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Abstract—We describe a GPU-accelerated framework that effi-
ciently models spatially (shift) variant system response kernels and
performs forward- and back-projection operations with these ker-
nels for the DIRECT (Direct Image Reconstruction for TOF) iter-
ative reconstruction approach. Inherent challenges arise from the
poor memory cache performance at non-axis aligned TOF direc-
tions. Focusing on the GPUmemory access patterns, we utilize dif-
ferent kinds of GPU memory according to these patterns in order
to maximize the memory cache performance. We also exploit the
GPU instruction-level parallelism to efficiently hide long latencies
from the memory operations. Our experiments indicate that our
GPU implementation of the projection operators has slightly faster
or approximately comparable time performance than FFT-based
approaches using state-of-the-art FFTW routines. However, most
importantly, our GPU framework can also efficiently handle any
generic system response kernels, such as spatially symmetric and
shift-variant as well as spatially asymmetric and shift-variant, both
of which an FFT-based approach cannot cope with.

Index Terms—CUDA, DIRECT TOF PET reconstruction, for-
ward and back-projection, GPU, spatially varying kernels.

I. INTRODUCTION

T HE introduction of Time-Of-Flight (TOF) information to
positron emission tomography (PET) image reconstruc-

tion has been a decisive advancement. Having TOF informa-
tion available makes it possible for a point of annihilation (or an
event) to be much more accurately predicted than with conven-
tional PET imaging. This improved localization reduces noise
in the imaging data, resulting in higher image quality, shorter
imaging times, and/or lower dose to the patient [1]–[4].
A full realization of the TOF information requires proper re-

construction tools. The DIRECT (Direct Image Reconstruction
for TOF) [5] is a novel approach for TOF reconstruction and is
more efficient than traditional list-mode and binned TOF-PET
reconstruction approaches [6], [7]. In the binned approaches,
the events are binned by their Line-Of-Response (LOR) and ar-
rival time to form a set of histo-projections, one for each angular
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view. On the other hand, in the DIRECT approach the events
are first sorted into a (sub)set of angular views and then de-
posited for each view into a dedicated histo-image, each having
the same lattice configuration and the same voxel resolution as
the reconstructed image.
As in any TOF iterative reconstruction, DIRECT requires

convolution-like operations (forward- and back-projections) in
each corrective update using the system response (SR) kernels
to model the scanner’s timing (TOF) and detector (LOR) reso-
lution functions. These operations can be performed efficiently
in Fourier space when the SR kernels are spatially (shift) in-
variant. However, in practical applications the SR kernels are
not shift-invariant. Rather, their width considerably increases
towards the edge of the FOV and becomes asymmetric towards
the edge of the scanner. Also, a kernel’s size is typically quite
large—in our specific application it is 300–600 ps (45–90 mm
FWHM) of TOF resolution and 5–10 mm FWHM of LOR res-
olution in the axial and radial directions [8], [9]. Handling these
types of SR kernels in the Fourier domain is difficult, while op-
erating in the spatial domain is computationally very expensive.
We have sought to overcome this challenge by GPU-accelera-
tion [10], [11], exploiting the massively parallel computations
they allow.
Mapping a CPU-based algorithm to the GPU and achieving

1–2 orders of speed-up is typically not straightforward. The
CPU-based algorithm often needs to be reordered or decom-
posed to fit optimally to the GPU architecture and program-
ming model. A critical component in GPU architectures is the
memory. It is organized into a hierarchy, with some of it on-chip
but the majority off-chip (but on-board). The former is orders
of magnitudes faster. As it takes 100s of clock cycles to bring
off-chip data into on-chip memory, it is of utmost importance to
re-use the local data among the parallel threads as much as pos-
sible. Also, since on-chip memory is quite small (in the order of
kilobytes), careful occupancy planning of this limited resource
is equally important.
The SR kernel has a much wider width in the TOF direction

than in the other directions. Since it can traverse the histo-image
space at arbitrary angles, the data access at these off-axis ori-
entations is non-sequential. To achieve a maximum utilization
of on-chip GPU memory for these off-axis directions, we re-
cently proposed a two-stage scheme [12]. It first resampled (ro-
tated) the data into a storage pattern aligned with the TOF direc-
tion of the SR kernels, allowing for fast linear access in on-chip
memory. By subtracting the smoothing effects of the resampling
interpolation kernel from the SR kernel, we were able to com-
pensate for the interpolation kernel’s blurring effects. However,
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despite the system’s good time performance, it has two major
limitations: (1) practical interpolation kernels are often wider
than the actual detector resolution and thus the subtraction of
the interpolator effects from the SR kernel is not fully possible,
and (2) the method is only applicable for symmetric SR kernels,
ignoring that accurate SR kernels have some degree of asym-
metry at large radii.
We chose to go a different route by using a one-stage method

which does not require prior interpolation. Here we aimed for
a method that (1) maximizes memory cache performance by
carefully selecting GPUmemory based on the access patterns to
the memory and (2) minimizes latency stemming from memory
operations on both thread and instruction levels.
Our paper is organized as follows. Section II provides more

detail on the forward- and backward-operations of DIRECT.
Section III covers relevant background of both GPU architec-
ture and programming model. Section IV describes the method-
ology and technical detail of our approach, while experimental
results are presented in Sections V and VI.

II. PROJECTION IN DIRECT

The characteristics of the SR kernels are determined by the
TOF-PET detector. In this work, we considered an experimental
full-ring TOF-PET detector based on the LaBr crystals devel-
oped at the University of Pennsylvania [8], [9]. It has about
300–400 ps TOF resolution (45–60 mm). The TOF information
gives the probability of where a detected event was generated
along its LOR. Furthermore, an event can be observed at mul-
tiple detector crystals due to detector resolution effects, called
LOR resolution. Practical LOR blurring in a whole body scanner
can vary within a range of 5–10 mm FWHM in the LOR radial
direction. The variation in the LOR axial direction is relatively
small and consequently it is kept constant in this study. The SR
kernels we considered have ellipsoidal-like shapes with wider
width in the TOF direction and a varying FWHM in the LOR
radial direction.
Iterative reconstruction typically alternates projection and

back projection. In DIRECT, the forward-projection operator
projects an image into histo-image space. The discrepancy
(ratio) between these simulated projection data and the mea-
sured (histo-image) data obtained from the scanner is then
back-projected into image space to reconstruct a corrected
image. As mentioned, it is the distinguishing feature of the
DIRECT approach that both of these operations occur in the
same lattice configuration and at the same voxel resolution.
In DIRECT both forward and backward projection operations

become convolution-like operations using the SR kernels [5].
The forward-projection can be interpreted as a scattering opera-
tion, where each image voxel spreads its value to its neighbors,
weighted by that voxel’s SR kernel. In contrast, the back-pro-
jection (transpose of the forward-projection) can be described
as a gathering operation, where each voxel collects values from
its neighbors, weighted by that voxel’s SR kernel. Fig. 1 gives
an illustration. For the symmetric shift-invariant SR kernels,
both projection and back-projection operations are equivalent
3D convolution operations, which can be handled efficiently by
means of FFT [5]. However, in the case of shift-variant and/or

Fig. 1. Forward- and backward-projection in DIRECT.

asymmetric SR kernels, projection and back-projection opera-
tions must be strictly distinguished and handled in the spatial
domain because the FFT cannot handle such generic system res-
olution models. Detailed comparisons and explanations will be
discussed in Section V.B.

III. NVIDIA GPU ARCHITECTURE AND ITS PROGRAMMING
MODEL, CUDA

We have accelerated both forward- and back projections on
a NVIDIA GTX 285 GPU with 1GB DDR3 off-chip memory.
This GPU has 240 CUDA cores organized into 30 streaming
multiprocessors (SM) of 8 scalar processors (SP) each. Groups
of SMs belong to Thread Processing Clusters (TPC). This GPU,
like all modern GPUs, has off-chip memory including global,
texture and constant memory which all incur hundreds of cy-
cles of memory latency. Access to off-chip memory is often the
bottleneck of a GPU application. Fortunately, texture and con-
stant memory are cached, replacing the hundreds of cycles of
latency with only a few cycles for on-chip cache access. The
CUDA (Computer Unified Device Architecture) is a C-like API
used to program NVIDIA GPUs. Execution of a CUDA kernel
(or function) invokes multiple threads which are organized into
thread blocks on a grid. The GTX 285 can have a maximum of
512 threads per block. Some important parameters for the GTX
285 architecture and its CUDA programming model are listed
in Table I [13], [14].
Each SM uses a 24-stage and in-order SIMD pipeline without

forwarding [13]. Since there are 8 SPs in one SM this implies
that at least 192 active threads are needed to avoid stalling
for true data dependencies between consecutive instructions
from a single thread. All threads in a SM are scheduled in the
SIMD pipeline in a unit called warp. A warp is a collection
of 32 threads, executing the same instruction with different
data values over four consecutive clock cycles in all pipelines.
A warp has zero scheduling overhead on a fine-grained basis
[15] and so can be easily replaced by another, ready warp
when one of its threads is stalled due to a memory request. In
the following subsections, we will discuss thread occupancy
and thread efficiency, as well as thread-level parallelism and
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TABLE I
NVIDIA GTX 285 GPU PARAMETERS

instruction-level parallelism. Since these are strongly related
to the usage of GPU resources and so have a large impact on
the performance of a GPU application, it is important to have
a good understanding of them.

A. Thread Occupancy and Efficiency

The thread occupancy is defined as the number of active
threads per thread block (in percent of the device’s full ca-
pacity); while the thread efficiency is defined as the overall
computational efficiency of the individual threads [16]. Run-
ning more threads in a thread block results in higher thread
occupancy, and this can hide long memory latencies thanks
to the fast context switching among warps. However, higher
thread occupancy also requires more memory to store state
and data for all of these threads. Since there is only a very
limited amount of on-chip resources, this can then lead to an
increased use of high-latency off-chip memory, lowering thread
efficiency. On the other hand, if a thread block fully utilizes the
on-chip resources to obtain higher thread efficiency the total
number of threads in the thread block will be restricted, low-
ering thread occupancy. Faced with this conflict, it is important
to finely tune the amount of on-chip resources allocated to each
thread by optimizing this trade-off.

B. Two Forms of Parallelism in CUDA: TLP and ILP

There are two forms of parallelism in CUDA: thread-level
(TLP) and instruction-level (ILP) parallelism. Both forms iden-
tically identify independent instructions but in different granu-
larities of parallelism [17]. As CUDA models the GPU archi-
tecture as a multi-core system, it abstracts the TLP of the GPU
into a hierarchy of threads [13]. The more threads a thread block
has the higher the TLP and therefore the higher the thread occu-
pancy. TLP is achieved by invoking the CUDA functions with
a sufficiently large number of threads.
On the other hand, ILP can be achieved by executing multiple

independent instructions in each thread. Then, while a thread is

waiting for long-latency memory, it executes another indepen-
dent instruction instead of switching its context. For example,
unrolling a loop in a kernel function can increase the ILP. It
is obvious that increasing ILP will generate higher usage of
on-chipmemory and thus will yield higher thread efficiency (but
lower thread occupancy). In our work, we explore both forms
of parallelism for both projection operators and the results are
evaluated with time performance as well as thread occupancy
measures (see Section V.A).

IV. METHODS

We pre-compute a set of shift-variant SR kernels and store
them in different types of GPU memory to maximize memory
cache performance. For this, we first create a shift-invariant el-
liptical SR kernel that has maximum TOF and LOR resolution.
The information of the elliptical SR kernel is divided into lo-
cation and value information (SR_loc and SR_val in Fig. 2).
Here, the location information refers to the Cartesian coordi-
nate of the SR kernel’s origin and the value information refers
to the actual kernel values at a voxel in histo-image space. To
handle shift-variant SR kernels, the histo-image is segmented
according to the LOR distance, which is defined as the distance
from the center of the image data to a voxel in the LOR radial
direction (SR_id in Fig. 2). The SR_id is a 2-D look-up table of
the same size (width and height) as the image transverse slice. It
only needs to be computed once, in both non-tilt and tilt cases.
As discussed in Section II, the LOR resolution only varies in
the radial direction. Both SR_loc and SR_val arrays are stored
in (linear) global memory such that each thread can access them
in a coalesced manner. Finally, while the accesses to the SR_id
for each thread are spread out, they are well localized within the
shape of the elliptical SR kernel. This kind of memory access
pattern (called 2-D cloud) is very efficient with texture memory
and its cache [18]. The image data are also mapped to texture
memory for similar reasons.
This method has the following two advantages: (1) unlike

our previous work [12], it does no longer require an interpo-
lation kernel, and (2) projection operations are much easier to
implement since the (enclosing maximum) outline of the ellip-
tical SR kernels is always symmetric and shift-invariant. Fig. 2
illustrates via a 2-D space example how the elliptical SR kernel
is modeled and utilized.

A. GPU Implementation of the Projection Operations

In back-projection, each thread performs the gather operation
for its target voxel as follows: (1) compute the coordinate of the
voxel and select SR_val by fetching SR_id, and (2) collect the
values of the voxel neighbors and multiply them by the values
of the selected SR kernel mapped to these voxels locations. In
contrast, the forward projection is a scattering operation. It is
different from back-projection in that each voxel writes and up-
dates its neighbors weighted by the corresponding kernel value
(see Section II).
The GPU gather operations are more efficient than scatter

operations because memory reads can be cached and are there-
fore faster thanmemory writes.Moreover, gather operations can
avoid write hazards (or race conditions) by writing data in an
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Fig. 2. Modeling spatially variant SR kernels. In this illustration, there are two
regions (blue and white) having different LOR resolution in the radial direction.
In each region, the ellipsoid SR kernel (red-dot boundary) shares the same lo-
cation information (SR_loc) for the grid points within the kernel. For example,
SR_loc will return (0, 1) for all points in the kernels (a), (b), and (c). This infor-
mation can be used to fetch image data at those points by adding the origin of
each kernel. However, each kernel can have a different SR_val according to its
region. Assuming SR_loc is a following row-major order, for example, SR_val
will return a and b for the points in a and b, respectively; but, for the point in
c, SR_val will return c by fetching it in reverse order.

orderly fashion, while scatter operations require slower atomic
operations to avoid such hazards [18]. For these reasons, we
converted the scatter operation of the forward-projection into a
gather operation. Note that this (forward-projection) gather op-
eration is different from the back-projection gather operation for
the variant and/or asymmetric kernels in that the kernel itself is
dependent on the neighbor’s location and not just its looked-up
value. Also, the SR kernels used here are radially flipped ver-
sions of the SR kernels used for the backprojection operation.
We combine TLP with ILP to minimize the long memory la-

tency associated with fetching the SR_val, SR_loc, SR_id and
image data within the gather operations. We add ILP to TLP
by assigning multiple voxels to each thread. The voxels are
chosen along the axial direction (z-axis) so that we can keep the
same voxel access pattern for the SR_id and image data. Also,
the instructions for these voxels are unrolled to hide latencies
among them. Fig. 3 gives the pseudo code for [TLP only] and
for [ ].

V. ANALYSIS OF PROJECTION OPERATIONS

A. Time Performance Analysis

Table II gives relevant CUDA statistics for the projection
code and the average time performance for a one of the views.
As described in Section IV, the projection code with ILP con-
sumes more registers per thread and it causes lower thread oc-
cupancy. However, the ILP more efficiently handles the long la-
tency associated with fetching the SR information and the image
data. This efficiency results in better time performance in ILP
(about 2 times faster than TLP only). There is also almost no dif-
ference between the times required for forward projection and
back projection. These findings impressively demonstrate that
in order to optimize the run time speed for a GPUs-accelerated

Fig. 3. Pseudo CUDA code for projection operations. [Top] TLP only and
[Bottom] . In the top, each thread does gathering operations for
one output, while, in the bottom, the gathering operations are performed for 16
outputs (experimentally chosen) per thread.

application one must study the performance of all available op-
tions and then pick the best.
We also compared the ILP CUDA projection code with a

CPU-based FFT approach. Here we used FFTW [19]—the
fastest free FFT software implementation available—on a
Mac Pro 2.66 GHz Quad-Core Intel Xeon. While we report
results for single-threaded FFTW, experiments revealed that
multi-threading FFTW only yielded a speedup of a little more
than two for the 3D-FFT.
Fig. 4 [top] shows the time performances with different SR

kernel sizes. FFT-based approaches are generally attractive
since their time performance is not affected by the SR kernel
size, at least for a fixed grid size. This is not the case for
the spatial-domain CUDA approach. However, we find that
given the characteristics of modern PET scanners (600 ps
and below), the CUDA approach in fact exhibits similar or
faster time performance than the FFT-based one. Our study is
based on clinical data and a resolution size representative of a
state-of-the-art TOF scanner based on the LaBr detector [8],
[9].
Fig. 4 [bottom] shows the effect of voxel size. Reducing the

voxel size corresponds to an increase of the total number of
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TABLE II
THE PROJECTION CUDA KERNEL’S ATTRIBUTES AND TIME PERFORMANCE FOR ONE VIEW

Fig. 4. Time performance for the FFT and the CUDA approach. Top: time per-
formances for different SR kernel resolutions and for a fixed voxel size and
dimension (4 mm , 144 144 48). Top-left: varying TOF resolution (300 to
1200 ps FWHM) with fixed LOR resolution (10 mm and 5 mm radial and axial
FWHM, respectively). Top-right: varying LOR resolution in the radial direc-
tion (5 to 20 mm FWHM) with fixed TOF (300 ps) and axial (5 mm) resolu-
tions. Bottom: time performances for different voxel sizes (4 to 2 mm), and
fixed SR kernel resolutions (375 ps FWHM for TOF and 6.5 mm for LOR). The
red rectangle indicates configurations with parameter settings that are clinically
practical.

voxels within the image, but at the same time it also leads to an
increase of the number of voxels under the SR kernel. Both raise
the computational demands of the space domain operations. For
a reduction of voxel size from 4 to 2 mm, the number of oper-
ations for the space-based projection operations increases

-times, while for the FFT-based approach the number
of operations grows only by a factor close to -times,
because the FFT approach performance is affected only by the
image dimensions and not by the SR kernel size. In practice,
the CUDA approach has a time increase slightly less than pre-
dicted—about a factor of 54.3—for a 4 to 2 mm voxel size re-
duction, while the FFT approach time grows by a factor of about
9.4. For 4 mm voxels the CUDA approach is about twice as fast
as the FFT approach, while for 2 mm voxels it is about 2.7-times
slower. However, it is crucial to realize that the CUDA approach
can also efficiently handle projection operations with variant
and/or asymmetric SR kernels (shown below), which is not pos-
sible with the FFT approach. This is the strength and motivation
of our effort.

B. Accuracy Tests of GPU Forward and Back-Projectors

Figs. 5 and 6 show the projection results for three point
sources with identical intensity values and placed along the
y-axis in the same image slice but using different SR kernels.
The color scale of these images has been carefully chosen

Fig. 5. Comparison of the FFT and CUDA projector for the symmetric in-
variant case. The SR kernel has a 900 ps TOF resolution, and 50 mm and 10
mm LOR resolution in the radial and axial directions, respectively. (a) FFT (b)
CUDA and (c) image. [Top] transverse, [Middle] sagittal
and [Bottom] coronal view. The sagittal and coronal views are zoomed-in to
the center point source for better illustrations.

to best show the structure. In the CUDA approach the SR
kernel has been truncated to approximately three times of the
kernel FWHM ( 3 ) to minimize the SR kernel truncation
errors. The maximum error between the two approaches is less
than 1% of the maximum intensity value (Fig. 5(a) and (b)).
With symmetric invariant SR kernels, there is no difference
between the forward- and back-projections. The effects of the
SR kernel truncation in the CUDA approach can be observed
in the difference images in Fig. 5(c). We observe elliptical
boundaries where the CUDA approach drops to zero while the
FFT approach still contains non-zero values (these effects are
less than 0.48% of the maximum value). On the other hand,
the truncation of the discretized SR kernel spectrum in the FFT
approach causes small ripples (Gibbs artifacts) especially in
the directions of the short kernel axes (LOR radial and axial
directions) (Fig. 5(c)). Furthermore, for the extra-large SR ker-
nels used in this example, we can also observe spatial aliasing
effects in the FFT approach caused by the periodic nature of the
discretized image in the FFT, leading to cyclic convolution. For
example, in Fig. 5(c) [transverse view], the portion of the top
of the SR kernel tail extending beyond (and truncated by) the
top image boundary is leaking back into the bottom part of the
image (from the periodic repeats of the image). To avoid such
aliasing effects in the FFT approach, volume images can be
padded with zeros before 3D-FFTs in the and directions.
For a practical SR kernel and image sizes no or only a very
small amount of zero-padding is usually needed.
But in practice, the SR kernels have different LOR resolutions

depending on their radial locations. In the CUDA approach,
such spatially varying SR kernels can be accurately modeled
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Fig. 6. CUDA projector with generic SR kernel modeling. The SR kernels have
600 ps FWHM TOF resolution, and a LOR resolution of 10 to 80 mm (spatially
variant) or 50 mm (spatially invariant) FWHM in the radial direction and 10
mm FWHM in the axial direction. (a) spatially variant symmetric (b) spatially
invariant asymmetric and (c) spatially variant asymmetric. [Top] forward pro-
jection and [Bottom] back-projection.

and applied to the projection operations. With symmetric (spa-
tially) variant SR kernels, the results from forward- and back-
projections are different, as shown in Fig. 6(a). More specifi-
cally, with symmetric variant SR kernels each voxel has a par-
ticular SR kernel based on its radial location. Thus, the forward-
projection spreads the intensity value at each point source to its
neighbors and results in symmetric ellipsoid-like shapes, each
having a different level of blurring (width) according to their
radial distance from the central line of the projection (Fig. 6(a)
[top]). In contrast, during back-projection, voxels at various ra-
dial distances from the projection center collect values from
these same point sources but now the contributing SR kernels
have different widths (narrower at locations radially closer to the
center, and wider at locations radially closer to the FOV edge).
This results in asymmetric elliptical shapes (wider towards the
FOV edge, Fig. 6(a) [bottom]).
Lastly, we tested the CUDA code for forward- and back-

projection with asymmetric invariant and variant SR kernels.
To simulate asymmetric kernels the LOR resolutions in the ra-
dial direction are generated using the sum of two Gaussians in
which one has twice the width. The wider Gaussian is shifted
such that the sum can have a wider width on the side of the
kernel towards the center of the FOV. With asymmetric and/or
invariant SR kernels, we can observe different behaviors for
forward- and back-projection operations which are by nature
scatter and gather operations, respectively. For the forward-pro-
jection (Fig. 6(b) and (c) [top]), the results have an elongated
response toward the FOV center, while during back-projection
(Fig. 6(b) and (c) [bottom]) the elongated response is in the op-
posite direction. Especially with variant SR kernels, the elonga-
tion gets longer (or blurs more) as it goes closer to the edge of the
FOV (Fig. 6(c)). We note that the large SR kernels used in these
tests were not modeled based on real data—rather we sought
to demonstrate the capability of our CUDA code to handle any
generic SR kernel resolutions, which are difficult (if not impos-
sible) to model with an FFT-based approach.

VI. USE OF GPU PROJECTORS WITHIN DIRECT

In this section we test the performance of our CUDA for-
ward- and back-projectors using both symmetric invariant (for
comparison to the compatible FFT case) and symmetric variant
SR kernels. The kernel parameters employed in this section are
chosen to emulate (at various degrees) the characteristics of a
state-of-the-art whole body TOF PET scanner.

A. Methods

We tested the DIRECT TOF PET reconstruction with two
different projection approaches (FFT and CUDA), using
measured data obtained from the University of Pennsylvania
prototype whole body LaBr TOF-PET scanner [8], [9]. This
scanner has a 57.6 cm FOV, axial acceptance angle,
with 4 4 30 mm LaBr crystals (and with 4.3 mm crystal
pitch). The crystals are located within 24 detector flat modules,
placed on a cylindrical detector surface of diameter 93 cm. The
intrinsic spatial resolution of the scanner is about 5.8 mm and
the timing resolution is approximately 375–430 ps (depending
on the count rates). The measured data include attenuation,
scatter and random events. The phantom object we used is a
35 cm diameter cylinder with clinically relevant volume and
attenuation factors representative of a heavy patient. It contains
six uniformly distributed 10 mm diameter spheres at radial
positions of about 7.5 cm (from the center) which are placed in
the central slice of the scanner. We acquired a relatively high
number of counts (approximately 430 M prompts) to enable us
to see any differences between the approaches.
We use a block version of RAMLA (Row-Action Maximum

Likelihood Algorithm). In DIRECT, we group and deposit
events into 40 3 views: 40 intervals in azimuthal angle and 3
intervals in co-polar angle. Each view represents one block of
RAMLA, giving us 120 updates for one pass through the data
in the 40 3 view case. We employ TOF kernels representing
400 ps TOF resolution of measured data, and model spatially
invariant and variant detector resolution kernels; the data
deposition effects are not implicitly modeled in this particular
study. The invariant LOR resolution kernel is applied for both
approaches, FFT and CUDA, while the variant LOR resolution
kernels are applied only in CUDA. The final image has a size
of 144 144 48 with 4 mm voxels.
Fig. 7 shows the widths (FWHM) of the modeled detector

LOR resolutions for both the invariant and the variant cases.
For the invariant case, we use a 5.8 mm FWHM LOR resolu-
tion over the entire FOV. We also model three variant kernels:
(1) matching the LOR resolution at the center of the scanner
(variant2), (2) matching the LOR resolution at the sphere loca-
tions at 7.5 cm radius (variant1), and (3) choosing a generic res-
olution functions varying with the radius in a non-linear fashion
(variant3).
We investigated the behavior of the variant and invariant res-

olution modeling in conjunction with iterative reconstruction,
using the contrast versus noise trade-off for a range of itera-
tions and reconstruction parameters. Contrast recovery coeffi-
cients (CRC) are calculated for all spheres as:

, where is the mean value in a 2D circular region of
interest (ROI) axially and transversely centered over the sphere,
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TABLE III
TIME PERFORMANCE COMPARISON IN DIRECT TOF PET RECONSTRUCTION BETWEEN FFT AND CUDA

TABLE IV
MEASURED TIME AT CRITICAL STAGE FOR INVARIANT AND VARIANT1 CASES WITH GPU IN DIRECT TOF PET (20 ITERATIONS)

Fig. 7. Models of the spatially invariant and variant detector resolutions. The
variant detector resolutions are modeled to vary along the radial direction with
different slopes.

is the mean background value in the 2D annular region sur-
rounding and centered over each sphere, and is the ideal con-
trast value. The reported CRC values are the average values over
all 10 mm spheres in the phantom. The noise is evaluated as
the pixel-to-pixel noise standard deviation inside a large 50 mm
ROI located in the central uniform region of the phantom and
normalized by the background mean value.

B. Reconstruction Results

Table III shows the time performance for the invariant and
variant SR kernels with the LOR widths based on the plots
shown in Fig. 7. Similar to the evaluations of the projection
operations, the CUDA implementation shows slightly faster or
comparable time performance to the FFT for the invariant case.
For the variant cases, the required time per iteration is slightly
longer compared to the FFT invariant case. Note that for the
variant SR kernels, the SR kernel’s physical (memory) size is
defined by the longest LOR width, so the practical CUDA time
performance is determined by the LOR resolution at the ra-
dial boundary of the FOV. The DIRECT iterative reconstruction
time includes all of the reconstruction stages such as reading the
data, data transfers to and from theGPU, forward- and back-pro-
jection, and the discrepancy (computing the differences between
the forward-projected and measured deposited data) and update

(updating the image estimation) operators (Table IV). The for-
ward- and back-projection operations still remain the bottleneck
of the reconstruction process even if they are implemented on
the GPU and were carefully optimized. The other operations
take only about 10% (or less) of the total reconstruction time.
According to Amdahl’s law which governs the speedup that can
be obtained when only a fraction of the program is improved, the
maximum possible speed-up is . It is therefore
not beneficial to optimize and/or implement these operations on
the GPU.
Fig. 8 [top] illustrates the contrast versus noise trade-off

curves for DIRECT reconstructions using variant and invariant
resolution models. Fig. 8 [bottom] shows representative images
of individual cases for matched noise levels (about 8%). It
is clear from both the graphs and the visual image quality
that the FFT and GPU approaches using invariant resolution
models provide nearly identical results. In the spatially variant
case (variant1 in Fig. 7), the CRC curve converges to slightly
lower values compared to the invariant case. This is due to
the fact that in the variant case the actually modeled LOR
resolution at each particular sphere location changes with the
projected view based on the radial distance of the sphere from
the projection central line in each view. Thus, although this
is a more accurate modeling, the average modeled resolution
is actually lower than that in the invariant case, and this leads
to a lower contrast values. For the other variant cases, having
higher resolution models, the contrast converges to higher
values. This is accompanied by increased overshoots (Gibbs
artifacts) at the object boundaries (Fig. 8 [bottom]), consistent
with our previous experiences (as well as that of others) with
the resolution modeling approaches.

VII. DISCUSSION

In the work conducted so far we did not compare our GPU-
based schemes with equivalently optimized CPU implementa-
tions, both in terms of performance and in terms of accuracy.
While this is planned for the future, it is unlikely that it will
change the outcome and conclusions of our work.
First, it is doubtful that the performance of such a CPU-based

scheme will match that of the GPU. This is because (for shift-in-
variant kernels) a CPU-based spatial convolution scheme will
be naturally inferior to the more efficient divide-and-conquer
strategy of an FFT-based implementation. On the other hand,
our GPU-implementation is nearly on par, at least for problem
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Fig. 8. [top] CRC vs. Noise trade-off curves. [bottom] Reconstructed images
(transverse view) at matched noise level (8%) (a) [FFT] invariant SR kernel, (b)
[CUDA] invariant SR kernel, (c) [CUDA] variant1, (d) [CUDA] variant2 and
(e) [CUDA] variant3.

sizes relevant to current clinical routine. In fact, we have ob-
served this type of situation before in the context of exact CT re-
construction via the inverse Radon transform [20]. Then, mod-
ifying the shift-invariant CPU implementation to shift-variant
kernels will incur similar performance losses than the modifi-
cation of our GPU-accelerated scheme. Hence, the CPU imple-
mentation will still be significantly slower.
Second, when it comes to accuracy, with the emergence

of GPU-based supercomputers employed for serious scien-
tific simulations, GPUs have become as accurate as high-end
CPUs. The recent NVIDIA Kepler GPU architecture fully
complies with the IEEE 754 standard that governs single-and
double-precision arithmetic. The work presented here has used
a slightly older GPU which deviates from this standard in
that some rounding modes as well as the NaN signal are not
supported. But previous publications such as ours [11] have
shown that even CT reconstructions obtained with much older
GPU architectures were largely indistinguishable from their
CPU-computed counterparts. Nevertheless, the GPU code that
is the basis of the work presented here will trivially port to a
Kepler GPU board and so honor the full IEEE standard.

VIII. CONCLUSION

We have implemented, optimized and evaluated an efficient
framework for GPU-based forward- and back-projection opera-
tions (at any tilt and view direction) for the DIRECT TOF PET
iterative reconstruction approach. Our framework is quite gen-
eral and supports very generic system kernels, including both
symmetric and asymmetric spatially (shift) variant and invariant
kernels. We paid special attention to the memory access patterns
for off-aligned axes in GPU memory and subsequently devised
CUDA code that achieves a high level of performance by care-
fully balancing thread-level (TLP) and instruction-level (ILP)

parallelism. Our GPU accelerated scheme is particularly rele-
vant because it supports spatially variant and asymmetric ker-
nels where algorithmically more efficient schemes based on the
FFT cannot be used. It thus provides an important contribution
to the PET reconstruction field since it allows for more accurate
SR kernel modeling, particularly within the DIRECT iterative
reconstruction framework without impeding clinical time per-
formance.
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