
Citation: Coelho, D.; Ghai, B.;

Krishna, A.; Velez-Rojas, M.;

Greenspan, S.; Mankovski, S.; Mueller,

K. TaskFinder: A Semantics-Based

Methodology for Visualization Task

Recommendation. Analytics 2024, 3,

255–275. https://doi.org/10.3390/

analytics3030015

Academic Editor: Qingshan Jiang

Received: 14 May 2024

Revised: 8 June 2024

Accepted: 27 June 2024

Published: 4 July 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

TaskFinder: A Semantics-Based Methodology for Visualization
Task Recommendation
Darius Coelho 1,†, Bhavya Ghai 1, Arjun Krishna 1, Maria Velez-Rojas 2, Steve Greenspan 2, Serge Mankovski 2

and Klaus Mueller 1,*

1 Department of Computer Science, Stony Brook University, Stony Brook, NY 11794, USA;
dcoelho@cs.stonybrook.edu (D.C.); bghai@cs.stonybrook.edu (B.G.); arjkrishna@cs.stonybrook.edu (A.K.)

2 CA Technologies, 1320 Ridder Park Dr, San Jose, CA 95131, USA; mariacv@gmail.com (M.V.-R.);
sgreenspan@gmail.com (S.G.)

* Correspondence: mueller@cs.stonybrook.edu
† Current address: Stony Brook University, Stony Brook, NY 11794, USA.

Abstract: Data visualization has entered the mainstream, and numerous visualization recommender
systems have been proposed to assist visualization novices, as well as busy professionals, in se-
lecting the most appropriate type of chart for their data. Given a dataset and a set of user-defined
analytical tasks, these systems can make recommendations based on expert coded visualization
design principles or empirical models. However, the need to identify the pertinent analytical tasks
beforehand still exists and often requires domain expertise. In this work, we aim to automate this step
with TaskFinder, a prototype system that leverages the information available in textual documents
to understand domain-specific relations between attributes and tasks. TaskFinder employs word
vectors as well as a custom dependency parser along with an expert-defined list of task keywords to
extract and rank associations between tasks and attributes. It pairs these associations with a statistical
analysis of the dataset to filter out tasks irrelevant given the data. TaskFinder ultimately produces a
ranked list of attribute–task pairs. We show that the number of domain articles needed to converge
to a recommendation consensus is bounded for our approach. We demonstrate our TaskFinder over
multiple domains with varying article types and quantities.

Keywords: visualization recommendation; natural language processing; visualization systems
and tools

1. Introduction

The recent exponential increase in data generation activities has pushed data visualiza-
tion into the mainstream. However, many people lack the expertise or resources to generate
insightful data visualizations. To address this issue, researchers have proposed various
visualization recommender systems. These systems generally function by taking a dataset
as input, supplemented by any necessary additional input from the user, and generating a
ranked list of recommended visualizations as output.

The early visualization recommender systems [1,2] focused on suggesting a list of
visualizations based on design criteria such as effectiveness and expressiveness. Subsequent
iterations integrated statistical properties of the data into their recommendations. Later,
researchers demonstrated the influence of visualization types on a user’s task-based perfor-
mance [3]. This led to more recent systems requiring users to specify their intended low-level
analytic tasks [4] before receiving visualization suggestions [5]. While it is reasonable to
require users to select analytic tasks, their inexperience or the size and complexity of their
data may cause them to overlook important tasks.

In this work, we propose a methodology that leverages information within textual doc-
uments to determine the most relevant attributes in a tabular dataset and the corresponding
analytic tasks. While many recommender systems, especially in the visualization field,

Analytics 2024, 3, 255–275. https://doi.org/10.3390/analytics3030015 https://www.mdpi.com/journal/analytics

https://doi.org/10.3390/analytics3030015
https://doi.org/10.3390/analytics3030015
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/analytics
https://www.mdpi.com
https://doi.org/10.3390/analytics3030015
https://www.mdpi.com/journal/analytics
https://www.mdpi.com/article/10.3390/analytics3030015?type=check_update&version=2


Analytics 2024, 3 256

rely on expert-crafted rule-based algorithms or models derived from empirical data, these
might not be optimal for suggesting visualization tasks. Attributes of interest and recom-
mended tasks can greatly vary across different data domains, thus making it prohibitively
expensive to design rules or collect model training data through empirical studies. Instead,
we show that it is possible to use a previously untapped source of information—textual
documents—to serve this purpose.

People or organizations often post data-driven articles that explain, review, and make
comparisons on a variety of topics on the web. We conduct a preliminary investigation that
demonstrates that such documents on the web do in fact report (directly or indirectly) the
analytic tasks they performed on various attributes to make their findings. Thus, we believe
that extracting this information will allow us to drive a visualization task recommender
system. To this end, we develop a technique that leverages a combination of natural
language processing (NLP) techniques (e.g., part-of-speech or POS tagging, dependency
parsing, semantic word embeddings) to automatically identify data attributes and analytic
tasks in natural language (NL) documents such as magazines and reviews.

To demonstrate the application of this extraction method to a visualization recom-
mender system, we introduce a prototype system called TaskFinder. Operating on a
user-provided tabular dataset and a set of relevant text documents, TaskFinder extracts
attributes and mentions of analytic tasks associated with them. We refer to these attributes
and associated tasks as task–attribute pairs or relationships. Next, TaskFinder determines
the importance of data attributes and associated analytic tasks based on textual frequency,
order of appearance in documents, and statistical analysis of the dataset. This information
is then utilized to propose suitable visualizations for investigating the data, ranked by
importance. The recommended list of visualizations is provided to the user via the interface
shown in Figure 1.

Figure 1. The TaskFinder interface that takes in a dataset along with related textual documents via
inputs on the top left and produces a set of recommended visualizations that can be used to explore
the most important features of the data. Users can control the recommendations by selecting the tasks
they are interested in and the visualizations they are familiar with via the task and visualizations
panels on the left.



Analytics 2024, 3 257

We demonstrate TaskFinder across two distinct domains, showcasing how it deliv-
ers recommendations. We show that both the quantity and quality of texts impact the
recommendations, highlighting the significance of document selection. Additionally, we
reveal that as the quantity of texts grows, the recommendations tend to converge toward
a consensus.

In summary, our contributions are as follows:

• A preliminary study demonstrating the viability of leveraging web-based textual
information to associate visualization tasks with dataset attributes.

• A method that leverages NLP techniques to extract attribute importance and associated
analytical tasks from textual documents.

• A prototype system—TaskFinder—which implements a ranking method that combines
information gained from the NL attribute–task extraction method and the statistical
properties of a dataset to recommended visualizations.

• A demonstration of TaskFinder with two data domains.
• An evaluation showing that the number of documents needed to converge to a recom-

mendation consensus is bounded.

2. Related Work

In the following, we summarize existing work related to our research. We mainly
focus on recommendation systems, powered by machine learning, NLP, and, more recently,
large language models.

2.1. Visualization Recommender Systems

Recommender systems are available in many application domains (see, for
example, [6–8]); here, we focus specifically on visualization recommmender systems. Vi-
sualization recommender systems aim to lower the barrier for data analysts who lack the
expertise to visually represent their data most effectively. In most cases, these systems start
off by asking users to specify the dimensions or data attributes they are interested in and
the task they wish to perform. Once this is determined, a rule-based or machine learning
approach is typically employed to filter and rank the appropriate visualizations.

APT [1], a system developed by Mackinlay, was one of the first attempts at building a
visualization recommender. It is a rule-based system that uses composition algebra and
design criteria based on works by Bertin [9] and Cleveland et al. [10] to suggest effective
graphical presentation designs. Later, the SAGE [2] and BOZ [3] systems built upon APT,
also considering the statistical properties of the data as well as the analytical tasks a user
wishes to perform. AutoBrief [11] and AutoVis [12] further extended these works by
supporting additional visualizations and statistical analyses. Most recently, SeeDB [13]
provides recommendations of aggregate views using similar statistics while improving
computational performance.

The systems discussed above require users to specify data attributes and the analytical
task they wish to perform on them. However, some users may not have any tasks in mind;
this is typical of users inexperienced in data analysis. Mackinlay et al. sought to address
this issue with Tableau’s Show Me [14] interface commands. Show Me supports the user’s
search for visualizations by suggesting good defaults for the visualizations using heuristic
rules. Key et al. [15] also aimed to help users build task-appropriate dashboards with
VizDeck by letting them select visualizations from a ranked list of visualization thumbnails.
VizDeck uses the statistical properties and user voting to learn a scoring function that
is used to rank visualizations. More recently, the interactive systems Voyager [16] and
Voyager2 [17] allow users to navigate a gallery of recommended visualizations. A unique
feature of their approach is that as the user selects visualizations or attributes, the gallery
is updated. A recent effort is the work by Lee et al. [18] who offer analysts several paths,
such as enhance, generalize, and pivot by which they can transition from one visualization
to another.



Analytics 2024, 3 258

Recently, multiple machine-learning-based approaches have been proposed to recom-
mend visualizations. Saket et al. [5] evaluated the effectiveness of a set of visualizations
across ten visualization tasks proposed by Amar et al. [4]. The findings of this study
were then used to train a decision tree for a visualization recommender they called Kopol.
Lou et al. [19] also used data from an empirical study to train a decision tree that decides
if a visualization is good or bad and a learning-to-rank model to rank the visualizations.
The Draco [20] system models visualization design knowledge from empirical studies as a
collection of constraints and it also uses a learning-to-rank model to train its recommender
engine and easily allows its knowledge base to evolve with newer studies. Data2Vis [21]
is an end-to-end visualization generation system. Given a dataset, it provides a valid
Vega-Lite specification. It applies a neural machine translation (seq2seq) model that is
trained with a large number of datasets and their visualizations in Vega-Lite specifica-
tion to learn appropriate transformations (count, bins, mean) and common data selection
patterns. VisML [22] developed a recommendation strategy by learning the association
between dataset features and visualization properties. KG4Vis [23] and AdaVis [24] use a
knowledge graph to encode these associations, which adds transparency to this process.
MultiVision [25] extends the recommendations to construct entire dashboards by adding
a set of guidelines, and Deng et al. [26] used deep reinforcement learning to evolve dash-
boards from prior data and human interaction. DMiner [27] specifically focuses on the
visualization design rules that can be extracted from machine-analyzing a large collection
of dashboards crawled from the internet. Other work [28,29] has explored how visual-
ization recommendations can be personalized based on past user interactions, such as
views or clicks, and then recommended to other users with similar intents or preferences,
even for different datasets. A recent survey by Soni et al. [30] summarized many of these
recent developments.

These prior systems made significant strides toward visualization recommendation.
While there are approaches that have sought to map tasks to charts, these are typically
basic analytical tasks independent of the data domain, such as “Find extremum” or “Detect
change over time” for which the system then recommends the most suitable chart, like
a bar chart or a scatterplot [31]. A related approach is Qutaber [32], which maps tasks
like “Elaborate” or “Compare” into a sequence of small multiple plots. Yet, all of these
approaches still require some effort on the user’s part to determine attributes of interest
and the analytic tasks to be performed. Additionally, and most importantly, they do not
explicitly consider the data domain, which is a factor that can significantly affect the choice
of task and visualization; they predict the visualization type and how data should be
visually encoded, but they do not predict visualization tasks. Conversely, our TaskFinder
aims to augment these systems with a novel method that recommends attributes and
analytical tasks based on the specific domain of the data.

2.2. NLP in Visualization

Recently, NLP techniques have matured and are being applied in many domains. One
such technique that is widely applied in the field of visualization is word embeddings.
Word embeddings are vector representations of words in a high-dimensional geometric
space, often referred to as vector space. Multiple models have been proposed to learn these
embeddings from a large corpus of text. These models use the context of a word, i.e., its
surrounding text, to map it to the vector space. Thus, words that share the same context
appear closer to each other in vector space and are said to be semantically similar or related.
Berger et al. [33] extended the Word2Vec [34] embedding technique to embed both words
and documents in the vector space and then visualize this space to show the relationship
between documents and words. Park et al. [35] created ConceptVector, a visual analytics
system that helps users refine concepts generated from word embeddings and use these
concepts to analyze documents. Mahmood et al. [36] used data analytics paired with
word embeddings of data attributes and their context to help users build taxonomies. Our



Analytics 2024, 3 259

work employs word embeddings as well; we use them to determine if words in textual
documents refer to attributes and tasks.

In addition to using NLP techniques to analyze texts for visualization purposes,
researchers in the visualization field have recently been developing natural language inter-
faces (NLIs) for visualization. Cox et al. [37] created one of the first NLIs for visualization.
They used a grammar-based approach to convert NL questions into database queries and
return the results to the user via tables and bar charts. Sun et al. [38] followed up on this
work with their Articulate system that considers various low-level analytical tasks and
returns a wider range of visualizations. DataTone [39] allows users to specify visualizations
through NL queries while detecting ambiguities in those queries using a combination of
lexical, constituency, and dependency parsing. Setlur et al. [40] developed Eviza, which
implements a probabilistic grammar-based approach and a finite state machine to allow
people to interact with a given visualization using NL commands. Flowsense [41] employs
a semantic parser to parse NL queries that manipulate multiview visualizations produced
by a dataflow diagram. The system allows users to expand and adjust dataflow diagrams
more conveniently. Narechania et al. identified the popularity of NLI in visualization and
developed the NL4DV toolkit [42] to aid visualization developers who may not have a
background in NLP develop NLIs for visualization. Wang et al. [43] developed VisTalk
which uses deep learning to translate free-form NL utterances into editing actions for charts.
A recent survey by Shen et al. [44] overviews many of these efforts and another survey by
Kavaz et al. [45] focuses specifically on chatbots for conversational NL queries.

Our system, TaskFinder, is closely related to these NLIs. It attempts to extract attributes
and associated task mentions from large amounts of text in articles or reviews. This is akin
to the way NLIs understand users’ NL queries. However, the queries these NLI systems
process are more direct and tend to be less ambiguous. For example, users specifically ask
the system to “show the correlation between horsepower and MPG” which the system
understands as applying the correlation task to the horsepower and MPG data attributes.
TaskFinder, on the other hand, deals with articles or reviews that essentially report the
result of an analysis and it must infer which task and attributes were used to generate the
result. Consider, for example, the sentence “The Hyundai’s powerful engine leads to a
lower fuel economy”. Here, it can be inferred that the words powerful and fuel-economy are
referring to the horsepower and MPG data attributes and the phrase leads to implies that the
correlation task was used to deduce this relationship. To make such inferences, we expand
on the approaches discussed above.

2.3. Large Language Models (LLMs) for Visualization

Research has also emerged that uses LLMs as an end-to-end solution for converting
NL queries directly to visualizations. Maddigan and Susnjak [46] showed how ChatGPT
and GPT-3 can be leveraged for this purpose. Their system, Chat2Vis, takes in an NL
query and a dataset from the user and, behind the scenes, engineers prompts to precisely
query GPT-3. The queries are constructed such that GPT-3 responds with a Python script to
visualize the data provided by the user. Vazquez conducted studies along similar lines [47].
Dibia et al. [48] proposed a four-stage approach called LIDA that combines LLMs with im-
age generation to turn datasets and analysis goals into charts and infographics. Li et al. [49]
evaluated GPT-3.5 for Vega-Lite specification generation using multiple prompting strate-
gies. Likewise, Tian et al. [50] introduced ChartGPT that decomposes the chart generation
processes into a step-by-step reasoning pipeline to guide the possibly complex analytical
process that generates a chart from an informal query.

Apart from direct chart generation, which is a more recent topic, generative AI has
found application also in general data enhancement, visual mapping generation, stylization,
and interaction, as summarized in the recent survey by Ye et al. [51]. The LEVA system by
Zhao et al. [52] uses large language models to enhance the entire visual analytics workflow,
starting from onboarding and exploration to summarization, while Kim et al. [53] examined
the capability of ChatGPT to provide advice of chart design given an initial design and a



Analytics 2024, 3 260

user query. They identified certain limitations but gave an overall positive outlook. Finally,
ChatGPT [54] has also been used for visualization recommendation, using the LLM to
create natural language explanations for its choices. However, none of these LLM-based
techniques consider the needs and analysis tasks of a specific data domain in the chart
generation process. We close our paper with a report on the first experiments we have
conducted toward this goal.

3. Preliminary Study: Can We Learn from Text on the Web?

The internet is a rich source of textual information; however, a large portion of it is
irrelevant to our task of learning how people use visualization for analysis tasks. Before
devising a method to analyze texts for this purpose, we needed to assess whether online
documents contain relevant content that links tasks to attributes. Our initial exploration is
outlined below.

When exploring data, people usually ask questions about the data, and we hypothe-
sized that we could uncover task–attribute connections from such queries. For instance,
an individual might ask, “What is the maximum horsepower of all cars?”. Here, we observe
that the task find extremum is represented by the word “maximum”, which is applied to the
attribute “horsepower”. Initially, we speculated that rather than conducting a structured
investigation to formulate such questions, we could extract them from the Internet. Typi-
cally, such queries are posted on question–answer forums like Question.com or within the
“People Also Asked” section of Google’s search results. Hence, we conducted a preliminary
study to determine the feasibility of systematically locating these questions and extracting
task–attribute relationships.

To start off, we selected two datasets for this study—cars [55], and NBA player
data [56]. The cars dataset had 9 attributes with 304 data items and the NBA player dataset
had 12 attributes with 4326 data items. These datasets were specifically chosen as they
appeal to a large audience, which implied that a large number of questions would be
available. Additionally, the cars dataset has been used in various visualization research
papers. We found that querying the forums with the dataset name or topic along with one
or more attributes returned a list of questions related to those attributes. A large portion of
these questions could be answered by conducting analytical tasks over the datasets. For
example, a search for the term “Cars weight acceleration” returned the question “How
does weight affect acceleration?” which can be answered by investigating the correlation
between the “weight” and “acceleration” attributes in the dataset. The tasks we consider
here are the ten low-level analytic tasks proposed by Amar et al. [4], which are used in
multiple prior visualization recommenders. These tasks are find anomalies, find clusters, find
correlation, characterize distribution, determine range, eind extremum, order, filter, compute derived
value, and retrieve value.

The results of our preliminary exploration encouraged us to build a collection of
questions that we could study and use to learn about task–attribute relationships in the
questions. We consequently collected 342 questions for our datasets. Next, two authors
independently coded these questions by identifying the task and associated attributes in a
question. As questions tend to be highly specific, each question was assigned a single task
and one or more attributes. Each coder worked independently and jointly resolved any
disagreements on attributes or tasks through discussions. During the discussions, authors
voiced their reasons for assigning a task and attribute to a question and then collectively
reasoned to converge on a final assignment for the question. After the coding process, we
were left with 255 questions that referred to an attribute and associated tasks; the remaining
questions were invalid. Invalid questions primarily focused on conceptual queries or
explanations of terminologies, such as questions about car components or basketball jargon.
These questions, like “What does horsepower mean?” or “What is a wing position in
basketball?”, were not related to the focus of our work. Although they might aid users in
understanding the underlying concepts, they are not easily answered through data analysis.



Analytics 2024, 3 261

Analyzing the corpus of questions, we found that a majority (over 75%) of the ques-
tions revolved around finding extremums or retrieving values, whereas fewer (just over 20%)
questions were categorized as finding clusters or characterizing a distribution, and none were
related to finding anomalies. The results are shown as a percentage in Figure 2 (blue bars).
These questions tend to be posted by the general public who are nonexperts or people
looking for elementary information and, hence, lack analytical depth. Furthermore, a com-
parison with the types of questions a data analyst or visualization expert might pose
revealed the relatively straightforward nature of these queries; they mostly involved uni-
variate analyses.

Figure 2. Here, we show the results of our preliminary analysis of NL texts on the web. We report
the percentage of questions (from forums) and the percentage of sentences (from articles) that are
associated with the 10 low-level analytical tasks. We observe that articles tend to be more detailed
and focus on some of the more involved tasks such as finding clusters and anomalies. In both cases,
the determine range task was not present.

These findings prompted us to delve deeper, querying domain experts rather than
the general public to unearth questions akin to those posed by proficient analysts. But this
does not mean that we arrived back at square one, i.e., conduct formal interviews with
domain experts to gain this knowledge. Rather, we could harness a wide array of possibly
large domain text available on the web.

Upon further exploration, we observed that data-driven news articles, review articles,
and enthusiast blogs posted on the Internet contained detailed information gained from
data analysis. Authored primarily by domain experts or enthusiasts, these articles are
inherently rich in information and analytical in nature. For example, when analyzing the
car dataset, we could leverage comparison reviews from car magazines as the writers are
knowledgeable about the domain (cars) and they compare all aspects (attributes) of the
cars. To confirm the utility of such articles, we collected six articles related to the same
datasets—three car review articles and three NBA player profile articles. The sentences in
each article were coded following the same procedure used for the questions. The results
are also shown as a percentage in Figure 2 (orange bars). The results indicate that these
articles do, in fact, tend to refer to some of the more analytical tasks such as finding clusters
(approximately 10% of the task mentions) or finding anomalies (approximately 5% of the
task mentions) as compared to the questions found on forums. We also considered reviews
posted by consumers but encountered similar issues of naivety as with the questions
we had gathered. These findings encouraged us to develop an automated technique for
analyzing dataset-related articles, enabling the extraction of insights that inform us of
attribute significance and associated analytical tasks.



Analytics 2024, 3 262

4. Design Requirements

The overall goal of our work is to recommend a set of visualizations that allow users
to explore important features in a tabular dataset informed by data attributes’ importance
and associated analytic tasks. Fundamental to our approach is the belief that analysis-type
articles related to the subject of the dataset can be useful in providing us with information
relating to an attribute’s importance and the analytic tasks associated with it. As mentioned,
this led us to build TaskFinder, a prototype system that leverages a combination of NLP
techniques and statistical methods to extract information from a dataset and related textual
documents and generate a list of recommended visualizations based on the importance of
data attributes and associated tasks. Based on observations made in our preliminary study,
we identified four main design requirements for TaskFinder:

R1 Identify all mentions of attributes in the article texts. First, TaskFinder should identify
all occurrences of words referencing a dataset attribute in the article text. This is not a
straightforward process, as people tend to use different words to refer to the same attribute
(e.g., “mpg” and “mileage” can be used interchangeably). Also, a single word could refer
to the same attribute and task together, for example, “fastest” refers to the find extremum
task applied to the “acceleration” or “speed” attribute. Thus, TaskFinder must be able to
identify all words referring to tasks and attributes.

R2 In each sentence, identify tasks and determine their relationship to attributes. After deter-
mining which words refer to attributes, the next requirement of our system is to determine
if and how these words are associated with words referencing tasks in the same sentence.
That is, determine which tasks are applied to attributes. At times, sentences refer to multiple
tasks and attributes and our system must be able to identify which tasks are applied to
which attributes. For example, in the sentence “During our longest drive the BMW gave
us an average of 34.2 mpg”, there are two tasks—the find extremum task referred to by the
word “longest”, which is applied to the word “drive”, and the compute derived value task
referred to by the word “average”, which is applied to the word “mpg”. TaskFinder must
be capable of making this distinction.

R3 Compute importance and rank. Completing the tasks above would result in multiple
attribute–task relationships being identified. Depending upon the number of attributes and
tasks mentioned, this list could be extremely long. Thus, our system’s third requirement is
to rank the task–attribute pairs and provide the user with the most important pairs first.

R4 Recommend appropriate visualizations for each attribute–task pair. Our main goal is
to provide users with appropriate visualizations based on the type of data and analytical
task to be performed. Thus, our final requirement is to determine a mapping between
visualization tasks, attribute types, and visualizations.

5. TaskFinder

An overview of TaskFinder’s workflow is shown in Figure 3. The user starts by pro-
viding TaskFinder with a tabular dataset and a set of related textual documents, which
we will refer to as the corpus. It initially performs text preprocessing to clean the corpus.
Next, it extracts information from the dataset such as attribute labels and properties such
as range and categorical values to form an attribute representation. This representation is
used to identify references to attributes in the corpus (R1). Sentences containing attribute
mentions are analyzed to infer if one or more analytic tasks are associated with the at-
tribute(s) (R2). The frequency and order of appearance of attributes and associated analytic
task mentions are then used to generate a semantic ranking of the attributes or attribute
pairs and associated tasks. We perform statistical tests on the dataset to rule out certain
tasks and generate an interestingness score for each attribute or attribute pair. We then
combine the statistical ranking and semantic ranking to generate a combined ranking (R3).
Finally, based on the attribute types (numerical, nominal, or time) and associated tasks,
we recommend appropriate visualizations and provide them to the user via a web-based
interface shown in Figure 1 (R4). Each of these processes are explained below.



Analytics 2024, 3 263

Figure 3. The workflow of TaskFinder. First, the user provides TaskFinder with tabular data and a set
of domain-related documents. Next, the documents are cleaned with text preprocessing methods
while TaskFinder creates a representation for attributes in the data. Next, this representation is used
to extract information from the documents and create an association between attribute mentions and
tasks associated with them. These attribute–task pairs are then ranked by frequency of appearance in
documents as well as statistical properties of the data. Finally, a visualization is recommended for
each attribute–task pair and is provided to the user as a list of visualizations.

5.1. Attribute Representation

Authors often use different words to refer to the same term or concept across text
documents on the web. Thus, it is likely that an attribute in the dataset is referred to by
multiple different terms or words in the textual documents. For example, the attribute
“MPG” in the cars dataset might be referred to as “fuel economy” in the text. Additionally,
categorical attributes might be referred to by their categories instead of the attribute name.
For example, the word “USA” may be used to refer to the attribute “Origin”, which reports
the country of manufacture for a car in the dataset.

In order to address this issue, we must represent each attribute in the dataset by a
collection of words instead of just the attribute label. We perform this by representing
each attribute by its label and a set of synonyms that we generate automatically. We make
use of Datamuse [57] and NLTK [58] synsets to generate a list of attribute synonyms. We
also add the categorical values of categorical attributes to the collection of synonyms that
represent the attribute. It should be noted that we do not add synonyms of categorical
values. In some cases, the synonyms are not applicable to the domain of the data; thus, we
allow the user to interactively deselect the irrelevant synonyms via the interface shown in
Figure 4. We limit the number of synonyms to 30. We found this to be sufficiently large
when experimenting with a number of datasets retrieved from Kaggle. The user can edit
attribute types and attribute names which would lead to a new refined subset of synonyms.

Figure 4. TaskFinder’s interface allows the user to guide the attribute representation. Here, users can
set the attribute types, edit attribute labels, and deselect irrelevant synonyms (colored in red).



Analytics 2024, 3 264

5.2. Preprocessing

Text documents on the web do not conform to any particular standard or format and
may contain special characters and white spaces that can affect the performance of many
NLP tools. Thus, like many natural language processing systems, we must preprocess
the corpus before we analyze it. First, we remove any accented characters and extra
white spaces. Next, we perform coreference resolution, which is the task of finding all
expressions that refer to the same entity across a set of sentences. We used Spacy’s [59]
implementation of the coreference resolution published by Clark and Manning [60] For
example, performing coreference resolution “The car’s fuel efficiency is 24.3 mpg. It is the
best in its class” replaces the first instance of “It” in the second sentence with “The car’s
fuel efficiency” and the second instance of “It” is replaced with “The car”. This helps our
system to detect that the extremum task (“best”) was applied to the fuel efficiency attribute
in the second sentence. Once we have preprocessed the corpus, we move on to analyzing it
sentence by sentence.

5.3. Information Extraction

To recommend important attributes and their related tasks, TaskFinder must extract
useful information about them from the corpus. To achieve this, we make use of a combina-
tion of NLP techniques, specifically part-of-speech (POS) tagging, named entity recognition
(NER), dependency parsing, and word embeddings. These techniques are implemented by
a variety of NLP toolkits; for our work, we make use of NLTK [58], Spacy [59], and Gen-
sim [61] with ConceptNet’s [62] word vectors. We discuss how we use these techniques
to identify references to data attributes in a sentence and how we infer tasks applied to
the attribute. Our discussion includes terminology common in the field of NLP; for a brief
description of these terms, please refer to the NLP dictionary created by Wilson [63].

5.3.1. Parsing Sentences

We start by iterating over each sentence in the preprocessed corpus, and, using Spacy,
we apply a series of NLP functions to them to extract features that can be used to detect
attributes and associated analytic tasks. We first perform POS tagging and extract the
POS tag (e.g., NN: noun, JJ: adjective, VB: verb, etc.) of each token in the sentence. Next,
we perform NER and extract all named entity tags (e.g., GPE: countries, cities, states,
PERSON: names of people, PRODUCT: names of products, QUANTITY, TIME etc.) for
words or phrases in the sentence. Now, to understand the connection between words and
phrases in the sentence, we extract dependency relations between words as a dependency
tree using Spacy’s dependency parser. Finally, to identify certain phrases (e.g., “greater
than”, “leads to”) we construct N-grams (a collection of N successive items) from the
sentence tokens.

5.3.2. Identifying Attribute Mentions

Once we have parsed the corpus, our first objective is to identify the data attribute
mentions. As discussed above, multiple different words in the corpus may refer to the same
attribute. For example, nouns or noun phrases like “fuel economy” or “fuel efficiency” both
refer to the “MPG” attribute. Additionally, the corpus may contain adverbs and adjectives
that may refer to attributes. For example, the words “fastest” and “quickly” refer to the
“acceleration” attribute. To identify these types of attribute mentions, we make use of word
embeddings [34,64,65], POS tagging, and NER.

To identify attributes, we only consider N-grams with the noun, adjective, verb,
and adverb POS tags along with all tokens tagged as named entities in the sentence.
Based on the properties of word embeddings, we expect that words related to a data
attribute appear closer together in the vector space. Thus, we compute a semantic similarity
score between every N-gram and every word in the attribute representation described
in Section 5.1. This score is the cosine similarity (angle between vectors) of the vector
representations of the N-grams and words in ConceptNet. If the semantic similarity



Analytics 2024, 3 265

(absolute value between 0 and 1) is very high and above a preset threshold, we count that
word as a mention of the attribute. For nouns, we found that a threshold of 0.45 worked
well to filter out irrelevant words. For adjectives, verbs, and adverbs, a lower threshold
of 0.35 worked well, as these words are more loosely connected to attributes in the word
embedding space. If a word is marked as an entity, we follow a different strategy. For
entities with the tag ORG, NORP, GPE, PERSON, PRODUCT, and LANGUAGE, we only
test for semantic similarity with attributes that are categorical. We also set a high threshold
of 0.6 for the similarity. If an entity is tagged as the DATE or TIME, we test for the
semantic similarity between the tag label, i.e., “date” or “time”, and the synonyms of
the attribute marked as time. As some unique words or phrases may not be present in
ConceptNet’s vocabulary, we also look for direct matches between N-grams and values,
words, or phrases in the attribute representations and assign all matches to their respective
attributes. It should be noted that we determined the threshold values by experimenting
with a set of 15 car review articles, 10 NBA player profiles, and 7 data-driven news articles.

5.3.3. Identifying Tasks Applied to Attributes

The next objective is to identify and associate analytical task with the identified
attributes in the sentences. We analyze each sentence for mentions of any of the ten low-
level tasks proposed by Amar et al. [4]. In this stage, we make use of word embeddings,
POS tagging, NER, and dependency tree parsing.

These NLP techniques are used in conjunction with a set of keywords that refer to
each task defined by us. We constructed the set task keywords by having a pair of experts
(who are authors) refine a list of machine-generated synonyms. We generated the initial
list of synonyms by first using a synonym generator, Datamuse [57], to generate a set of
root synonyms. We then use these synonyms to retrieve the top 200 most related words to
the synonyms based on their cosine similarity in the ConceptNet word embedding space.
Using the number 200 proved to be sufficient to extract some closely related words as well
as different forms of the same word. For example, the root word “anomaly” has the words
“anomalies”, “anomalistic”, “anomalous”, and “anomalously” associated with it. Following
this approach, we collected over 5000 unique words and phrases that represent the ten
tasks, with each task having 450 to 750 keywords each. These keywords were then filtered
by two co-authors, with each author removing a word he or she found to misrepresent the
task. Each author worked independently to remove words. The results were then merged
with conflicts (a word present in one author’s list but not the other’s) resolved through
discussions. We then only used the words that were common to both author lists, resulting
in a total of 1321 task keywords.

References to tasks occur in different manners in the text; thus, we are using a different
combination of NLP techniques to identify each task. First, we identify references to the
correlation, anomalies, cluster, derived value, and distribution tasks following a procedure simi-
lar to that used for detecting attribute mentions. Here, we compute the semantic similarity
score between every N-gram and attribute keyword using their word vectors. Words with
a similarity score of more than 0.4 are considered references to tasks. Next, we make use
of POS tagging to determine if a word is referring to the extremum and range tasks or filter
and rank. We consider extremum and range (the two extremes) as essentially being the same
task and group them into a single extremum. Similarly, we group the filter and order tasks
into a single filter task as they both require a comparison of values. Then N-grams tagged
as JJS or RBS, i.e., superlatives (e.g., best, fastest, etc.) and JJR or RBR, i.e., comparatives
(e.g., bigger, faster, etc.) are assigned the extremum and filter, respectively. We also look for
direct matches between N-grams and task keywords as we did with the attributes.

Now that we have identified all N-grams referring to data attributes and tasks, we
must determine the association between the attributes and tasks. We parse the dependency
tree using rules based on a combination of POS tags, dependency types (e.g., nsubj, amod),
and tree distance to identify associations between tasks and attributes. The dependency
parsing rules were defined based on the rules developed for NL4DV and the patterns



Analytics 2024, 3 266

observed in the ∼300 sentences analyzed in our preliminary study. Finally, if an attribute is
mentioned in a sentence but none of the above tasks are associated with it, we default to
recommending the retrieve value task if it is a named entity, otherwise we recommend the
distribution task. As a result of the process, we are left with attribute–task pairs represented
as a Python-like tuple—(attribute, task). For example, (horsepower, extremum) or (MPG,
distribution) are task–attribute pairs for univariate analysis and (MPG|horsepower, correlation)
or (weight|cylinders, correlation) for bivariate analysis.

5.4. Statistical Analysis

With the processes described above, we are able to extract attribute mentions along
with tasks associated with them based on the textual documents provided. However, these
documents are related to the domain of the data and not the dataset itself. Thus, it may
be the case that a task recommended based on the analysis of the text is not statistically
interesting to perform. For example, the information extraction process may find that the
clustering task is strongly associated with an attribute. However, the attribute may not
have any clusters in the data. In this case, the strength of the association between the task
and the attribute must be reduced.

We generate statistics for four tasks: “Anomalies”, “Clusters”, “Correlation”, and “Or-
dering”. We compute the number of outliers, clusters, sortedness (univariate only), and cor-
relation coefficient (bivariate only) across all attributes. For nominal or ordinal attributes,
we compute these statistics over the counts of their values. While there are no statistics to
rank attributes for other tasks, we compute an interestingness score for attributes based on
general statistics—dispersion, variance, entropy, and skewness.

5.5. Ranking Attributes and Associated Tasks

After parsing the user-provided text, we are left with a list of attribute–task pairs. This
list can be very long if the user provides a large number of texts. Additionally, the texts are
related to the domain of the dataset and not the dataset itself; thus, the list may contain task–
attribute pairs that may not be relevant to the dataset. Thus, in its final step, TaskFinder
must rank these task–attribute pairs based on some measure of importance. We compute
this importance measure based on three metrics—pair frequency, pair sequence, and the
statistical properties of the dataset.

• Frequency (Spf): This metric is the occurrence frequency of each extracted attribute–
task pair. If an attribute–task pair appears very often across the text, it implies that the
article authors find it important. It should be noted that if a pair occurs twice within
the same sentence, we only count it once. We normalize the frequencies between 0 and
1, with 1 indicating the most frequent pair, and use this value as the frequency metric.

• Sequence (Sps): This metric is computed by observing the occurrence sequence of
attribute–task pairs. If one task–attribute pair appears before another in a document,
it implies that the writer may find it necessary to evaluate the first pair before the
second. If the user provides a corpus with multiple documents, we first rank the
pairs within each document based on their occurrence sequence. We then combine
these rankings into an average ranked list. Finally, we normalize the ranks, with the
highest-ranked item receiving a value of 1 and the lowest 0, and utilize these values as
the sequence metric.

• Statistical Relevance (Sst): This metric is based on the statistical properties of the
dataset itself and is independent of the text. By considering the statistical properties
of a dataset, we can reduce the importance of tasks that may appear across the text
but might be irrelevant to the current dataset. Here, we rank the attributes based
on the statistical tests. Then, for correlation, clustering, and anomalies, we use the
ranks generated by the respective statistical tests. For the remaining tasks, we use
the maximum rank of an attribute across all statistical tests. We normalize the ranks
between 0 (lowest ranked) and 1 (highest ranked) and utilize the values for the
statistical relevance metric.



Analytics 2024, 3 267

The final importance measure is computed as a weighted average of three metrics
I = w1Spf + w2Sps + w3Sst. The default values of these weights are set to (0.5, 0.2, 0.3).
We chose to give a higher weightage to frequency as we believe that if an attribute or
attribute pair and associated task occurs across documents frequently, then it is referred to
more frequently and, thus, is more important. Additionally, we discard any task–attribute
pair that has a statistical score of 0. An importance measure of 1 would indicate that the
task–attribute pair occurs at the start of a majority of the texts provided; it is also the
most frequent pair to appear across all texts, and the task is also statistically supported by
the data.

5.6. Mapping between Analytical Tasks and Visualizations

TaskFinder communicates the ranking generated as a list of visualizations or charts
that are appropriate for each attribute and task. We wish to support as many visualizations
as possible to ensure that we can accommodate people with varying levels of visualization
literacy. To achieve this, we studied various visualization guides produced by experts
and corporations in the field of visualization and generated a list of visualization and
task associations.

We collected and studied 19 visualization guides (see Supplementary Material for
the list of guides). From each guide, we extracted the various tasks discussed and the
visualizations suggested for each task along with the data constraints (data type and the
number of items). We then counted the number of times a visualization was suggested
for a particular task. The representation with the highest count would have the highest
priority for the task while the representation with the lowest count would have the lowest
priority. The results are shown in Table 1.

Our study revealed that their authors refer to six different high-level tasks or functions
a chart can perform—distribution, comparisons, part-to-whole comparisons, relationships, changes
over time, and ranges. We grouped comparisons and part-to-whole comparisons into a single
parent task—comparisons—as the main difference between them is the type of data and not
the function itself. Similarly, we view changes over time as a special type of relationship task
where the relationship between an attribute’s value and time is investigated. Additionally,
the ten low-level tasks proposed by Amar et al. [4] can be mapped to these four high-level
tasks. For example, some guides we studied state that the low-level tasks, correlation,
clustering, and finding anomalies, essentially require the user to investigate the relationship
between data items and can thus be mapped to relationships task. Similarly, the low-level
tasks determine range and find extremum can be mapped to the range task and the order
and filter low-level tasks can be mapped to the comparison high-level task. The characterize
distribution low-level task and distribution high-level task are identical. Finally, compute
derived value and retrieve value were not referred to in the guides. For these tasks, we chose
to recommend the common charts—bar, line, and scatter plot.

Table 1. This table lists the number of visualization guides that recommend using a chart for a
particular task.

Tasks Charts
Bar Pie Line Density Box Dot Scatterplot Parallel Stacked Balloon Heatmap

Plot Plot Plot Coordinates Bar Plot

Distribution 11 0 0 8 7 1 8 0 0 0 1
Comparison 18 16 13 0 1 0 7 3 7 2 7
Relationship 14 0 16 0 0 0 16 3 3 2 7
Range 0 0 0 0 1 0 1 1 0 0 0

5.7. Curating Visualizations

Using the mapping of low-level tasks to high-level tasks and task-chart mapping, we
assign each ranked attribute–task pair a list of possible visualizations. We also set limitations
on which charts can be assigned to an attribute based on its data type (e.g., line charts are



Analytics 2024, 3 268

only assigned to attributes with the time data type). At times, duplicates may arise due to
attributes being paired with different tasks that require sharing a recommended visualization.
These duplicates are merged and their importance measures are summed. Then, the attribute–
task-chart pairs are reranked based on the new scores and presented to the user.

The visualizations are presented as a list of cards via the interface shown in Figure 1.
We prioritize bivariate representations over univariate representations as they are capable
of providing the user with more information. Additionally, we give users the option
to deselect any analytical tasks they are not interested in or any visualization they are
unfamiliar with via a panel (left).

6. Demonstration

We demonstrate TaskFinder across two distinct domains characterized by varying
corpus sizes and quality. The two domains under consideration are automobiles and
sports—highly discussed topics across the internet. This demonstrates its ability to iden-
tify attributes and their corresponding tasks and how they inform recommendations
for visualization.

6.1. Car Comparisons

For our first demonstration, we use the cars [55] dataset retrieved from Kaggle. The
dataset has nine data attributes—model, horsepower, cylinders, displacement, acceleration,
MPG, weight, year, and origin. As discussed, TaskFinder requires the user to provide text
documents that discuss automobile analysis. Thus, we opted for car comparison reviews
from online magazines. Our rationale stems from the belief that such reviews are inherently
analytical in nature, as they systematically compare cars based on performance and features.
Thus, we selected at random a set of 15 car comparison reviews for demonstration.

With the dataset and accompanying textual documents selected, we proceeded to
upload them to TaskFinder, employing the interface in Figure 1. Our initial step involved
selecting attribute types and refining the synonym list, as outlined in Figure 4. For instance,
the model attribute was set to the index type as it is unique and essentially a label for each
data item and will not be considered during the recommendation phase. The attributes
horsepower, displacement, acceleration, MPG, and weight were set to numerical, while cylinders
and origin were set to ordinal and nominal. Notably, the year attribute was set to the time
type, although, in this particular case, TaskFinder treated it as an ordinal attribute due
to the presence of multiple data points with the same year value. Next, we refined the
attribute synonyms. As the words model, weight, and origin are generic, they yield a larger
set of synonyms with model having the most—17 synonyms. Given their generic nature,
a substantial number of these synonyms were irrelevant within the automotive context and
were consequently deselected. At this juncture, TaskFinder had the relevant input essential
for generating visualization recommendations to explore the dataset.

TaskFinder analyzed the input and returned a list of visualizations (Figure 1). The
textual articles contained sentences detailing various car specifications, coupled with
references to analytical tasks. For example, consider the sentence “The MG has the higher
power output—170 hp to the Tata’s 140 (torque is an identical 350 Nm at 1750 rpm)—but its
wider, thinner-spread powerband means you have to shift less, and responses low down
are actually a bit better”. Here TaskFinder associated the term “higher” with the filter task
and the noun phrase “power output” with the horsepower attribute. It also finds that there is
a dependency (amod) between the two tokens thus inferring that the filter task was applied
to the horsepower attribute. It also identifies “170 hp” as an entity and associates it with the
horsepower attribute and the retrieve value task.

As explained in Section 5.6, filter is a low-level task that maps to the high-level com-
parison task. The first part of the sentence refers to this task—a comparison of two cars in
terms of their horsepower values. The second part is a relationship task, relating powerband
to shift frequency. As these attributes are not present in the dataset, the sentence part will
not be considered. TaskFinder systematically processes numerous sentences within the



Analytics 2024, 3 269

corpus, counting the number of attributes and associated task occurrences. It also ranks
the attributes based on their order of appearance across the 15 articles. It then uses the
occurrence count and appearance order along with the dataset statistics to produce the
ranked list of visualizations shown in Figure 1.

Upon investigating the results, we see that TaskFinder was able to recommend a list
of visualizations. We see that it recommended some very frequently paired attributes.
For example, it recommends investigating the relationships between MPG and horsepower,
horsepower and cylinders, horsepower and acceleration, horsepower and weight, and weight and
acceleration, as these relations were frequently reported in the articles. We compared these
relationships to those investigated by the top 10 Kaggle notebooks (based on upvotes re-
ceived) associated with the dataset and observed the same relationships being investigated
by Kaggle users. However, we found that our system also recommended relationships that
are not usually investigated, such as the relationship between year and horsepower, cylinders,
and MPG. The reason for this relationship being picked up was that at times the articles
referred to cars by their model name and year (e.g., “2019 Civic”) and TaskFinder identified
that these references to the year attribute were very frequent.

Overall, TaskFinder was able to use car reviews to identify attributes and associated
tasks to recommend appropriate visualizations. Most recommendations aligned with the
attribute pairs and visualizations Kaggle users investigate in the same dataset. Thus, with
a set of relevant documents, TaskFinder was able to produce recommendations on par with
a Kaggle analyst.

6.2. NBA Player Achievements

For our second demonstration, we focused on the sport domain. Specifically, we
applied TaskFinder to an NBA dataset [56] retrieved from Kaggle which had nine attributes
of interest—minutes, points, rebounds, assists, steals, blocks, turnovers, fouls, age, height,
position, and weight. We also provided TaskFinder with articles describing the achieve-
ments of historically great players sourced from the NBA website [66]. We believe that
these articles were analytical in nature as they focused on players’ career performances and
compared them to other great players.

Just as with the cars dataset, we moved on to set the data types for the attributes
and refined the recommended keyword set. The attributes were all numerical except for
the player’s name, which we set to the index type. The attribute keywords TaskFinder
found were all relevant; thus, we had to expend minimal effort in refining the keywords
set. Having provided all the input necessary, TaskFinder analyzed the articles along with
the dataset and provided a list of recommended visualizations.

Upon investigating the results, we the list contained visualizations that were primarily
univariate. This is due to the fact that the articles are about “hall of fame” players and they
tend to mention the statistically outstanding player performances in isolation. For example,
sentences like “He also holds the all-time record for the highest field-goal percentage in a
five-game playoff series” appear frequently in these articles. Here the find extremum task or
range task was associated with the points attribute referred to by the word “field-goal”. The
system found some bivariate relationships as well through sentences such as “In 80 games,
he averaged 34.0 points and 11.4 assists”. Here, the retrieve value task was associated with
the combination of the attributes points and assists, the number of games was ignored as it
is not an attribute in the dataset.

Overall, TaskFinder associated the find extremum and retrieve value with the points,
assists, and rebounds attributes, while the position attribute was only associated with the
retrieve value task. Recommended bivariate attribute pairs included points and assists as
well as rebounds and blocks. When compared to the top 10 Kaggle notebooks (based on
upvotes received) associated with the dataset, the recommendations do not align well. A
few Kaggle users investigated extremums on all the dataset attributes, but most split the
dataset into subsets based on position or NBA time periods (sets of seasons) to compare a
subset of players.



Analytics 2024, 3 270

While the results are not inline with what a Kaggle analyst may analyze, they are
representative of what authors of the player profiles are interested in—a basic analysis
focused on each player’s best achievements. To obtain a more diverse set of task–attribute
associations, we would have to find a different source of textual information. In the sports
domain, today, such kind of analyses are often reported in talk shows rather than articles.
Thus, applying our method to a transcription of the talk shows would be an avenue for
future investigation.

7. Evaluation—The Effect of Corpus Size

In this work, we hypothesized that if a corpus is large enough, we can extract the
ranking that informs us of what attributes and tasks people are generally interested in for a
particular data domain. Thus, we decided to study the effect of corpora size on the stability
of a ranking generated for a particular dataset.

For this study, we used the cars [55] and NBA player [56] datasets. We collected a
total of 700 car comparison review articles and 20 NBA player profile articles. For each
dataset, we selected n articles at random and computed the ranking. For each value of n
we repeated the process 25 times. We then computed the Kendall–Tau correlation between
all rankings and reported the mean distance and standard deviation. We repeated this
process for different values of n. For the car dataset, we set the value of n to 1, 5, 10, 25,
50, 75, 100, and 125. For the NBA dataset, we set the value of n to 1, 3, 5, 7, and 10. We
then investigated the distribution of correlation values to study at what corpora size the
correlation stabilizes.

The results for the cars dataset are shown in Figure 5. Here, we see that when we
generate recommendations with just one article we have high variability along with a
relatively lower median correlation value, indicating that we can obtain very different
recommendations if we base our analysis on just one article. As the number of articles
increases, variability decreases and the median correlation increases, especially when
making univariate recommendations. We found that, for the cars dataset, the correlation
between rankings stabilizes once we have at least 75 car comparison reviews.

(a) (b)

Figure 5. We report the distribution of the Kendall–Tau correlation values between 25 recommenda-
tions generated over a set of n articles for the cars dataset. We vary the value of n and report each
distribution above for each value of n for both (a) univariate and (b) bivariate recommendations.
From these distributions, we see that the correlations tend to stabilize when we have a total of
75 articles.

8. Discussion and Limitations

Impact of corpus quantity and quality. Our method relies on information from a
corpus to associate tasks with attributes; hence, it is dependent upon the quality and
correctness of the corpus’ contents. Choosing a small number of texts, as in Section 6.1,
may not recommend the most frequent attributes and analytical tasks in the domain. For
building general-purpose recommenders, this is a limitation. On the other hand, curating



Analytics 2024, 3 271

a specific set of texts to form a corpus can be beneficial. For example, texts produced
by a specific author or publication may extract a particular analysis style. Alternatively,
an organization may choose to only use internal documents for recommendations, thereby
having some assurance of the corpus quality and analytical style.

We observed that our approach occasionally leads to trivial recommendations as it
gauges what is of interest to the domain audience, which is not necessarily interesting for
an analyst. For example, analyzing the NBA dataset led to a recommendation of simple
univariate charts that compared players or teams. These top-ranked charts typically did
not seek to explain certain relations, as bivariate charts often do. Thus in certain domains,
textual documents might not contain all the interesting task–attribute associations. In
such cases, we may consider methods to inform the user of the quality of the corpus or
recommendations. For example, we can report a score based on the number of occurrences
of attributes and associated tasks in the corpus. Alternatively, we could have wildcard
recommendations [17] generated from underrepresented attributes or tasks.

Finally, we explored scientific domains like gene expression data, where attributes are
rarely discussed outside academia. However, we faced two main issues. First, there were
not many accessible texts on these topics. Second, the ones we found focused on complex
statistical analyses, not the kind of exploratory or basic analysis that TaskFinder was de-
signed for. Additionally, the method based on standard synonym generators lacked the
sophistication required to identify attribute references in text for scientific domains. Adapt-
ing TaskFinder to such data domains will require extending its capabilities to recognize
complex tasks and specialized attribute names or references.

Reliance on the user to provide relevant documents. In its current form, TaskFinder
requires the user to provide the corpus from which attributes and associated tasks are
identified. While it removes the burden of picking the right attributes and analytics,
it places the new burden of curating a corpus and ensuring its quality. This makes it
less accessible. In the future, we would like to remove this burden from the user by
automatically retrieving such documents. To fill this void, one can explore crowd-sourced
or web-crawler-based methods, to source analytical texts about various datasets or domains
and create a knowledge base. Alternatively, we can explore methods to gauge the quality
of user-provided corpora. In addition to the burden of finding articles, the user may need
to refine keyword lists used to represent attributes, especially in cases where some attribute
synonyms may not be applicable to the data domain. Finally, the recently emerging
commodity large language models, embodied by ChatGPT [67] and the like, could form
another source of textual information; prompts could be engineered in such a way that the
returned text would reflect a certain viewpoint or target audience. One might even be able
to capture some of the NLP analyses into the prompt.

Beyond Attributes and Low-Level Analytic Tasks. We focused on the 10 low-level
tasks as they are frequently used by other recommender systems, making this work easy
to pair with. However, our approach can be extended to other, more complex tasks. Over
the course of our investigation of articles, we observed that texts contain much more
information that can be applied to the analysis of a dataset. One direction we explored was
the evaluation section of research papers. These did not contain low-level tasks but they did
mention attributes and statistical tests applied to them or chart types used to show them in
figures. Such information is useful for recommending statistical tests and visualizations
for scientific applications. Additionally, in our approach, we only recommend tasks for
an attribute. However, texts mention specific attributes that refer to a subset of the data,
for example, a specific car manufacturer or model, or a particular NBA season or player
position. This information can be leveraged to identify subsets in the data that may be of
interest to the analyst.

Augmenting other systems. We envision our approach of extracting attribute–task
associations from texts to be a part of a recommender system rather than a standalone task
recommender. With TaskFinder, we paired our NLP extraction technique with a statistical
analysis model and a visualization recommendation based on a collection of visualization



Analytics 2024, 3 272

guides. These components are interchangeable and it would be interesting to investigate
if other systems such as Kopol [68] or Data2Vis [21] can be augmented with information
gained from text and how they would perform. Our approach may also be of interest
to researchers working on authoring tools that recommend appropriate visualizations to
authors of articles. This is along the lines of the Kori system [69].

Employing large language models. Large language models (LLMs) hold vast infor-
mation and have significantly enhanced natural language understanding and information
extraction for various tasks. Integrating LLMs into TaskFinder could boost its performance
and capabilities. LLMs can recommend important task–attribute pairs and appropriate
visualizations using their extensive knowledge base or analyze articles to extract crucial
task–attribute pairs. To test LLMs, we conducted an initial experiment with ChatGPT.
We provided it with the attributes from the cars dataset [55] and ten analytical tasks [4],
asking it to identify key attributes or attribute pairs. We also inquired about the applica-
tion of analytical tasks to these attributes and the visualizations it would use. ChatGPT’s
responses were impressive and are detailed in the Supplementary Material. It identified
horsepower, cylinders, displacement, MPG, weight, and year, excluding acceleration, origin,
and model. TaskFinder agreed on the key attributes but also highlighted acceleration as an
important attribute. ChatGPT provided task–attribute pairs and recommended visualiza-
tions similar to TaskFinder but offered a broader set, including violin plots, PCA plots,
correlation matrices, and data tables. Additionally, ChatGPT suggested computing the
power-to-weight ratio (horsepower/weight) and efficiency index (MPG/weight) for the
cars. Overall, the LLM provided coherent recommendations, and we plan to explore its
integration into TaskFinder’s workflow.

9. Conclusions

In this work, we developed a technique to recommend appropriate visualization tasks
for a given dataset by extracting information from textual articles. To our knowledge, this
is one of the first attempts at recommending visualization tasks specific to the domain of
the dataset. We demonstrated, via a case study, that our technique could identify mentions
of attributes and tasks in web-based texts and relate them to each other. Our approach
builds on well-established methods from the fields of NLP and visualization, so we did not
see an immediate need to perform a dedicated user study on our system; rather, we show
that the quality of recommendations is bounded by the articles provided. In the future, we
intend to pair our work with newer NLP techniques and other recommendation strategies
to build a more robust recommender.

Integrating NLP and visualization for the purpose of recommending visualization
tasks tailored to the domain of specific datasets is a novel research contribution. Our
work not only advances theoretical knowledge by demonstrating how textual domain
data can enhance data visualization, but it also offers a practical tool for improving the
effectiveness and relevance of visualizations in various domains. By identifying and
correlating attributes and tasks mentioned in web-based texts, our technique enhances
decision-making processes and optimizes the presentation of data, relying on the quality of
input articles rather than extensive user testing.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/analytics3030015/s1.

Author Contributions: Conceptualization: D.C., S.G., S.M., K.M., and M.V.-R.; methodology: D.C.
and K.M.; software, investigation: D.C.; formal analysis, validation, B.G. and A.K.; writing—original
draft preparation, D.C.; writing—review and editing: D.C. and K.M., funding acquisition, S.G. and
M.V.-R. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded in part by the NSF I/UCRC 1650499: Center for Visual and
Decision Informatics (CVDI) Site at SUNY Stony Brook, CA Technologies, a Broadcom Company,
USA, and NSF grant IIS 1527200.

Institutional Review Board Statement: Not applicable.

https://www.mdpi.com/article/10.3390/analytics3030015/s1
https://www.mdpi.com/article/10.3390/analytics3030015/s1


Analytics 2024, 3 273

Informed Consent Statement: Not applicable.

Data Availability Statement: The text corpus employed for the studies as well as links to the
visualization cheatsheets studied are included in the Supplementary Material.

Conflicts of Interest: The remaining authors declare that the research was conducted in the absence
of any commercial or financial relationships that could be construed as a potential conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

NL Natural language
NLI Natural language interface
NLP Natural language processing
POS Part of speech
NER Named entity recognition
LLM Large language model

References
1. Mackinlay, J. Automating the Design of Graphical Presentations of Relational Information. ACM Trans. Graph. 1986, 5, 110–141.

[CrossRef]
2. Roth, S.; Mattis, J.; Mesnar, X. Graphics and Natural Language As Components of Automatic Explanation. SIGCHI Bull. 1988,

20, 76. [CrossRef]
3. Casner, S. Task-analytic Approach to the Automated Design of Graphic Presentations. ACM Trans Graph. 1991, 10, 111–151.

[CrossRef]
4. Amar, R.; Eagan, J.; Stasko, J. Low-Level Components of Analytic Activity in Information Visualization. In Proceedings of the

Proc. IEEE Symposium on Information Visualization, Minneapolis, MN, USA, 23–25 October 2005; pp. 111–117.
5. Saket, B.; Endert, A.; Demiralp, C. Task-Based Effectiveness of Basic Visualizations. IEEE Trans. Vis. Comput. Graph. 2018,

25, 2505–2512. [CrossRef]
6. Fan, W.; Zhao, Z.; Li, J.; Liu, Y.; Mei, X.; Wang, Y.; Tang, J.; Li, Q. Recommender systems in the era of large language models (llms).

arXiv 2023, arXiv:2307.02046.
7. Guo, Y.; Li, W.; Wang, J.; Li, S. Self-supervised-Enhanced Dual Hierarchical Graph Convolution Network for Social Recommenda-

tion. In International Conference on Neural Information Processing; Springer: Berlin/Heidelberg, Germany, 2023; pp. 507–522.
8. Bendouch, M.M.; Frasincar, F.; Robal, T. A visual-semantic approach for building content-based recommender systems. Inf. Syst.

2023, 117, 102243. [CrossRef]
9. Bertin, J.; Berg, W.J.; Wainer, H. Semiology of Graphics: Diagrams, Networks, Maps; University of Wisconsin Press Madison: Madison,

WI, USA, 1983.
10. Cleveland, W.; McGill, R. Graphical Perception: Theory, Experimentation, and Application to the Development of Graphical

Methods. J. Am. Stat. Assoc. 1984, 79, 531–554. [CrossRef]
11. Kerpedjiev, S.; Carenini, G.; Roth, S.F.; Moore, J.D. AutoBrief: A Multimedia Presentation System for Assisting Data Analysis.

Comput. Stand. Interfaces 1997, 18, 583–593. [CrossRef]
12. Wills, G.; Wilkinson, L. AutoVis: Automatic Visualization. Inf. Vis. 2010, 9, 47–69. [CrossRef]
13. Vartak, M.; Huang, S.; Siddiqui, T.; Madden, S.; Parameswaran, A. Towards Visualization Recommendation Systems. Sigmod Rec.

2017, 45, 34–39. [CrossRef]
14. Mackinlay, J.; Hanrahan, P.; Stolte, C. Show Me: Automatic Presentation for Visual Analysis. IEEE Trans. Vis. Comput. Graph.

2007, 13, 1137–1144. [CrossRef]
15. Key, A.; Howe, B.; Perry, D.; Aragon, C. VizDeck: Self-organizing Dashboards for Visual Analytics. In Proceedings of the ACM

SIGMOD, Scottsdale, AZ, USA, 20–24 May 2012; pp. 681–684.
16. Wongsuphasawat, K.; Moritz, D.; Anand, A.; Mackinlay, J.; Howe, B.; Heer, J. Voyager: Exploratory Analysis via Faceted

Browsing of Visualization Recommendations. IEEE Trans. Vis. Comput. Graph. 2016, 22, 649–658. [CrossRef]
17. Wongsuphasawat, K.; Qu, Z.; Moritz, D.; Chang, R.; Ouk, F.; Anand, A.; Mackinlay, J.; Howe, B.; Heer, J. Voyager 2: Augmenting

Visual Analysis with Partial View Specifications. In Proceedings of the CHI, Denver, CO, USA, 6–11 May 2017; pp. 2648–2659.
18. Lee, D.; Setlur, V.; Tory, M.; Karahalios, K.; Parameswaran, A. Deconstructing Categorization in Visualization Recommendation:

A Taxonomy and Comparative Study. IEEE Trans. Vis. Comput. Graph. 2021, 28, 4225–4239. [CrossRef]
19. Luo, Y.; Qin, X.; Tang, N.; Li, G.; Wang, X. DeepEye: Creating Good Data Visualizations by Keyword Search. In Proceedings of

the 2018 International Conference on Management of Data, Houston, TX, USA, 10–15 June 2018; pp. 1733–1736.
20. Moritz, D.; Wang, C.; Nelson, G.L.; Lin, H.; Smith, A.M.; Howe, B.; Heer, J. Formalizing Visualization Design Knowledge as

Constraints: Actionable and Extensible Models in Draco. IEEE Trans. Vis. Comput. Graph. 2019, 25, 438–448. [CrossRef] [PubMed]

http://doi.org/10.1145/22949.22950
http://dx.doi.org/10.1145/49103.1046410
http://dx.doi.org/10.1145/108360.108361
http://dx.doi.org/10.1109/TVCG.2018.2829750
http://dx.doi.org/10.1016/j.is.2023.102243
http://dx.doi.org/10.1080/01621459.1984.10478080
http://dx.doi.org/10.1016/S0920-5489(97)00022-6
http://dx.doi.org/10.1057/ivs.2008.27
http://dx.doi.org/10.1145/3092931.3092937
http://dx.doi.org/10.1109/TVCG.2007.70594
http://dx.doi.org/10.1109/TVCG.2015.2467191
http://dx.doi.org/10.1109/TVCG.2021.3085751
http://dx.doi.org/10.1109/TVCG.2018.2865240
http://www.ncbi.nlm.nih.gov/pubmed/30137004


Analytics 2024, 3 274

21. Dibia, V.; Demiralp, Ç. Data2vis: Automatic generation of data visualizations using sequence-to-sequence recurrent neural
networks. IEEE Comput. Graph. Appl. 2019, 39, 33–46. [CrossRef] [PubMed]

22. Hu, K.; Bakker, M.; Li, S.; Kraska, T.; Hidalgo, C. Vizml: A machine learning approach to visualization recommendation. In
Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems, Scotland, UK, 4–9 May 2019; pp. 1–12.

23. Li, H.; Wang, Y.; Zhang, S.; Song, Y.; Qu, H. KG4Vis: A knowledge graph-based approach for visualization recommendation.
IEEE Trans. Vis. Comput. Graph. 2021, 28, 195–205. [CrossRef] [PubMed]

24. Zhang, S.; Wang, Y.; Li, H.; Qu, H. Adavis: Adaptive and explainable visualization recommendation for tabular data. IEEE Trans.
Vis. Comput. Graph. 2023. [CrossRef]

25. Wu, A.; Wang, Y.; Zhou, M.; He, X.; Zhang, H.; Qu, H.; Zhang, D. MultiVision: Designing Analytical Dashboards with Deep
Learning Based Recommendation. IEEE Trans. Vis. Comput. Graph. 2021, 28, 162–172. [CrossRef]

26. Deng, D.; Wu, A.; Qu, H.; Wu, Y. Dashbot: Insight-driven dashboard generation based on deep reinforcement learning. IEEE
Trans. Vis. Comput. Graph. 2022, 29, 690–700. [CrossRef]

27. Lin, Y.; Li, H.; Wu, A.; Wang, Y.; Qu, H. Dashboard design mining and recommendation. IEEE Trans. Vis. Comput. Graph. 2023,
30, 1–15. [CrossRef]

28. Ojo, F.; Rossi, R.A.; Hoffswell, J.; Guo, S.; Du, F.; Kim, S.; Xiao, C.; Koh, E. Visgnn: Personalized visualization recommendationvia
graph neural networks. In Proceedings of the ACM Web Conference 2022, Lyon, France, 25 April 2022; pp. 2810–2818.

29. Qian, X.; Rossi, R.A.; Du, F.; Kim, S.; Koh, E.; Malik, S.; Lee, T.Y.; Ahmed, N.K. Personalized visualization recommendation. ACM
Trans. Web (TWEB) 2022, 16, 1–47. [CrossRef]

30. Soni, P.; de Runz, C.; Bouali, F.; Venturini, G. A survey on automatic dashboard recommendation systems. Vis. Inform. 2024, 8,
67–79. [CrossRef]

31. Shen, L.; Shen, E.; Tai, Z.; Xu, Y.; Dong, J.; Wang, J. Visual data analysis with task-based recommendations. Data Sci. Eng. 2022,
7, 354–369. [CrossRef]

32. Jiang, Q.; Sun, G.; Li, T.; Tang, J.; Xia, W.; Zhu, S.; Liang, R. Qutaber: Task-based exploratory data analysis with enriched context
awareness. J. Vis. 2024, 27, 503–520. [CrossRef]

33. Berger, M.; McDonough, K.; Seversky, L.M. cite2vec: Citation-Driven Document Exploration via Word Embeddings. IEEE Trans.
Vis. Comput. Graph. 2017, 23, 691–700. [CrossRef] [PubMed]

34. Mikolov, T.; Sutskever, I.; Chen, K.; Corrado, G.; Dean, J. Distributed Representations of Words and Phrases and Their
Compositionality. In Proceedings of the 26th International Conference on Neural Information Processing Systems, Brooklyn, NY,
USA, 5–10 December 2013; pp. 3111–3119.

35. Park, D.; Kim, S.; Lee, J.; Choo, J.; Diakopoulos, N.; Elmqvist, N. ConceptVector: Text Visual Analytics via Interactive Lexicon
Building Using Word Embedding. IEEE Trans. Vis. Comput. Graph. 2018, 24, 361–370. [CrossRef] [PubMed]

36. Mahmood, S.; Mueller, K. Taxonomizer: Interactive Construction of Fully Labeled Hierarchical Groupings from Attributes of
Multivariate Data. IEEE Trans. Vis. Comput. Graph. 2019, 26, 2875–2890. [CrossRef] [PubMed]

37. Cox, K.; Grinter, R.; Hibino, S.; Jagadeesan, L.; Mantilla, D. A multi-modal natural language interface to an information
visualization environment. Int. J. Speech Technol. 2001, 4, 297–314. [CrossRef]

38. Sun, Y.; Leigh, J.; Johnson, A.; Lee, S. Articulate: A Semi-Automated Model for Translating Natural Language Queries into
Meaningful Visualizations. In Proceedings of the Smart Graphics: 10th International Symposium on Smart Graphics, Banff, AB,
Canada, 24–26 June 2010; pp. 184–195.

39. Gao, T.; Dontcheva, M.; Adar, E.; Liu, Z.; Karahalios, K.G. DataTone: Managing Ambiguity in Natural Language Interfaces for
Data Visualization. In Proceedings of the 28th Annual Acm Symposium on User Interface Software & Technology, Charlotte, NC,
USA, 11–15 November 2015; pp. 489–500.

40. Setlur, V.; Battersby, S.E.; Tory, M.; Gossweiler, R.; Chang, A.X. Eviza: A natural language interface for visual analysis. In
Proceedings of the 29th Annual Symposium on User Interface Software and Technology, Tokyo, Japan, 16–19 October 2016;
pp. 365–377.

41. Yu, B.; Silva, C.T. FlowSense: A Natural Language Interface for Visual Data Exploration within a Dataflow System. IEEE Trans.
Vis. Comput. Graph. 2020, 26, 1–11. [CrossRef]

42. Narechania, A.; Srinivasan, A.; Stasko, J. NL4DV: A Toolkit for Generating Analytic Specifications for Data Visualization from
Natural Language Queries. IEEE Trans. Vis. Comput. Graph. 2021, 27, 369–379. [CrossRef]

43. Wang, Y.; Hou, Z.; Shen, L.; Wu, T.; Wang, J.; Huang, H.; Zhang, H.; Zhang, D. Towards natural language-based visualization
authoring. IEEE Trans. Vis. Comput. Graph. 2022, 29, 1222–1232. [CrossRef] [PubMed]

44. Shen, L.; Shen, E.; Luo, Y.; Yang, X.; Hu, X.; Zhang, X.; Tai, Z.; Wang, J. Towards natural language interfaces for data visualization:
A survey. IEEE Trans. Vis. Comput. Graph. 2022, 29, 3121–3144. [CrossRef] [PubMed]

45. Kavaz, E.; Puig, A.; Rodríguez, I. Chatbot-based natural language interfaces for data visualisation: A scoping review. Appl. Sci.
2023, 13, 7025. [CrossRef]

46. Maddigan, P.; Susnjak, T. Chat2vis: Generating data visualisations via natural language using chatgpt, codex and gpt-3 large
language models. IEEE Access 2023, 11, 45181–45193. [CrossRef]

47. Vázquez, P.P. Are LLMs ready for Visualization? arXiv 2024, arXiv:2403.06158.

http://dx.doi.org/10.1109/MCG.2019.2924636
http://www.ncbi.nlm.nih.gov/pubmed/31247545
http://dx.doi.org/10.1109/TVCG.2021.3114863
http://www.ncbi.nlm.nih.gov/pubmed/34587080
http://dx.doi.org/10.1109/TVCG.2023.3316469
http://dx.doi.org/10.1109/TVCG.2021.3114826
http://dx.doi.org/10.1109/TVCG.2022.3209468
http://dx.doi.org/10.1109/TVCG.2023.3327170
http://dx.doi.org/10.1145/3538703
http://dx.doi.org/10.1016/j.visinf.2024.01.002
http://dx.doi.org/10.1007/s41019-022-00195-3
http://dx.doi.org/10.1007/s12650-024-00975-1
http://dx.doi.org/10.1109/TVCG.2016.2598667
http://www.ncbi.nlm.nih.gov/pubmed/27875184
http://dx.doi.org/10.1109/TVCG.2017.2744478
http://www.ncbi.nlm.nih.gov/pubmed/28880180
http://dx.doi.org/10.1109/TVCG.2019.2895642
http://www.ncbi.nlm.nih.gov/pubmed/30735999
http://dx.doi.org/10.1023/A:1011368926479
http://dx.doi.org/10.1109/TVCG.2019.2934668
http://dx.doi.org/10.1109/TVCG.2020.3030378
http://dx.doi.org/10.1109/TVCG.2022.3209357
http://www.ncbi.nlm.nih.gov/pubmed/36197854
http://dx.doi.org/10.1109/TVCG.2022.3148007
http://www.ncbi.nlm.nih.gov/pubmed/35104221
http://dx.doi.org/10.3390/app13127025
http://dx.doi.org/10.1109/ACCESS.2023.3274199


Analytics 2024, 3 275

48. Dibia, V. LIDA: A Tool for Automatic Generation of Grammar-Agnostic Visualizations and Infographics using Large Language
Models. In Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 3: System
Demonstrations), Toronto, ON, Canada, 9–14 July 2023; pp. 113–126.

49. Li, G.; Wang, X.; Aodeng, G.; Zheng, S.; Zhang, Y.; Ou, C.; Wang, S.; Liu, C.H. Visualization Generation with Large Language
Models: An Evaluation. arXiv 2024, arXiv:2401.11255.

50. Tian, Y.; Cui, W.; Deng, D.; Yi, X.; Yang, Y.; Zhang, H.; Wu, Y. Chartgpt: Leveraging LLMs to generate charts from abstract natural
language. IEEE Trans. Vis. Comput. Graph. 2024 , 1–15. [CrossRef] [PubMed]

51. Ye, Y.; Hao, J.; Hou, Y.; Wang, Z.; Xiao, S.; Luo, Y.; Zeng, W. Generative AI for visualization: State of the art and future directions.
Vis. Inform. 2024, 8, 43–66. [CrossRef]

52. Zhao, Y.; Zhang, Y.; Zhang, Y.; Zhao, X.; Wang, J.; Shao, Z.; Turkay, C.; Chen, S. LEVA: Using large language models to enhance
visual analytics. IEEE Trans. Vis. Comput. Graph. 2024 , 1–17. [CrossRef]

53. Kim, N.W.; Myers, G.; Bach, B. How Good is ChatGPT in Giving Advice on Your Visualization Design? arXiv 2023,
arXiv:2310.09617.

54. Wang, L.; Zhang, S.; Wang, Y.; Lim, E.P.; Wang, Y. LLM4Vis: Explainable visualization recommendation using ChatGPT. arXiv
2023, arXiv:2310.07652.

55. Cars Dataset. Available online: http://archive.ics.uci.edu/ml/datasets/Auto+MPG (accessed on 29 November 2022).
56. NBA Player Dataset. Available online: https://www.kaggle.com/datasets/drgilermo/nba-players-stats (accessed on

29 November 2022).
57. Datamuse. Available online: https://www.datamuse.com/ (accessed on 29 November 2022).
58. Loper, E.; Bird, S. NLTK: The Natural Language Toolkit. In Proceedings of the Workshop on Effective Tools and Methodologies for

Teaching Natural Language Processing and Computational Linguistics—Volume 1, Philadelphia, PA, USA, July 2002; pp. 63–70.
59. Honnibal, M.; Montani, I.; Van Landeghem, S.; Boyd, A. spaCy: Industrial-Strength Natural Language Processing in Python.

2020 . Available online: https://spacy.io/ (accessed on 20 June 2024).
60. Clark, K.; Manning, C.D. Deep Reinforcement Learning for Mention-Ranking Coreference Models. In Proceedings of the 2016

Conference on Empirical Methods in Natural Language Processing, Austin, TX, USA, 1–5 November 2016; pp. 2256–2262.
61. Rehurek, R.; Sojka, P. Gensim–Python Framework for Vector Space Modelling; NLP Centre, Faculty of Informatics, Masaryk University:

Brno, Czech Republic, 2011; Volume 3.
62. Speer, R.; Chin, J.; Havasi, C. Conceptnet 5.5: An open multilingual graph of general knowledge. Proc. AAAI Conf. Artif. Intell.

2017, 31, 4444–4451. [CrossRef]
63. Wilson, B. The Natural Language Processing Dictionary. Available online: http://www.cse.unsw.edu.au/~billw/nlpdict.html

(accessed on 29 August 2023).
64. Pennington, J.; Socher, R.; Manning, C.D. GloVe: Global Vectors for Word Representation. In Proceedings of the Empirical

Methods in Natural Language Processing (EMNLP), Doha, Qatar, 25–29 October 2014; pp. 1532–1543.
65. Bojanowski, P.; Grave, E.; Joulin, A.; Mikolov, T. Enriching word vectors with subword information. Trans. Assoc. Comput.

Linguist. 2017, 5, 135–146. [CrossRef]
66. NBA Legends Profiles. Available online: https://www.nba.com/history/legends (accessed on 29 November 2022).
67. OpenAI. ChatGPT (Feb 13 Version) [Large Language Model]. Available online: https://chat.openai.com (accessed on

14 October 2023).
68. Saket, B.; Moritz, D.; Lin, H.; Dibia, V.; Demiralp, C.; Heer, J. Beyond heuristics: Learning visualization design. arXiv 2018,

arXiv:1807.06641.
69. Latif, S.; Zhou, Z.; Kim, Y.; Beck, F.; Kim, N.W. Kori: Interactive Synthesis of Text and Charts in Data Documents. IEEE Trans. Vis.

Comput. Graph. 2022, 28, 184–194. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/TVCG.2024.3368621
http://www.ncbi.nlm.nih.gov/pubmed/38386583
http://dx.doi.org/10.1016/j.visinf.2024.04.003
http://dx.doi.org/10.1109/TVCG.2024.3368060
http://archive.ics.uci.edu/ml/datasets/Auto+MPG
https://www.kaggle.com/datasets/drgilermo/nba-players-stats
https://www.datamuse.com/
https://spacy.io/
http://dx.doi.org/10.1609/aaai.v31i1.11164
http://www.cse.unsw.edu.au/~billw/nlpdict.html
http://dx.doi.org/10.1162/tacl_a_00051
https://www.nba.com/history/legends
https://chat.openai.com
http://dx.doi.org/10.1109/TVCG.2021.3114802

	Introduction
	Related Work
	Visualization Recommender Systems
	NLP in Visualization
	Large Language Models (LLMs) for Visualization

	Preliminary Study: Can We Learn from Text on the Web?
	Design Requirements
	TaskFinder
	Attribute Representation
	Preprocessing
	Information Extraction
	Parsing Sentences
	Identifying Attribute Mentions
	Identifying Tasks Applied to Attributes

	Statistical Analysis
	Ranking Attributes and Associated Tasks
	Mapping between Analytical Tasks and Visualizations
	Curating Visualizations

	Demonstration
	Car Comparisons
	NBA Player Achievements

	Evaluation—The Effect of Corpus Size
	Discussion and Limitations
	Conclusions
	References

