
Toward Performance Visualization for TAU Instrumented
Exascale Scientific Workflows

Wei Xu
Brookhaven National Laboratory
Computational Science Initiative

Upton, New York 11973
xuw@bnl.gov

Cong Xie
Stony Brook University

Computer Science Department
Stony Brook, New York 11790

coxie@cs.stonybrook.edu

Kevin Huck
University of Oregon

Performance Research Lab
Eugene, Oregon

khuck@cs.uoregon.edu

Hubertus van Dam
Brookhaven National Laboratory
Computational Science Initiative

Upton, New York 11973
hvandam@bnl.gov

Sameer Shende
University of Oregon

Performance Research Lab
Eugene, Oregon

sameer@cs.uoregon.edu

Kerstin Kleese van Dam
Brookhaven National Laboratory
Computational Science Initiative

Upton, New York 11973
kleese@bnl.gov

Klaus Mueller
Stony Brook University

Computer Science Department
Stony Brook, New York 11790
mueller@cs.stonybrook.edu

Line Pouchard
Brookhaven National Laboratory
Computational Science Initiative

Upton, New York 11973
pouchard@bnl.gov

Abid Malik
Brookhaven National Laboratory
Computational Science Initiative

Upton, New York 11973
amalik@bnl.gov

ABSTRACT
In exascale scienti�c computing, it is essential to e�ciently monitor,
evaluate and improve performance. Visualization and especially
visual analytics are useful and necessary techniques in the exas-
cale computing era to enable and enhance such a human-centered
experience. In this work, we devise a visualization platform for
performance evaluation of scienti�c work�ows toward the exascale
scenario. We �rst improve Tau instrumentation toolset to accom-
modate work�ow measurements. �en we design new visualization
methods to show trace and pro�le information of the work�ow. In
order to support the scalability, a few level-of-detail visual methods
are proposed with user interactions. Finally, an NWChem use case
is adopted to verify our methods.

CCS CONCEPTS
•Human-centered computing → Visualization; •Computer
systems organization→ Parallel computing framework; Real-time
systems;

KEYWORDS
Performance Visualization, TAU, Scienti�c Work�ow, Exascale
Computing

ACM Reference format:
Wei Xu, Cong Xie, Kevin Huck, Hubertus van Dam, Sameer Shende, Kerstin
Kleese van Dam, Klaus Mueller, Line Pouchard, and Abid Malik. 2017. To-
ward Performance Visualization for TAU Instrumented Exascale Scienti�c

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
VPA’17, Denver, Colorado, USA
© 2017 Copyright held by the owner/author(s). 123-4567-24-567/08/06. . . $15.00
DOI: 10.475/123 4

Work�ows. In Proceedings of AFourth International Workshop on Visual Per-
formance Analysis, Denver, Colorado, USA, November 2017 (VPA’17), 6 pages.
DOI: 10.475/123 4

1 INTRODUCTION
Exascale systems allow applications to execute at unprecedented
scales. With the increased data volume, the disparity between
computation and I/O rates is more intractable, which leads to o�ine
data analysis. Recently, a co-design center focused on online data
analysis and reduction at the exascale (CODAR) [9] was founded by
the Exascale Computing Project (ECP). We endeavor to provide an
infrastructure for online data analysis and reduction to extract and
output necessary information and accelerate scienti�c discovery.
Moreover, we will support systematic analysis and improve the
accuracy and performance of online data analysis and reduction
methods.

On the other hand, scienti�c work�ows are commonly utilized
in this scenario to schedule computational processes in parallel
and coordinate multiple types of resources for di�erent scienti�c
applications such as quantum chemistry, molecular dynamics and
climate modeling. �us, the capability to capture, monitor, and eval-
uate the performance of work�ows in both o�ine and online modes
is essential to con�rm expected behaviors, discover unexpected pat-
terns, �nd bo�lenecks, and eventually improve the performance.
Since parallel applications rely on the performance of a number of
hardware, so�ware and application-speci�c aspects, such as mul-
ticore clusters, programmable graphics processing units (GPUs),
multiple hierarchical memory access, network, and so on, the cap-
tured performance evaluation data usually has multiple dimensions
and disjoint a�ributes. �is complication makes the exploration
and understanding extremely challenging.

International Conference on Information Visualization Theory and Applications (IVAPP), Portugal, January 2018

Visualization, as an indispensable technique for big data, has the
capability to fuse the multidimensional and heterogeneous evalua-
tion data, provide corresponding visual representations for explo-
ration, and create e�ective user interaction and steering. Speci�-
cally, performance visualization is the technique focusing on per-
formance data of heavy computation applications. �e data is
acquired through instrumentation of a program, or monitoring
system-wide performance information. �ere are a number of
instrumentation and/or measurement toolkits such as TAU [11],
Score-P [7] and HPCToolkit [2]. In this paper, we aim to devise a
new performance visualization framework dedicated to improving
the execution performance of exascale scienti�c work�ows with
TAU instrumentation. To the best of our knowledge, there is no
performance visualization work focused on work�ow execution,
especially in preparation for exascale systems. �e remainder of
this paper is structured as follows: Section 2 summarizes the related
works, Section 3 introduces our major method, followed by Section
4 as a conclusion.

2 RELATEDWORKS
�e general purpose of performance evaluation includes: the global
comprehension, problem detection and diagnosis [4]. Performance
visualization is therefore designated to ful�ll these goals. At a
minimum, the design of the visualization must be able to show
the big picture of the program execution. When an interesting
area is targeted, users must narrow down the region and mine
more detailed information. Moreover, comparative study looking
for correlation or dependency must be supported. For problem
detection, abnormal behaviors can be highlighted in ways that
allow users to identify them easily.

Current visualization works can be grouped by their applications
in four contexts: hardware, so�ware, tasks and application [4]. In
this paper, the acquired data are individual trace and pro�le �les
capturing the execution of independent work�ow components.
Speci�cally, it includes a few types of data: 1) an event table sum-
marizing the start and end time of all function calls, 2) the message
passing among threads, 3) pro�ling of certain metrics spent in each
part of the code on each computing thread, and 4) the call path for
each thread. �erefore, we only summarize the existing works that
are commonly applied to our data types. Other works such as the
visualization for network, system memory usage, or system logs
for multicore clusters can be found in [4].

2.1 Trace visualization
Tracing measurement libraries record a sequence of timestamped
events such as the entry and exit of function calls or a region of
code, the message passing among threads, and job initiation of an
entire run. A common practice is to assign the horizontal axis to the
time variable, and the vertical axis to the computation processes or
threads. Di�erent approaches are usually variations of Gan� charts.
Vampir [12] and Jumpshot [5] provide two examples of this kind of
visualization. Generally, overview of the whole time period is �rst
plo�ed. �en users can select interested area to reveal more detailed
events happened during the selected period. Di�erent functions or
regions of code are colorized, and the black (yellow for Jumpshot)
lines indicate message passing such as shown in Fig. 1

Figure 1: Trace timeline visualization examples: (a) Vam-
pir timeline showing the execution on all processes [12], (b)
Vampir timeline for one process with detailed function en-
try and exit [12], (c) the timeline of Jumpshot, and (d) the
advanced visualization for focused thread comparison [6].

In addition, advanced visualization tools such as SyncTrace [6]
provide a focus view showing multiple threads as sectors of a circle.
�e relationships between threads are shown with aggregated edges
similar to chord diagram.

2.2 Pro�le visualization
Pro�ling libraries measure the percentage of time spent in each part
of the code. Pro�le does not typically include temporal information,
but can quickly identify key bo�le necks in a program. Stacked bar
charts, histogram, and advanced visualization in 3D are commonly
used to give a comparative view of the percentage of time or other
metric spent for di�erent functions. ParaProf [10] is one example
of this kind of visualization as shown in Fig. 2. It also supports the
comparison of certain function calls in di�erent execution runs. �e
functions are color coded and plo�ed in di�erent stacking modes.
Other statistics can also be plo�ed for a selected function over all
threads or for a selected metric correspondingly.

2.3 Call paths and Call graphs
�rough pro�ling, call path information can also be included. �e
percentage of time spent in each call path can be illustrated. �e
caller and callee relationship can also be identi�ed. �e common
approach to visualize this kind of data is tree structure that utilizes
node-link metaphor, or indented tree to preserve collapsible hierar-
chies. In Vampir, ParaProf and Cube [3], we can see the examples of
such approach, shown in Fig. 3. Note that a circular layout similar
to a sunburst is also useful to illustrate the caller-callee relation-
ship [1] as shown in Fig. 3. �e edge is bundled to avoid clu�er.
�e structural dependency is thus easier to capture. �e color is
used to encode call direction as well as call time.

2.4 Message communication
As mentioned in the timeline visualization, message passing is also
important. A straightforward approach is to draw a line between

Toward Performance Visualization for TAU Instrumented Exascale Scientific Workflows VPA’17, November 2017, Denver, Colorado, USA

Figure 2: Pro�le visualization examples: (a) ParaProf show-
ing the pro�le of all functions in stacked view [10], (b) sep-
arated view [10], (c) the comparative view of di�erent ex-
ecution runs [10], and (d) the 3D visualization comparing
di�erent metrics [10].

Figure 3: Call path and call graph visualization examples:
the call tree structure in CUBE (top le�) [3] and Vampir [12]
(top right), the call graph in ParaProf [10] (bottom le�), and
the circular layout for caller-callee relationship [1] (bottom
right).

two functions for each message, as how Vampir and Jumpshot
implement. On the other hand, the message communication be-
tween threads or processes can also be summarized in terms of a
matrix, with proper colorization indicating additional information
as shown in Fig. 4.

2.5 Limitations
As part of the CODAR project, we aim to visualize the measure-
ments for work�ows of various applications. However, existing
tools are mostly for single application execution, which is not in
the form of work�ow composing a number of serial or parallel
executions. �us they lack the capability to illustrate the work�ow

Figure 4: Message communication: themessagematrix used
in Vampir [12].

structure and the I/O and other metadata between work�ow compo-
nents. Another major issue is the challenge for online performance
evaluation. �is not only requires the streaming visualization up-
dates, but also relies on the online data reduction and sampling
mechanism. Most existing works are designed for o�ine analysis.
Although the visual representations are still e�ective for online
evaluation, they must be adjusted to accommodate the streaming
fashion so as to incrementally update and visualize data.

3 METHODOLOGY
In this work, since our major focus is for o�ine work�ows, we
chose an NWChem use case to demonstrate our contributions.
NWChemEx [8], as the next generation of NWChem, is a scien-
ti�c toolkit for simulating the dynamics of large scale molecular
structures and materials systems on large atomistic complexes. For
this speci�c use case, it includes two modules: molecular dynamics
(MD) module and the analysis module. Its work�ow has a structure
where the MD simulation is run, emi�ing snapshots of the protein
structure along the trajectory, and concurrently the data analysis
is triggered whenever the expected data is produced.

3.1 TAU Output
Our acquired data with TAU instrumentation are individual trace
and pro�le �les capturing the execution of independent work�ow
components. TAU was used to instrument the application code, as
well as collect MPI inter-process communication using the standard
PMPI interface. �e post-processed TAU measurements include
several types of data: 1) event table listing start and end time of all
function calls, 2) the messages passed between processes, 3) pro�l-
ing of certain metrics spent in each code region on each computing
node/thread, and 4) the call path for each node/thread. We aggre-
gated the pro�les and/or traces collected by each component with
purpose-built post-processing scripts that generate structured JSON
output and merged traces. Aggregating the pro�le data is some-
what straightforward, as the time dimension is collapsed within
each component measurement. However, the trace data includes
detailed communication information between processes within the
component (i.e. MPI messages from rank m to rank n). Additional
post-processing must be done to remap component ranks within a
global, work�ow instance rank structure.

Finally, a trace �le and pro�le �le both in JSON format were gen-
erated. �e size of this trace �le is 16GB, and represents a classical
MD run of 2200 timesteps on 4 nodes as well as the corresponding
analysis of 1000 timesteps on 1 node. �e MD execution took 309.3

Figure 5: �e overview panel of our framework that sum-
marizes the whole work�ow execution in timeline format,
where the color density indicates the depth of call path; the
top axis shows message counts among nodes/threads.

seconds wall clock time in total. �e size of the pro�le �le is 21MB.
We selected the �rst 6.5s to illustrate how our visualization method
works.

3.2 Our Framework
In order to explore all the above information, we devised and devel-
oped a web-based level-of-detail and multiple-channel visualization
framework with a front-end plo�ing the data and a back-end per-
forming necessary analysis and computation.

Our visualization includes �ve major components: overview,
detailed view, node detailed view, statistical view, and pro�le view
that together establish an interactive analysis platform to visually
explore and analyze the performance of a work�ow.

3.3 Overview
Overview shows the summary of the whole work�ow execution as
in Fig. 5(top). �ere are two parts: the trace events, and message
counts. �e trace events indicating the start and end time of each
function call are shown as timeline. We use intensity to indicate
the depth of the call path. A darker color represents a more nested
function call. For each node/thread, the trace events are plo�ed
separately. Above the timelines, we also visualized the message
counts (sent or received) in a separate histogram view along the
timeline. For the interaction, it allows the user to select a time
range of interest and see more details in the detailed view panel.

3.4 Detailed View
Detailed view shows the function calls and the messages in the
selected time range as in Fig. 5(bo�om). Each function call is visual-
ized with a rectangle and the its color representing corresponding
its call group. �e functions are visualized with nested rectangles
that indicate their depths in the call path. �is fashion is similar to
what Jumpshot [5] utilized, but we chose a more compact layout. In
this view, users can still zoom in to explore more details by selecting

Figure 6: �e detailed view panel: a coarse level of selected
timeline is shown.

Figure 7: �e detailed view e�ect: when the depth of the call
is straightforward to observe.

a smaller time range. �is is shown in Fig. 6. When there are many
short function calls in a nested call structure, it can be di�cult
to observe small events and di�erentiate each call. �erefore, we
designed two features for that issue. First, we use di�erent trans-
parency to enhance the visibility of overlapped functions. Second,
when zooming in, we add the stroke of the rectangle to enhance
the separation of di�erent functions, as shown in Fig. 8(b). �ey are
colored according to di�erent call groups. Furthermore, in order
to enhance the call path structure, we reduce the height of the
rectangle along a call path. �erefore, a callee function must have
smaller height than a caller function. As in Fig. 7, where by observ-
ing the number of horizontal lines around a function, users can
easily detect the “depth” of the call. For the message visualization,
Additionally, we visualized the message passing (send and receive)
between functions as straight black lines (see Fig. 8). As being orga-
nized in a timeline, the line direction is ignored since the message
is always passing from le� to right. Finally, when hovering over
each rectangle, detailed function name can be seen in text.

3.5 Node Detail View
In the detailed view, all functions are plo�ed as nested rectangles.
�is design is compact and re�ects caller-callee relationship well.
However, when there are too many short function calls one a�er

Toward Performance Visualization for TAU Instrumented Exascale Scientific Workflows VPA’17, November 2017, Denver, Colorado, USA

Figure 8: �e detailed view panel: a �ne level of selected
timeline is shown when further zooming in.

Figure 9: �e node detail panel: a coarse level of selected
timeline of node 3 is shown. �e trace panel and the node
detail panel are aligned along the time axis.

another, it can be di�cult to track how o�en and how long each
function is executed. �erefore, we design a node level detail ex-
ploration tool as shown in Fig. 9. �is view is aligned with detailed
view panel when user selects one speci�c node to explore. �en
the nested rectangles are replaced with stacked bar graphs, where
overlapping is avoided. In this new view, the vertical order of each
bar graph re�ects its call path depth. In Fig. 10, a �ne level design
with highlighted strokes around bar graphs further enhances the
separation of functions.

3.6 Statistical and Pro�les Views
Statistical view summarizes the time spent for each function call
in the selected region, as shown in Fig. 11. In this aggregated
visualization, it is easier to compare total execution time di�erence
side by side. We also adjust the text display in order to avoid clu�er
issue.

Figure 10: �e node detail panel: a �ne level of selected
timeline is shown when further zooming in; the node 3 is
selected, and the strokes are plotted.

Figure 11: �e Statistical view: the time spent for each func-
tion is summarized in an aggregated display.

Figure 12: �e Pro�les view: the pro�le information of the
work�ow is visualized as stacked bar graphs; exclusive time
metric with maximum values is chosen.

In the Pro�les view, with the selected metric (time or counter), we
visualize the percentage spent on each function for each node/thread
in stacked bar graphs. For example, in Fig. 12, we plo�ed the pro�le
for “exclusive time” metric.

4 CONCLUSION
In summary, we have devised a visualization platform for work�ow
performance evaluation. We utilized nested bar graphs and stacked
graphs to represent events in terms of timeline. We also connect

that to a pro�le representation in the form of stacked bar graphs
to reveal the corresponding statistics of the chosen metric. In
order to support the scalability, we implemented a few types of
visualization for di�erent levels of details: overview, zoom-in with
transparency, and zoom-in with separation enhancement. �e
message communication is also visualized by line connections and
message count histograms. As future work, we will show data I/O
and message communications among nodes. Also, we will enhance
the data query performance.

ACKNOWLEDGMENTS
�is research was supported by the Exascale Computing Project
(ECP), a collaborative e�ort of two DOE organizations – the O�ce
of Science and the National Nuclear Security Administration. �e
Project Number for the Co-design center for Online Data Analysis
and Reduction (CODAR) that supported this research is 17-SC-20-
SC.

REFERENCES
[1] 2007. 15th International Conference on Program Comprehension (ICPC 2007), June

26-29, 2007, Ban�, Alberta, Canada. IEEE Computer Society. h�p://ieeexplore.
ieee.org/xpl/mostRecentIssue.jsp?punumber=4268224

[2] Laksono Adhianto, Sinchan Banerjee, Mike Fagan, Mark Krentel, Gabriel Marin,
John Mellor-Crummey, and Nathan R Tallent. 2010. HPCToolkit: Tools for per-
formance analysis of optimized parallel programs. Concurrency and Computation:
Practice and Experience 22, 6 (2010), 685–701.

[3] CUBE. 2017. (July 2017). h�p://apps.fzjuelich.de/scalasca/releases/cube/4.3/docs/
manual/userguide.html

[4] Katherine E. Isaacs, Alfredo Giménez, Ilir Jusu�, Todd Gamblin, Abhinav Bhatele,
Martin Schulz, Bernd Hamann, and Peer-Timo Bremer. 2014. State of the Art
of Performance Visualization. In Eurographics/IEEE Conference on Visualization
State-of-the-Art Reports (EuroVis).

[5] Jumpshot. 2017. (July 2017). h�ps://www.cs.uoregon.edu/research/tau/docs/
newguide/bk01ch04s03.html

[6] Benjamin Karran, Jonas Trumper, and Jurgen Dollner. 2013. SYNCTRACE:
Visual thread-interplay analysis. 2013 First IEEE Working Conference on So�ware
Visualization (VISSOFT) 00 (2013), 1–10. h�ps://doi.org/doi.ieeecomputersociety.
org/10.1109/VISSOFT.2013.6650534

[7] Andreas Knüpfer, Christian Rössel, Dieter an Mey, Sco� Biersdor�, Kai Diethelm,
Dominic Eschweiler, Markus Geimer, Michael Gerndt, Daniel Lorenz, Allen Mal-
ony, Wolfgang E. Nagel, Yury Oleynik, Peter Philippen, Pavel Saviankou, Dirk
Schmidl, Sameer Shende, Ronny Tschüter, Michael Wagner, Bert Wesarg, and
Felix Wolf. 2012. Score-P: A Joint Performance Measurement Run-Time Infrastruc-
ture for Periscope,Scalasca, TAU, and Vampir. Springer Berlin Heidelberg, Berlin,
Heidelberg, 79–91. h�ps://doi.org/10.1007/978-3-642-31476-6 7

[8] NWChemEx. 2017. (May 2017). h�ps://www.pnnl.gov/science/highlights/
highlight.asp?id=4411

[9] US Department of Energy O�ce of Science / NNSA. 2016. (November 2016).
h�ps://exascaleproject.org/ecp co-design centers/

[10] ParaProf. 2017. (July 2017). h�ps://www.cs.uoregon.edu/research/tau/docs/
newguide/bk01pt02.html

[11] Sameer S Shende and Allen D Malony. 2006. �e TAU parallel performance
system. �e International Journal of High Performance Computing Applications
20, 2 (2006), 287–311.

[12] Vampir. 2017. (July 2017). h�ps://www.vampir.eu/tutorial/manual

	Abstract
	1 Introduction
	2 Related Works
	2.1 Trace visualization
	2.2 Profile visualization
	2.3 Call paths and Call graphs
	2.4 Message communication
	2.5 Limitations

	3 Methodology
	3.1 TAU Output
	3.2 Our Framework
	3.3 Overview
	3.4 Detailed View
	3.5 Node Detail View
	3.6 Statistical and Profiles Views

	4 Conclusion
	Acknowledgments
	References

