifies all
dimension selectors into one interface and allows a direct
balance and tradeoff of data factors in the visualization. An
important and unique visual aid in this undertaking is our
motion trails that freeze the movements in time such that
their magnitude and extent can be easily appreciated (see
Fig. 8d). Fig. 9, on the other end, provides a multifactor (here
7-10) visualization with a single scatterplot, allowing users to
aggregate factors along two or more orientations to express
(or ignore) the effects of tradeoffs. This is also a unique
feature of our system.

6.2 High-D Subspace Cluster Sculpting

The second usage scenario operates within a subspace-
clustering scenario, using the image segmentation data set
from the UCI Machine Learning Repository [32]. We took
1,200 instances composed of 300 random instances each
from four classes (Brickface, Cement, Foliage, and Grass).
Each instance corresponds to a 3� 3 image region with a
feature vector of 19 attributes (dimensions). These attributes
are statistical measures of the images, such as region-
centroid, region pixel count, density, hue, and others; for a

complete listing see [32]. The goal is to determine
descriptive feature vector clusters and from it derive

models that can classify new image pixels into these classes.
For our experiment, we did not retain the class

information of the data set since we seek to demonstrate

the interactive semi-supervised subspace clustering cap-
abilities of our framework. In the following, we will use the

tourism metaphor that is at the core of the TripAdvisorN�D

framework to illustrate the five exploration tasks. We first
describe the implementation of the five tasks in detail and

then present their use with the image segmentation data set.
Identify the sights (task 1). We first construct attractive

initial destinations from which to start explorations. In this
particular application, we use ENCLUS to find interesting

subspaces that embed good clusters. In the following, we

shall denote a dimension as Xi and a subspace as Si. In this

particular example, we identified five subspaces:

S1 ¼ ðX1; X7; X8; X9; X18Þ; S2 ¼ ðX6; X9; X18; X19Þ;
S3 ¼ ðX7; X9; X10; X11Þ; S4 ¼ ðX8; X16; X18Þ;
S5 ¼ ðX7; X11; X12; X13; X14; X15; X16Þ:

We then apply the projection pursuit algorithm (Section 4)

to identify 15 views (the sights) from these subspaces and
insert them into the sight map shown in Fig. 1.

Plan and go on the tour (tasks 2/3). The sight map now

becomes the “tour map.” Each view is represented as a sight

glyph (Fig. 3). By clicking on one of the “destinations” in
this map, its frame color changes from black to red (Figs. 10

and 11) and the corresponding projection view is shown as

a scatterplot in the N-D sight explorer for closer exploration

(see task 4: Hop off the bus, below). In this way, users may
examine any sight in the tour map interactively using this

interface, and in any order. But they may also use the

distance and orientation information to connect the sites in
some predefined order, allowing “tour designers” to plan

an exploration tour either for themselves or for some

“traveler” (as shown in Fig. 10). So, unlike a travel with the
Grand Tour, analysts now have a map by which they can

compare the N-D orientations of the projections and draw

conclusions from their spatial associations. In practice, these
steps are often revisited after gaining insights about certain

landmark sights, whereby new snapshots of existing or new

sights may be added along the way.
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Fig. 10. Planning an exploration tour (indicated by arrows) in subspace
S5. Via the bar chart representation, glyphs in the same subspace
neighborhood can be readily identified. The tour is conducted via the
touchpad-based local sight explorer and the red-framed glyph contains
the currently generated projection scatterplot there. The user is free to
save this glyph as a snapshot into the map for a later revisit.

Fig. 11. Exploring a sight. (a) sight map—the location of the current view (as modified in the sight explorer) is shown red-framed as an orientation aid;
(b) dynamic scatterplot with motion trails enabled, to provide an additional navigation hint and give a sense for cluster extent; (c) touchpad
configuration for the view shown in (b).



Hop off the bus and explore the locale (task 4). Having
found a potentially interesting destination (landmark or
snapshot), the traveler may “hop off the bus” and look
around the local neighborhood using the N-D touchpad-
based explorer. Since each destination is a projection in a
subspace, the touchpad interface only has the dimensions of
that subspace, but dimensions can be added or removed at
any time. We store the PPA vectors along with the
destination projection view as well as the touchpad’s vertex
ordering. With this setup, the user can quickly start the tour
exactly from the viewpoint of the selected destination.

Gain orientation (task 5). To enable global localization
when controlling the travel with the touchpad, we show the
current location of the view in the tour map as a red-framed
sight icon of the view (see Fig. 10). This map location is
computed by running MDS on the layout with the new
view included. We have found that since the number of
sights is typically fairly small, the time delay is negligible
and the remaining icons reposition very little, if at all.

Usage scenario. In this example we follow Pam, a
computer vision researcher who routinely uses visual
cluster analysis to 1) derive models for recognizing features
in images from local descriptors, and 2) use these models to
categorize (label) images for content-based image retrieval
(CBIR). Starting from the initial map in Fig. 1 found via
projection pursuit Pam begins her exploration by picking
the 7D subspace S5 for closer inspection. She specifies a tour
to examine the different adjacent views (see Fig. 10). Sight
glyphs derived from the same subspace can be quickly
identified by the similar distribution of dimension magni-
tude bars at the icon frame. Note that dimensions that are
not in the subspace are represented as white colors in
the icon. The scatterplot thumbnail already provides some
insight into the type and structure of the cluster. Pam begins
the tour with the sight icon shown on the top-left in the
map. The touchpad interface will then be configured into an
equilateral 7-gon. Fig. 11 shows a configuration from this
interactive touchpad-based exploration. The relative loca-
tion of the currently observed scatterplot is shown as a red-
framed sight glyph in the map as an orientation hint. In the
exploration Pam moves the PPA pointers across the interior
areas of the touchpad polygon. This exposes multivariate
relationships among the feature components and so reveals
possibly interesting interactions among them. From the
sequence of scatterplots so generated, Pam observes that
there are three to five subclusters which are coherently
moving together. These subclusters are likely due to
nuanced feature populations, and including descriptors

for these into the classification model can potentially lead to
more accurate CBIR down the road.

To investigate her discovery further, she takes the best
view (Fig. 11b) and brushes the data points in each of the
separate clusters with different colors (Fig. 12a). She then
continues on the tour using the touchpad (Figs. 12b and 12c)
and finds that the brushed subclusters remain well
separated and no new subclusters are found. She ends this
exploration by acquiring a snapshot of the best view on
these subclusters (Fig. 12a) and inserting it as a glyph into
the tour map. This triggers the MDS algorithm to layout the
space with the new view in the set. Note that our layout
mechanism seeks to preserve the present layout as much as
possible and typically the layout changes very little.

Discussion. This usage scenario started out with the
results of a well-established subspace clustering algorithm
(ENCLUS) which our fictitious user then refined via our
framework. On the other hand, our local sight explorer
started out with the results of a fairly sophisticated
projection optimizer (projection pursuit), which our user
subsequently refined by ways of our local sight explorer. It
is clear that without these automatically acquired initial
configurations obtaining these results would have con-
sumed a vast amount of time. Therefore, the proposed
symbiosis of pairing automated algorithms with a targeted
visual refinement interface seems to be a winning strategy.
Both components of our framework proved important in
this effort: 1) the global sight map enabled the user to keep
track of the various subspace clusters and the set of good
projections, and 2) our local sight explorer enabled the user
to refine these computed views in a multivariate context to
best expose and confirm the underlying cluster structures
and the interactions among their attributes.

Finally, we also compared our user-in-the-loop frame-
work with the popular unsupervised k-means algorithm.
Using the standard elbow strategy we found k ¼ 5 to be a
good choice. Fig. 13 shows the clustering result obtained
with our framework and that with k-means, again using
the image segmentation data set. We observe that while
the Brickface data points (0	300) are classified into two big
clusters (rows 1 and 2) using our interactive framework,
the automated k-means algorithm classified them into
three clusters (rows 1, 2, and 5). For all other classes,
except Grass (this class is well classified into a single
cluster in both methods), TripAdvisorN-D gives a clearer
and better classification result. This is confirmed by a
precision/recall analysis. Here, precision ¼ TP=ðTPþ FPÞ
while recall ¼ TP=ðTPþ FNÞ, where TP, FP, and FN are
the numbers of true positives, false positives, and false
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Fig. 12. (a) Brushing clusters discovered in the touchpad-based local exploration (see Fig. 11b). (b)-(c): Examining the brushed clusters in the
different S5 landmark views along the tour specified in Fig. 10. The clusters are separated quite well in all views. No new clusters are found.



negatives in that order. Table 3 shows that TripAdvisorN-D

enabled near-perfect precision (0.98) for 3/4 categories,
while overall it enabled substantially better results (>10%)
than k-means in 4/8 instances and did similar in the
remaining four instances.

7 CONCLUSIONS

We believe that our framework fills an important void in
high-D data exploration as it provides both overview and
detail within one synergistic and interactive interface.
Further, by adopting a familiar paradigm—sightseeing as a
real-life activity—for the data and space navigation a better
understanding of high-D relationships can also be achieved.
The two application examples we used—the multivariate
preference-guided selection of optimal data configurations
taking into account tradeoffs and the user-assisted space
partitioning and cluster analysis—readily demonstrate how
intuitive these popular and important tasks can be made by
providing an interactive interface with direct controls and
illustrative graphics. Via our system, analysts can consider
more than three criteria/dimensions simultaneously allow-
ing complex tradeoffs to be readily recognized, and they can
sculpt odd-shaped clusters that do not fit the assumptions of
automated clustering algorithms. Finally, we believe that by
giving the user the ability to interactively “chase” preferred
data configurations—using motion trails to visualize the
trajectories—the popular biplots can also become much
more intuitive, justifiable, and trustable.

We have demonstrated our system on data sets with
relatively low dimensionality (less than 20D), but these types
of data sets occur quite frequently in practice [2]. Both the
sight glyph charts and especially the touchpad explorer, but
not so much the sight map, are prone to scale issues. For the
touchpad, a high dimensionality will require a vast number
of vertex permutations to access all subspaces of the data.
However, subspace analysis can often isolate local clusters
with far fewer dimensions than the overall data space. We

are also currently linking TripAdvisorN-D with the dimen-
sion-space routing interface of [30] (see Section 5.1.3). It has a
multiresolution dimension “zooming” capability which will
enable an intuitive dimension reduction.

Our user base will likely not be casual users as yet,
although in a rapidly growing world of interactive apps the
visualization literacy continues to improve. Since our frame-
work employs rather simple representations for visualiza-
tion—bar charts and scatterplots—the visual language is not
too unfamiliar to users somewhat literate in graphical plots.
The interaction paradigms and system responses also appeal
to familiar concepts such as motion parallax, map naviga-
tion, and selection by proximity. Extensive user studies will
tune the system for general consumption.

Finally, ongoing work integrates TripAdvisorN-D into the
daily workflow of a team of collaborating climate scientists,
who have been routinely using our prior ClusterSculptor
system [17] to identify clusters of aerosol species in 450D
mass spectra of millions of particles [29]. Since automated
clustering tools proofed ineffective for their complex and
noisy high-D data, having our visual tools allowed them to
readily inject their domain knowledge-informed intuition
into the cluster analysis process and so derive superior data
models. TripAdvisorN-D is a significant advance since it
enables cluster sculpting directly in N-D and not by tedious
tuning of individual dimension weights in the 1D spectro-
gram augmented by a 3D PCA display [17].
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