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Fig. 1: The PeckVis interface for analyzing dominance hierarchies formed by a single group of subjects. At the top is a control panel
to select a group for analysis, here chicken group 10 (blue color) is selected. Below this are two panels on the left that include a
heatmap table to summarize hierarchies formed and a balloon plot below it to summarize the interactions in the group. To the right
of these panels (from top to bottom) is the state sequence and state variant sequence that represent the hierarchies formed and below
these is the music notation and rank evolution chart that shows the raw interaction data and how the ranks of subjects change with
every interaction. Here, the user selected state 38 and 39 for inspection via the heatmap. The corresponding states, state variants,
and interactions were highlighted in the charts to the right of the heatmap. Further, the user deselected a state variant (second to last
in the variant sequence) which causes the partial highlight in last state of the state sequence. Section 6.1 details this group’s analysis.

Abstract— The formation of social groups is defined by the interactions among the group members. Studying this group formation
process can be useful in understanding the status of members, decision-making behaviors, spread of knowledge and diseases, and
much more. A defining characteristic of these groups is the pecking order or hierarchy the members form which help groups work
towards their goals. One area of social science deals with understanding the formation and maintenance of these hierarchies, and in
our work we provide social scientists with a visual analytics tool - PeckVis - to aid this process. While online social groups or social
networks have been studied deeply and lead to a variety of analyses and visualization tools, the study of smaller groups in the field of
social science lacks the support of suitable tools. Domain experts believe that visualizing their data can save them time as well as
reveal findings they may have failed to observe. We worked alongside domain experts to build an interactive visual analytics system to
investigate social hierarchies. Our system can discover patterns and relationships between the members of a group as well as compare
different groups. The results are presented to the user in the form of an interactive visual analytics dashboard. We demonstrate that
domain experts were able to effectively use our tool to analyze animal behavior data.

Index Terms—Visual analytics, interaction sequence, dynamic graphs, time series, dominance hierarchy

1 INTRODUCTION

Social behavior in animals and humans is inferred from how individuals
interact with each other. Some animals are reclusive while others
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are highly social and form complex social organizations through a
diverse set of interactions. The formation of organizations or groups
is important as a group can accomplish objectives that an individual
cannot and that help the species as a group survive and reproduce.
Understanding a group’s objectives in most cases can be relatively easy
through direct observation. But understanding the formation of a group
is a more difficult task. By studying the social interactions experts can
infer the causes for actions and evolution of a species.

Social groups vary in size and can contain as few as two members
or be extremely large containing millions of members. Regardless of
the size, the group members in most species tend to form hierarchies
by competing with each other for rank. The ranking they form is
called a dominance hierarchy. These hierarchies are important as they
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define the roles of the group members which in turn help domain
experts understand a group’s decision-making process, the spread of
knowledge and diseases, and other phenomena. Our work focuses on
the formation of these dominance hierarchies as they are informative
of the dynamics within a group.

We worked with a social scientist who was interested in analyzing the
formation of dominance hierarchies in small animal groups. In this do-
main, the size of small groups is defined to be three to twelve members
as this size range is representative of naturally occurring groups. As
groups get larger, animals are unable to recognize other members and
are therefore unable to maintain a stable hierarchy [29]. The expert’s
team collected data by observing groups from three species - chickens,
mice, and fish. Each group consisted of four subjects and produced a
dataset that contains a sequence of time-stamped interactions between
two members. These datasets contain hundreds to tens of thousands of
interactions over a two day period and are almost impossible to analyze
by just inspecting the raw data.

To simplify the analysis, the interaction sequences are reduced to a
series of time-varying networks where members are the nodes and their
interactions are represented as directed links between the nodes. These
network sequences represent the different hierarchies formed over time.
Experts run statistical analyses on these network sequences to extract
information about the hierarchy formation, however, these analyses
only provide summaries and do not communicate the nuances of the
hierarchy formation. Specifically, they do not show how hierarchies
change or repeat over time. Using a visual analytics approach can speed
up the analysis process and provide insights that may have otherwise
been overlooked. Unfortunately, most available network visualization
tools are designed to analyze large online social networks which are
unsuitable for analyzing the small animal networks or hierarchies. This
is primarily due to the tools only visualizing the networks without the
context of the interaction sequences which provide details about how
the networks were formed. Additionally, social scientists were able to
better understand simple node-link representations with minimalistic
enhancements over the advance techniques available in existing tools.

We address this issue with PeckVis, an interactive visual analysis
system for social scientists to analyze the formation of pecking orders
in small groups consisting of up to six subjects. The system integrates
domain-specific algorithms and metrics with a visual analytics dash-
board that allows users to interactively explore and investigate the
formation and maintenance of dominance hierarchies. The visual repre-
sentations employed by PeckVis adapts existing network and sequence
visualization techniques to the needs of social scientists. PeckVis also
enables users to compare different groups for commonalities and differ-
ences in their hierarchy formation using these visual representations.
Finally, we demonstrate our system’s capabilities by having domain ex-
perts use PeckVis to analyze animal interaction data they have collected.
Additionally, we demonstrate how our system can be applied to other
situations in which hierarchies are formed such as debates.

2 RELATED WORK

PeckVis uses graphs to represent and analyze the influence of temporal
relationships among group members on their hierarchy. Our system
represents interaction sequences as a sequence of networks with nodes
representing the actors and edges representing the interactions. Hence,
most relevant to our work is the visual analysis of dynamic networks.

Most of the work on visualizing networks has focused on the analy-
sis of large networks. Landesberger et al. [37] provide a good review of
these works. Their review shows that coupled with a variety of interac-
tion techniques, the most frequently used representations in prior graph
visualization work have been node-link diagrams [31] [24], adjacency
matrices [1] [15], or a combination of both [25]. Works such that of
Gou et al. [23] have created dashboards that use these representations
supported by other charts to explore networks. Both representations
have their advantages; the node-link diagrams are intuitive and better
suited for path following tasks whereas the adjacency matrix avoids
edge crossings and node overlapping which leads to better readability
of large graphs. The properties of these representations have been
confirmed in studies by Ghoniem et al. [21] and Alper et al. [3].

While the representations discussed are sufficient on their own for
network exploration, the task of comparing different networks needs
more sophisticated techniques. Metrics can be computed over graphs
to describe their differences. These metrics can then be used to analyze
and guide the visual comparison of graphs as shown by Kairam et
al. [26], and Freire et al. [18]. Alper et al. [3] studied the use of node-
link and an adjacency matrix to compare networks describing brain
connectivity and reinforced the fact that node-link representations are
better for comparing small graphs. Furthermore, similarity metrics can
be computed over a larger number of graphs or sub-graphs which then
help the user in selecting similar or dissimilar graphs for comparison
as in Landesberger et al. [36].

A special case of graph comparison related to our work is that of
dynamic graphs, where changes in a graph’s structure are compared
over time. Beck et al. [8] provide a very recent review of the techniques
used to visualize dynamic graphs. Of particular interest is work that
juxtaposes different states of a network over time representing them
as small multiples [17] [33] [5] [35]. Farrugia et al. [33] use a small
multiples display to both show the evolution of an egocentric network
and to compare different egocentric networks. In DiffAni [33] and
SmallMultiPiles [5] dynamic graphs were aggregated and displayed as
small multiples. This approach of aggregation into intermediate graphs
over time inspired techniques used in our system. Most similar to our
work is that of Velhow et al. [35] who visualized dynamic hierarchies
in graph sequences by using an adjacency matrix that integrates hierar-
chical group structure along with icicle plots. Additionally, they use a
flow metaphor and color encoding to visualize changes. Archambault
et al. [4] create difference maps of a network at two time slices in a
single graph encoding the differences with color. Analogous to this ap-
proach we compute differences and use markings and color to highlight
differences in consecutive graphs.

Most of the network visualization work discussed has been applied
to large social networks, computer networks, or biological structures.
Our work focuses on interactions between individuals in small groups
and specifically targets animal behavior, an area that has received little
attention in the visualization field. However, there are some relatable
works which we discuss here. DiMicco et al. [13] used visualizations to
review the turn-taking patterns in face-to-face meetings. They can de-
duce social trends such as dominance, extroversion, and endorsements
but have no procedure to inform a concrete reasoning into the formation
of these trends. Alallah et al. [2] also visualized face-to-face meetings
to review the decision-making process. They used a Gantt chart-like
representation to plot and compare a user’s behavior. Cao et al. [10]
supports the exploration and summarization of user interactions with an
interactive visualization. They represent time for a particular user with
a horizontal axis with vertical lines representing the user’s interactions
much like Chase’s music notation [11]. Recently, Fu et al. [19] devised
a visual analytics system to interactively explore, compare, and track
conversation groups in online forums; their work demonstrates the
usefulness of glyphs to represent groups.

While social scientists have developed a variety of mathematical
models and analyses to investigate hierarchy formations, they have very
few suitable visual analytics tools to aid their efforts. We believe that
aspects of the works discussed here can be adapted with modifications
to help other scientists, as predicted by Beck et al. [8]. Specifically,
the use of node-link and adjacency matrix representations arranged
in a small multiples display is generally useful to compare network
structures. In addition, we were inspired by the dashboard approach
of incorporating connected displays of timelines and other metrics to
support the graph analysis. In the remainder of this paper, we discuss
our approach of combining these techniques into a single system and
the evaluation of this system.

3 MECHANISMS AND METRICS FOR DOMINANCE ANALYSIS

Dominance is a very important concept in the study of social behavior,
and dominant behaviors form dominance hierarchies within a group.
Work by social scientists has led to a variety of analysis techniques that
quantify these hierarchies. We introduce these methods and algorithms,
that we further adapted for PeckVis, below.



3.1 Ranking
A variety of ranking algorithms have been proposed that place individ-
uals at different levels in a hierarchy. Unfortunately, these algorithms
are not universally accepted as they all have some limitations [20] [7].
For this reason, PeckVis provides the user with two widely used ranking
algorithms - Davids Score [12] and Elo ranking [16] - each with their
own benefits and allows the user to interactively switch between them.

David’s score is an interaction matrix based method for comput-
ing rank in social science. It has been shown to overcome problems
with other interaction matrix based ranking methods in the field [20].
David’s score measures the overall success of an individual by weight-
ing each dyadic success measured by the unweighted estimate of the
other individuals’ overall success, thus taking into account the relative
strengths of the other individuals. The Elo-ranking method was initially
generated to rank chess players, but it has gained popularity and is
now used to compute rankings in a variety of fields. Neumann et. al.
have adapted it to compute the ranks in a dominance hierarchy [32].
They show that the Elo-ranking has benefits over matrix based meth-
ods. They include the elimination of certain data limitations such as a
lower-bound on the number of interactions and the flexibility to extract
scores at any point in time, thus making it easier to visualize.

Additionally, we provide users with naive ranking methods, such
as the cumulative sum of interactions initiated, the cumulative sum of
interactions received and a combination of both over time. These do not
accurately represent the social rank of an individual but they do provide
useful information, they give users a general idea about an individuals
activity over time.

3.2 State Sequence Analysis
The ranking methods inform us of the hierarchy established by the
subjects in a group. However, they do not explain what led to the forma-
tion of the hierarchy. Addressing this issue, researchers have analyzed
the interaction data by modeling them as a dominance network. A
review of these methods was presented by Doreian [14]. In our work,
we extend the methodology of Lindquist et al. [30] who combined the
ranking techniques and network analysis to model hierarchy formation.
They trace a group’s hierarchy development by inspecting intermediate
dominance configurations that subjects in the group form over time.
These configurations are aggregations of a set of interactions and long
interaction sequences are aggregated into a sequence of configurations.
In their work, Lindquist et al. only analyzed the structure of hierarchies,
that they call “states”, while ignoring the identities of the subjects that
formed the hierarchy. In our work, we include the identities as well and
call these identity dependent hierarchies “state variants”. The remain-
der of this subsection discusses the procedure followed to aggregate
interaction sequences into configurations and how these configurations
are annotated to convey important information to the analyst.

3.2.1 States and State Variants
A group’s interactions can be aggregated to form multiple dominance
configurations called “state variants”. The structurally unique configu-
rations that groups form are called “states”. More specifically, a “state”
refers to the structural form of the configuration while ignoring the
identities of the subjects whereas a “state variant” is more specific and
considers these identities. Thus two state variants that only differ in
vertex labeling map to a single state. It should be noted that the ver-
tex labeling cannot be arbitrary, it must be consistent and comparable
across groups. To achieve this we label subjects by their eventual ranks,
i.e., their ranks after their group’s last recorded interaction. Thus sub-
jects labeled ‘1’ in different groups are the eventually highest ranked
subjects in their groups.

Interaction sequences are aggregated into a sequence of state variants
which are further aggregated into a sequence of states. Each state vari-
ant is essentially a directed graph with nodes representing the subjects
in a group and links representing interactions between subjects. A new
state variant is added to the sequence when an unobserved interaction
occurs or an existing interaction is reversed. When a new state variant is
created, the relationships from the prior state variant are propagated to
it, new relationships are added, and reversed relationships are replaced.

(a) (b) (c) (d)

Fig. 2: The progression of a state variant sequence based on four
interactions: a dominates b, b dominates c, a dominates c and finally a
reversal c dominates b.

Consider the example shown in figure 2; there are three individuals
labeled a, b, and c. In the first interaction a dominates b, creating
the state variant in figure 2a which continues to exist while a keeps
attacking b. When a new interaction b dominates c occurs, a new state
variant is created and the relationship a dominates b is carried over to it
as shown in figure 2b. Similarly new state variants are created when a
dominates c in figure 2c and c dominates b in figure 2d . It should be
noted that reversed relationships are replaced as in the last state variant
where b dominates c was replaced by c dominates b. Additionally,
the last two state variants map to a single state as they are structurally
identical - they both have one subject dominating the other two and
one of those two dominate the other. A more detailed example of how
interaction sequences map to state variant sequences which in turn map
to state sequences is illustrated in the supplementary material.

States and state variants allow the experts to split their analysis into
two main stages. States allow experts to first identify different types of
hierarchies or states such as states where one subject is dominated by
all others or states with graph cycles. By analyzing these states, experts
can make judgments about the stability or competition within a group.
Additionally, these states serve as a high-level feature for comparing
multiple groups. State variants allow the expert to dig deeper into
the states, they show which subjects form a hierarchy based on their
eventual rank. For example, experts find that in some groups the second
ranked individual was at top of a one dominate all state but as time
progressed the first ranked individual was at the top in that state.

3.2.2 State Annotation
States represent the different types of hierarchies a group can form
and the number of possible hierarchies exponentially increases with
the number of subjects. To ease the process of analyzing these large
numbers of hierarchies, we precompute all possible states an N member
group can form and build a lookup table for future use. Due to the
combinatorial complexity of generating the lookup tables, we limit
group size to six subjects which can form 21,479 different states. We
then annotate these states based on their structural characteristics, these
annotations are described as follows.

Linear States: A linear state is one in which a subject is not attacked
by any subject it attacks. In other words, the most dominant individual
is never attacked, the second most dominant is attacked only by the
first and so on. For example, states in figure 2c and 2d are linear states.
Linear states tend to be the most common state and inform domain
experts of clear hierarchies where no subject is competing with a more
dominant subject.

One Dominate All: States in which one subject in a group is dom-
inating all other active subjects are called One Dominate All (ODA)
states. The states in figure 2c and 2d are examples of ODA states with
subjects a and c being the most dominant respectively. An observation
of a large number of specific ODA state variants informs experts of
groups with very dominant individuals.

All Dominate One: States in which one subject in a group is domi-
nated by all other active subjects are called All Dominate One (ADO)
states. The states in figure 2c and 2d are also ADO states with subjects
c and b being the dominated subjects respectively. An observation of a
large number of specific ADO state variants informs experts of groups
with very submissive individuals.

Intransitive States: In most cases, subjects tend to form transitive
or linear hierarchies. But occasionally the subjects or a subgroup of
subjects form a cyclic relationship known as intransitive relationships.
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Fig. 3: The state variant representation in its basic form (a) where node
positions indicate a subject’s eventual rank (decreasing from left to
right and top to bottom), node color indicates instantaneous rank, links
represent relations where dashed links represent new relations and the
// marker indicates a reversal. Users can toggle the highlights of cycles
(b) and edge weighting for interaction count (c).

For example, if the relationship b attacks c in the state shown in figure
2d were to be reversed it would form an intransitive relationship among
the subjects with actor a dominating b, b dominating c, and then c
dominating a. Intransitive states are also non-linear states and are
indicative of competition and instability of rank among subjects.

Occurrence and Stability: In addition to labeling the type of states,
we compute two important metrics for each state and state variant -
Class Occurrence Frequency (COF) and Class Stability Factor (CSF)
- to perform the comparison. The COF measures the occurrence of
states across groups in a species. It is the fraction of groups that formed
a specific hierarchy during the interactions. For example, if a state
occurs in 6 of 10 groups it would have a COF of 0.6. A value of 1
indicates that every group forms that hierarchy and 0 indicates that
the hierarchy is never formed. The CSF informs us of the stability of
states that occur versus other states in an N-link class. It is the ratio
of time spent in a particular N-Link hierarchy to the time spent in all
N-Link hierarchies. For example, if groups had 85% their interactions
in 3-Link configurations belonging to a particular hierarchy then the
CSF for that hierarchy would be 0.85.

4 VISUAL REPRESENTATIONS IN PeckVis
The data analyses methods yield a rich set of results, but they can be
overwhelming for the user to review, especially when dealing with
a large number of groups and interactions. To efficiently communi-
cate this information to the users, we extended existing visualization
techniques as described below.

4.1 Visualizing Hierarchy Sequences
The state and state variant sequence is the sequence of hierarchies de-
rived from a group’s interaction sequence. These hierarchies or states
are essentially graphs that can be visualized with a variety of exist-
ing techniques. We experimented with multiple techniques such as
node-link diagrams, matrix representations, and chord diagrams. The
existing approach by Vehlow et al. [35], who used a matrix representa-
tion complemented by icicle plots, can be applied to our problem but
the domain experts were not comfortable with the representation for
multiple reasons. First, the experts preferred a node-link representa-
tion as they previously worked with this representation and found it
more difficult to follow changes across adjacency matrices. Second,
Vehlow et al. used a single representation to represent the topology
(state) and the hierarchy structure (state variant), the experts found this
representation to be overloaded and preferred it split into two parts -
one to analyze states and one to analyze state variants. Finally, Vehlow
et al. only show the instantaneous hierarchy in each matrix, the experts
we work with wanted both the instantaneous and eventual hierarchies
encoded. Additionally, our task involved visualizing small groups and
based on previous studies node-link diagrams were suitable. Thus we
represent the state and state variant sequence as a sequence of node-link
diagrams with additional visual encodings that communicate various
characteristics of the hierarchy at a particular point in time.

State Variant Sequences: The domain expert we work with rep-
resents state variant sequences with hand-drawn directed node-link
diagrams similar to those in figure 2. This representation only encodes

the structure of the current hierarchy and identity of subjects, however,
we update the node-link representation with additional visual encodings
to represent the current and eventual rank of the subjects, the newest
link, and a reversed link. Additionally, we label each state with its ID,
variant and the total number of interactions it represents. An example
of a single state variant is shown in figure 3 and a state variant sequence
is shown in figure 1.

The current and eventual rank of the subjects is encoded with color
and node placement respectively, this allows the experts to view the
current hierarchy in the context of the eventual hierarchy. In our design
the eventual rank decreases from left to right and top to bottom, thus
in the example, the two nodes at the top represent individuals with an
eventual rank of 1 (left) and 2 (right) and nodes at the bottom represent
rank 3 (left) and 4 (right). The nodes are colored with a sequential red
color scale to represent current rank. The subject with the highest rank
at the end of the current state is assigned a dark red color and the lowest
ranking subject is assigned a light red color. This encoding allows the
user to easily track the evolution of the group member’s ranks as well
as identify states where ranks have changed. For example, in figure1
we see that in the first state shown the subject eventually ranked 3rd

(shown with node position) is ranked the highest (shown with node
color) in the first state. Over the next six states the subject eventually
ranked 2 takes over the highest rank. And in the remaining states, the
subject eventually ranked 1 dominates all other subjects with some
competition from the 2nd ranked subject. As the state space grows
users can observe the ranks and the distance between ranks changing
by visually comparing the node colors. When used in conjunction with
the ranking chart (discussed below) users can get a finer view of the
distances between ranks.

The links between nodes represent relationships between individuals
and states are created when a new relationship occurs or an existing re-
lationship is reversed. Initially, we used color to mark new interactions
and reversals but users found the representation to be too confusing.
Instead, we chose to indicate the newest interaction in a state with
a dashed line and reversals were indicated by placing a double slash
marker at the middle of a dashed line. We also encode the number of
interactions between individuals with line thickness. This is shown
in figure 3. We allow the user to toggle this weighting of links as it
overloads the representation and this information was rarely required
by the experts. This approach follows the juxtaposition combined with
explicit encoding as described in Gleicher et al. [22] by sequentially
presenting the different configurations over time and explicitly marking
the differences between them.

Finally, the experts wanted to easily locate the cycles or intransitive
triads in the states as they are indicative of rank contention. We show
these cycles by graying out non-contributing edges and filling the space
between contributing edges with a green highlight as shown in figure 3b.
This was helpful for the user when scrolling through large state spaces
as it revealed trends such as the same cycle being formed repetitively
which experts found to be interesting behavior. The user is allowed
to toggle this functionality as well since it can be distracting when
examining at other features of the state variant sequence.

State Sequences: As described previously, states represent the struc-
tural form of dominance hierarchies while ignoring the identities of
the subjects in those hierarchies. Thus the representation for states is
identical to that of state variants with the only difference being that
the nodes and their positions do not encode any information and new
interactions and reversals are not marked. However, we do keep the
node positions consistent for node-link diagrams representing the same
state. We also use labels above states to indicate the type of hierarchy
(ODA, ADO, cyclic and linear). An example of a state sequence is
shown in figure 1.

4.2 Visualizing Interactions
The state variant sequences inform us of the different hierarchies formed
and the order in which they were formed. However, they do not inform
us of the way in which they were formed, that is, what sequence of in-
teractions led to a given hierarchy. This information can be obtained by
inspecting the interaction sequences. We use two visual representations
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Fig. 4: The original music notation developed by Chase (a) and the
enhanced version (b) that adds edge bundling to emphasize bursts and
markers at the top to indicate the formation of new states.

to assist experts in exploring the interactions among subjects. The first
is a music notation that is a visual encoding of the raw interaction data
and the second is a balloon plot that provides an overview of all the
interactions in a group.

Music Notation: The music notation was developed by Chase [11]
for social scientists to view raw interaction data. The representation
helps users to quickly identify patterns in the data, the most important
being bursts. Bursts are sub-sequences in which one subject contin-
uously dominates one or more subjects in a group. Additionally, the
chart can indicate the distribution of interactions among subjects. The
chart represents each subject in a group with a horizontal line or axis.
For every interaction, an arrow is drawn from the actor’s horizontal
line to the recipient’s line. The arrows are colored based on the color
assigned to an actor. The user is allowed to choose between position-
ing the arrows based on clock-time or by their count. Positioning by
time allows users to see if the time of day had an effect on the actors.
Positioning by interaction count keeps the space between the arrows
constant and positions them in the order they occurred. This makes
it easier for users to observe bursting behaviors. The horizontal axes
are ordered from top to bottom based on the eventual rank of the actor
determined by the ranking algorithm selected by the user.

We further build upon the music notation developed by Chase. We
emphasize bursts by using edge bundling and we indicate positions
at which new state variants were formed with markers above the top
axis. An example is shown in figure 4. The edge bundling cause
bursts to look like hourglasses, with wider hourglasses indicating larger
bursts. In addition to indicating where states are formed, the number of
markers and the distance between them is indicative of the stability in
the group. Fewer markers with large distances between them indicate
that the group and the hierarchies it forms is stable.

Balloon Plot: The interactions in a group can be summarized with
an interaction matrix which informs users of the total number of inter-
actions between any two subjects in a group. We chose to use a balloon
plot over a stacked bar chart and adjacency matrix to represent the
interaction matrix. An example is shown in figure 1 in the bottom left
panel. We did not consider the use of a node-link diagram here as users
may overlook missing relationships [34]. The domain expert preferred
this representation over a traditional adjacency matrix and heatmap
representation used for large networks as the expert felt the circle size
was easier to compare instead of color intensity (although we believe
that this may change as the network size grows). The balloon chart
rows represent actors and the columns represent recipients. There is an
additional disjoint row and column which represent the totals of each
column and row. Each cell contains a circle whose size represents the
number of interactions between the corresponding actor and recipient.
The representation allows the user to quickly gain insight into the distri-
bution of interactions among group members. Users can easily identify
which actor initiates the most interactions and how many individuals it
interacts with thus giving them a summary of the interactions.

4.3 Other Representations
In addition to visualizing the state and interaction sequences, we pro-
vide experts with visual representations that support their analyses. The

representations are used to keep the expert aware of subjects ranks,
group similarity, and to communicate other informative statistics.

Rank Evolution Chart: We represent the ranks computed by the
selected ranking algorithm after every interaction with a multi-line plot
as shown in figure 1 in the bottom right panel. Lines are plotted with a
step-function and colored based on the color assigned to the actors. The
lines tend to diverge quickly when hierarchies form at a fast pace within
a group. However, if actors compete for rank then the lines intersect
or follow an alternatively diverging and converging path. Users can
configure this chart to present ranks from the desired ranking algorithm
which is also reflected with node colors in the state space.

MDS Plot: It is difficult for users to gauge the similarity of groups
based on their state space or other metrics computed for each group
such as the counts of different states or the time spent in these different
states. To address this issue we used multidimensional scaling [28] to
represent each state or state variant sequence as a point in 2-dimensional
space. The method shows sequences that are similar closer together;
the results for our animal datasets are shown in figure 5 in the bottom
left panel. To compute the distance between the sequences we used
the dynamic time warping (DTW) distance [9] which measures the
similarity between time sequences. Here we represent each sequence as
a time series by giving each state or configuration a value and plotting
this value at every timestamp the group is observed in a particular
configuration. This process allows us to account for the duration a
group remains in a particular configuration. Some groups form their
hierarchies at different speeds and DTW accounts for this and measures
similarities even though time series have different speeds and levels of
acceleration and decelerations. Sometimes, however, the expert may
want to disregard the order in which states occur and measure similarity
purely based on the occurrence of states and the number of interactions
in each state. In this case, we create a multidimensional dataset where
each column represents a state or state variant and for each group,
we record the amount of time spent in each state and record it in the
appropriate column. We then compute the similarity between groups
using the Euclidean distance measure and show it in an MDS plot.

Summary Statistics: Finally, we compute certain summary statis-
tics for each group which we communicate to the user with bar charts.
These statistics are computed over the state sequences and are useful
for comparing groups. Most important to the expert were the COF and
CSF values of states and state variants for each species and each group.
We communicate these values to the expert with a heatmap table as
shown in figure 1 in the middle panel on the left. As the number of
subjects increases, the number of states exponentially increases and the
heatmap allows users to quickly learn about the kind of states and the
time spent in them, within and across groups. Additionally, statistics
such as the number and percentage of states categorized by their anno-
tations, for example, the counts of ADO, ODA, and intransitive states
are communicated with bar charts.

5 THE PeckVis INTERFACE

The visual representations discussed in the previous section are indi-
vidually very effective at communicating hierarchies and interactions.
However, combining and linking these representations into a single
interactive interface allows the user to gain finer insights into a group’s
hierarchy formation and maintenance. The experts we worked with
wanted to perform two main tasks - (1) analyze how individual groups
form and maintain hierarchies, and (2) compare multiple groups to
learn about similarities in hierarchy formation. To achieve this, we
provide experts with two dashboards to analyze a single group and to
compare multiple groups. The dashboards and supported interactions
are discussed as follows.

5.1 Analyzing a Single Group
Analyzing a single group involves the tasks of identifying the different
hierarchy structures, how subjects are positioned or ranks change in
these structures and the characteristics of interactions within these
structures. We enable such analyses by laying out the state and state
variant sequence representation, the music notation, rank evolution, and
balloon plot into a dashboard as shown in figure 1.



At the top is a panel containing circles that represent each group for
a particular species and below each circle is a label communicating
a group statistic such as the total number of states or interactions in
a group. The species and the statistic can be changed using the drop-
down menus at the left end of the panel and clicking circles selects the
group to be inspected. The space below this panel is split horizontally
into two sections. The left section contains two panels, the first is a
heatmap table that communicates a summary of the states such as their
occurrences and stability (top panel) and the second is a balloon plot
communicating the summary of interactions. In the right section, we
stack the selected group’s state sequence, state variant sequence, music
notation and rank evolution chart from top to bottom. This stacking
order allows the user to analyze the data with an overview to detail
approach by moving from the state sequence which shows the types of
hierarchies to the more detailed state variant sequence which shows how
subjects are ranked in those hierarchies and finally to the music notation
that communicates the sequence of interactions in the hierarchies.

Every representation in the dashboard is linked to each other. If a
user selects a state, all state variants that were aggregated into it are
highlighted. The corresponding interactions are also highlighted in the
music notation and the corresponding range is highlighted in the rank
evolution chart. This is reflected in figure 1 where the states 38 and 39
were selected from the state summary panel on the left. This led to the
corresponding states, state variants and interactions being highlighted.
It should be noted that states may be partially highlighted if some of
the state variants they encompass are deselected. For example, the last
state in figure 1 is partially highlighted as a state variant (the second last
in the state variant sequence) it encompasses is deselected. A selection
can be made from any chart with ranges corresponding to that selection
highlighted in other charts. Left clicking a state or state variant selects
that particular item in the respective sequences, but right clicking selects
all identical state or state variants in the sequence. For example right
clicking a state labeled 38 will highlight all states labeled 38 in the
sequence. To differentiate states, we use different colors to highlight
them based on the state label. For example in figure 1 state 38 and 39
are highlighted with green and orange, respectively. A large number
of states can occur in a sequence and we may not have enough colors
to represent them. In this case we reuse colors. Theoretically, this can
mislead the user however we ensure that two consecutive states do not
use the same color. Thus when the same color is seen in consecutive
state variants, it indicates that it maps to the same state. Additionally,
each state is labeled with its state and variant above it.

We also provide controls to toggle options for each visual represen-
tation in the dashboard. For example, users may want to zoom into
the music notation or deactivate its edge bundling. The state variant
sequence encodes a lot of information and may be overloaded. Thus
we allow the user to toggle the encodings such as the edge weighting,
intransitive triads, and state type labels. We also allow the user to
switch between ranking algorithms.

5.2 Comparing Multiple Groups

In addition to analyzing the behavior of a single group, experts also
need to compare groups. They compare groups to find commonalities
and differences in the types of hierarchies formed, the amount of rank
contention and the number of interactions and how they occur. We
support such analyses through a second dashboard that uses a small
multiples display of the various visual representations previously dis-
cussed. Additionally, the dashboard includes a set of tools and an MDS
plot in the panel on the left which help in selecting similar or dissimilar
groups. An example the dashboard with a small multiples display of
the state sequences is shown in figure 5.

To compare interactions and rankings between groups, the user can
use a small multiple display of the balloon plots, rank evolution charts,
and the music notations. Through the balloon plots users can identify
groups that are either common in nature such as those where the top
ranked subject performs the most interactions followed by the second
ranked subject and so on. They can also find unusual groups such as
those where the second-ranked individual performs the most interac-
tions but the highest ranked subject earned its rank by dominating this

second-ranked dominant subject with fewer interactions. Comparing
multiple rank evolution charts in a single display allows the user to
differentiate between groups based on rank contention. For example, in
some groups rank is determined early indicated by a clear separation
among subjects at the start, while other groups display continuous rank
contention among a subgroup of subjects. Finally, comparing music
notations allows the user to first compare the number of interactions
that occur in each group. Users can either compare the density of the
chart if local scaling is selected or the length of the chart if global
scaling is selected. The music notations also allow users to visually
compare bursting behaviors such as burst frequency and duration.

To compare the different hierarchies groups form and the sequence
in which they were formed, users employ a small multiples layout of
the state and state variant sequence. We provide users with tools to high-
light a state in one group and check if it is highlighted or occurs in other
groups. We also compute common sequences of user-specified lengths
and highlight them across groups. By using the same coloring strategy
used in the single group analysis, users were able to quickly recognize
repeating patterns within and across groups. Repeated observations of
two distinct colors appearing consecutively across states is indicative
of frequent state or hierarchy transitions. Users can then further inspect
these transitions with the state variant sequence to see if they are being
caused by similarly ranked individuals or if it is different across groups.
For example, users found that some state transitions that were common
across groups usually occur due to subjects ranked 2 and 3 competing
with each other. Additionally, we provide supporting tools to explore
these state and state variant sequences. As in the single group analysis,
we provide a heatmap of the COF and CSF for all groups and we also
provide a list of common state transitions of a user specified length.
These tools can be used to highlight states across multiple groups that
can be further inspected by the user.

6 CASE STUDY: ANALYZING DOMINANCE IN ANIMALS

To evaluate PeckVis we had two experts in the social science domain
analyze their data with our tool. Both experts were social science
professors and one of them was the expert we worked with to design the
tool. Their goal was to analyze the formation of dominance hierarchies
in three animals: mice, chicken, and fish. They had 14 groups of mice,
14 groups of chickens, and 17 groups of fish, each consisting of 4
subjects. The experts had three main tasks - exploring the formation of
a hierarchy within a group, comparing groups of the same species and
comparing the behaviors between two species.

6.1 Analyzing a Single Group
A user typically starts off the analysis of a single group by first in-
specting the heatmap table showing the COF and CSF values of the
hierarchies or states. There he or she can quickly receive an overview
of the occurrence of different states or state variants and their stability
in the group. Now if the user is interested in exploring highly stable
states he or she may select states or variants with high CSF values. On
the other hand, selecting states with low CSF values highlights unstable
states that are indicative of rank contention. For example, in figure 1
the expert selected chicken group 10 for examination as every subject
in the group changed rank during the course of the interactions. Next,
he selected state 38 and 39 as he was interested in complete hierarchies
which are six link states where every subject interacts with every other
subject and he wanted to inspect the maintenance of these states.

Digging deeper, he inspected the state and state variant sequence.
Through the state sequence, he observed that state 38 appears to en-
compass most of the interactions although the group forms state 39
for a brief duration. Upon further investigation, he learned through
the state variant sequence that in fact two variants of state 38 - 38-1
and 38-7 - were formed with 38-1 being more stable. By inspecting
the node colors he learned that subject one was gaining rank over sub-
ject two. But subject two fights back by attacking one and causes the
creation of states 38-7. There was also some retaliation from subject
four against two in state 39-2. Upon toggling the edge weighting, the
expert found that the retaliatory actions did not seem to contribute too
much to the state variants. To learn more about these interactions, the



Fig. 5: The PeckVis interface for comparing dominance hierarchies between multiple groups of a species. On the left, we have two panels - a
summary panel and an MDS plot below it. Here, with the MDS plot the user has selected four similar groups (1, 12, 13, and 8) highlighted at the
center and an outlier group (group 5) highlighted at the top left of the plot. The summary panel above the MDS plot displays a list of the common
state sub-sequences across all selected groups. The user can change it to show the COF and CSF heatmap. The panel on the right contains a small
multiples display of the user choice of visual representation, in this case the user has selected the state sequence. To investigate the similarities
between the sequences, the user selects the sub-sequences in the list which in turn highlight the corresponding states in the small multiples
display. Now comparing the highlighted states, the user can investigate the similarities as discussed in section 6.2

expert selected the states with retaliations. He then inspected the music
notation for the corresponding interactions. Here he saw that in each
state the retaliation occurs only once, this led him to believe that if these
interactions did not occur, the group would have formed an extremely
stable six-link hierarchy in state 38-1. Additionally, he saw that the
retaliatory states highlighted portions of the rank evolution chart in
which lines intersect, that is rank contention occurs.

The experts analyzed groups from several species following a similar
procedure and made multiple findings. They found that in mice and
fish groups the top-ranked subject committed a bulk of the interactions
but in the case of chicken, some groups had the second-ranked subject
committing the most interactions but the top-ranked subject in these
groups was actually dominating this second-ranked subject. They also
found that chicken committed very few retaliatory interactions and
formed stable hierarchies without much competition, the mice were a
little more competitive but formed stable hierarchies as time progressed.
On the other hand, fish were very active and competitive. The experts
made the findings by examining the state variant sequence in conjunc-
tion with the music notation and rank evolution chart. They also used
the state sequence to help navigate the state variant sequence. The state
variant sequences for fish were extremely long and formed hundreds of
state variants, however, the experts were engaged in the analysis and
readily spent long periods of time exploring entire sequences in detail.
They found that except for the most dominant fish, the other subjects
kept competing with each other. This was evident through the rank
evolution chart with the lines for these subjects constantly crossing each
other. But on deeper inspection of the state variants, they found that
these competing fish actually formed intermediate stable hierarchies
for certain periods of time with each fish taking turns dominating the
others for extended periods of time.

6.2 Comparing Multiple Groups
After investigating the individual groups and developing a hypothesis
about the formation of hierarchies, the experts used the inter-group
analysis tools to compare groups and validate their hypotheses. They
started by selecting groups from the MDS plot for display in the small
multiples layout. The experts first selected groups that were clustered
together in the MDS plot and later moved to the outliers to investigate
what was different in their hierarchy evolution. The experts first investi-
gated the groups’ balloon plots to check for similarities between groups

based on the number of interaction by subject rank. They then moved to
the rank evolution charts to check for similarities in rank contention, for
example, in the case of chicken most groups formed clear hierarchies
early on but some outliers had subjects that were interchanging ranks.

Next, the experts compared the groups based on the states they
formed. Using the small multiples display of state sequences the ex-
perts were quickly able to identify common states among groups and
what states made a group an outlier. For example figure 5 shows four
similar chicken groups (1, 8, 12. and 13) and one outlier (5), selected
through the MDS plot based on DTW distance between the state se-
quences. Among the similar groups, all of them have a majority of their
interactions in state 38. They also have common state transitions such
as in groups 1 and 12 which have identical sequences except for the
last two states in group 1. Additionally, groups 1 and 8 have the state
transition 38-40-38 while groups 13 and 8 have transition 38-39-38 in
common. On the other hand, group 5 was an outlier as it had a longer
state sequence which contained many states of which some were never
formed by any other group, this was also confirmed by investigating the
state’s COF values and not having it sub-sequences appear in the panel
on the left. Experts explored the state variant sequence in a similar
manner. They also used the music notation but only superficially to ex-
plore bursting behaviors and compare the frequency of state formations
by concentrating on the markers at the top of the music notation.

7 CASE STUDY: ANALYZING DEBATE DATA

While our system is primarily designed to investigate hierarchies
in animal groups, we can apply it to analyze dominance hierar-
chies in other situations just as well. One such situation is de-
bates. To demonstrate this, we used our system to analyze aggres-
sive behaviors in the 2016 U.S. presidential debates. For the pur-
pose of this demonstration, we only categorized interrupts during de-
bates as aggressive behavior. We used the transcribed debate data
and interruption extraction technique from Stephanie Kirmer’s post
on Kaggle (https://www.kaggle.com/skirmer/interruptions-at-the-first-
presidential-debate). With a more sophisticated analysis, one could ex-
tract aggressive statements by the candidates as well. For this analysis,
we had two groups, the presidential debate with Donald Trump, Hilary
Clinton, the moderator, and the audience, and the vice-presidential
debate with Mike Pence, Tim Kaine, the moderator, and the audience.

We approached the analysis in a manner similar to that followed



Fig. 6: The music notation representation, Elo ranking chart, and the balloon plot for the presidential (left) and vice-presidential (right) debates.
In the presidential debates we see multiple bursts of interrupts from Trump but eventually the two debaters’ ranks converged, it also shows he
committed the most interrupts. But in the vice-presidential debate the candidates each had one burst of interrupts (between interactions 10-20 and
70-80). However, they both committed a similar number of interrupts and kept interrupting each other thus never creating a clear hierarchy.

by the experts as described in section 6. We first inspected the state
sequence and noticed that in the presidential debate a complete six-link
hierarchy (state) was formed but in the vice-presidential debate only
a three-link hierarchy was formed. On further inspection, we learned
that the reason for this was that the audience commits an interruption
(of Trump) in the presidential debate but they do not interact in the
vice-presidential debate. The interruption is the 81st interaction in
the music notation shown in figure 6 (left). Next, we inspected the
music notations, rank evolution and balloon plot of the two groups as
in figure 6. Here we observed that in the debate with the presidential
candidates Trump committed a burst of interrupts at multiple points in
the debate. However, in the vice-presidential debates each candidate
committed a burst of interrupts at the start of the debate after which
the candidates and the moderator never committed more than two
sequential interrupts. The ranking chart and the balloon plot informed
us that in the presidential debate Trump committed more than half of the
total number of interruptions and interrupted Clinton and the moderator
equally. This also caused Trump to be ranked very highly during the
debate. But towards the end, the ranks of the group members started to
converge as the moderator interrupted Trump more frequently. Finally,
the audience which stayed neural throughout the debate committed
an interrupt against Trump. This event led the ranking algorithm to
bump their ranking to the top spot. In the vice presidential debate the
candidates interrupted each other equally and thus no single member
was dominant for a long period of time. The state variant sequence for
both debates was very long with very few stable states informing us
that the groups never achieved a distinct hierarchy. This is reflective of
highly competitive debates which these were. Finally, as we had just
two groups, comparing them with the inter-group representations did
not reveal any new information.

8 DISCUSSION

In this work, we presented PeckVis, a visual analytics system to in-
spect the formation and maintenance of dominance hierarchies in small
groups. Using our system, experts successfully investigated interaction
sequences within groups and the hierarchies these interactions among
group members form. We demonstrated the use of a sequence of node-
link graphs in conjunction with a music notation and ranking chart in an
interactive dashboard to investigate the contribution of interactions to a
dominance hierarchy. Additionally, a small multiples layout of these
representations assisted the experts in interactively learning about the
similarities in hierarchy formation within and across multiple species.

The experts who worked with our system stated that it was intuitive
and easy to use. They said that having multiple visualizations of their
data interactively linked in a single interface allowed them to better
understand the data and speed up their analyses. The experts informed
us that by explicitly encoding the instantaneous rank, reversals, intran-
sitive triads and state types in the state variant sequence, they were able
to detect and investigate patterns that were hard to find. The enhance-
ments to the music notation also helped the experts connect the state
and state variant sequence to the interactions while better highlighting
bursts. Additionally, they stated that using the comparative interface

along with the user interactions made it easy to inspect the similarity
among states. The experts often switched between the comparative
interface and single group interface. They would first use the MDS
plot to select similar and dissimilar groups and extract their differences
in the comparative interface; they then went back to the single group
interface to study the differences. For example, if a user found a group
with a sequence of uncommon states in the comparative interface, he
would investigate this sequence with the single group interface where
he could examine the formation and stability of uncommon states. The
experts stated that the DTW distance performed well to show groups
that were similar based on their state or state variant sequences. How-
ever, the similarity measures were not able to help them identify groups
that were similar based on their rank evolution or interaction matrix.

While our system was primarily designed to investigate hierarchies
in animal groups, we showed that it can be adapted to analyze hierar-
chies in other situations just as well. The prime candidates would be
situations involving competitive behavior by multiple entities such as
individuals or teams competing for positions in a sports tournament
and online games or to debates as demonstrated in section 7.

9 LIMITATIONS AND FUTURE WORK

PeckVis was designed for social scientists working with small groups.
Hence in its current form it does not scale well to the analyses of large
groups. As group size increases the number of axes for each subject in
the music notation would increase as well making it infeasible to use
on a regular computer display. The state space makes use of node-link
diagrams to represent the interaction networks but this would be inap-
propriate for large networks as demonstrated by previous work [21] [27].
A possible solution would be to use an alternate representation such as
an adjacency matrix [6]. But these representations also have problems
with scaling when comparing extremely large networks. Addressing
the issue usually involves the use of glyphs or only showing differences
between adjacent graphs both of which can be applied to our system by
replacing the state sequence with a glyph or diff sequence.

Currently, PeckVis requires the manual selection of a ranking al-
gorithm based on the user’s domain expertise. In the future, we aim
to devise a mechanism to at least suggest if not auto-select the most
suitable ranking algorithm. We also believe that group comparison
techniques can be improved. First, we aim to design a better measure
of similarity to help experts find groups that have similar rank evolu-
tions and interaction matrices. Second, a small multiples layout will be
inefficient for experts to find similarities for a large number of groups.
To address this issue we propose merging the state or state variant
sequences of similar groups and representing them as a composite se-
quence highlighting areas of small difference much like in DiffAni [33].
We can then use the small multiples display to compare these composite
sequences. Additionally, our evaluation only involved two users. We
plan to conduct a more detailed evaluation that involves more users to
further test our system design and incorporate refinements if necessary.
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