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Abstract. Reducing the radiation dose in CT imaging has become an active research topic and 

many solutions have been proposed to remove the significant noise and streak artifacts in the 

reconstructed images. Most of these methods operate within the domain of the image that is 

subject to restoration. This, however, poses limitations on the extent of filtering possible. We 

advocate to take into consideration the vast body of external knowledge that exists in the domain 

of already acquired medical CT images, since after all this is what radiologists do when they 

examine these low quality images. We can incorporate this knowledge by creating a database of 

prior scans, either of the same patient or a diverse corpus of different patients, to assist in the 

restoration process. Our paper follows up on our previous work that used a database of images. 

Using images, however, is challenging since it requires tedious and error prone registration and 

alignment. Our new method eliminates these problems by storing a diverse set of small image 

patches in conjunction with a localized similarity matching scheme. We also empirically show that 

it is sufficient to store these patches without anatomical tags since their statistics is sufficiently 

strong to yield good similarity matches from the database, and as direct effect, produce image 

restorations of high quality. A final experiment demonstrates that our global database approach can 

recover image features that are difficult to preserve with conventional denoising approaches.      

1. Introduction 

An important issue in the field of Computed Tomography (CT) today is how to reduce the radiation dose 

during CT examinations without compromising image quality (Brenner and Hall 2007). The images 

obtained from low-dose CT, which can be achieved either by reducing the X-ray flux, the number of 

measurements, or both, usually suffer from severe noise artifacts and reduced feature details – all of 

which impede image readability in diagnostic tasks. Low dose CT has become an active research topic in 

recent years (see for example, Chen et al. 2008, Sidky and Pan 2008, Jia et al. 2010, Ritschl et al. 2011, 

Xu et al. 2012) and a visual interface that allows users to evaluate the trade-offs between X-ray dose, 

image quality and reconstruction speed has been presented by Zheng et al. (2013).  

Removal or reduction of the low-dose artifacts is typically achieved by regularization which is the 

introduction of additional constraints or knowledge to steer an ill-posed problem to a plausible solution. 

One form of regularization is to penalize large local variations via Total Variation Minimization (TVM) 

(Rudin et al. 1992). Another form is to reduce low-dose noise by averaging a set of pixels that are part of 

statistically similar neighborhoods, which is the strategy of the Non-Local Means (NLM) filter (Buades et 

al. 2005).  TVM has seen frequent application in low-dose CT reconstruction and it has shown promising 

results. However, being an iterative optimization approach it bears significant computational cost which 

can limit its practical application. The NLM filter, on the other hand, has been less popular so far but a 

number of papers have appeared that demonstrate its good performance in the domain of low-dose CT (Li 

et al. 2008, Huang et al. 2011, Xu et al. 2013). NLM filtering is non-iterative and highly parallelizable 

and so can be performed quite expediently (Xu and Mueller 2009). The framework we present makes use 

of the NLM similarity constraint.  
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Regularization can be wrapped into an iterative reconstruction framework, such as POCS (Sidky and 

Pan 2008) or SIR (Zhang et al 2014), or it can follow a single Filtered Backprojection reconstruction as a 

one-time post processing step (Zheng at al. 2013). The latter leads to the highest reconstruction speed 

possible, simply by virtue of the number of required operations. We follow this latter paradigm in the 

work we present here. Future work will then look into the performance of our framework within an 

iterative reconstruction pipeline.   

The NLM filter is a general filter used for a wide range of denoising tasks. It traditionally looks for 

pixels with statistically similar local neighborhoods in the noisy image itself. But these regions are likely 

equally contaminated by noise and so a satisfactory regularization may not be found. Xu and Mueller 

(2012) proposed a solution that expands the search into a set of prior CT images taken from the same 

patient but at regular dose conditions. This method first simulated the low-dose artifacts in the regular 

dose prior. It then used these simulated low-dose priors for the match, but employed the corresponding 

high-quality pixels in the original prior for the update. They showed that this artifact-based matching can 

significantly improve the quality of the match, leading to improved feature detail in the regularized image. 

Other researchers in the CT domain also utilized a prior scan of the same patient for high-quality updates 

(Ma et al 2011, Yu et al 2009) or they constrained a reconstruction by images of the same dynamic scan 

(Chen at al. 2008). A downside of any of these methods is that they cannot be used when a prior or 

dynamic scan of the patient is not available.  

To meet this inherent shortcoming Xu et al. (2013) proposed the idea of extending the search space 

even further, namely, to a collection of images of different patients. This approach, in fact, is quite alike 

the psycho-physical processes that occur in medical professionals when viewing degraded imagery. 

Medical doctors also borrow from their extensive medical training and experience to see the “true patterns 

behind the noise”. In the proposed method the medical knowledge was replaced by (1) a large and diverse 

database with thousands or more regular dose CT images, (2) a sophisticated matching strategy to locate 

priors containing structures similar to those in the noisy low-dose target, and (3) a procedure that aligned 

the matches with the noisy target via non-linear registration (Liu et al. 2011) to constrain the search to 

anatomically identical regions.  

There are, however, two shortcomings with this method: (1) the registration can be error-prone, not 

only because of the noise artifacts, but also due to the likely presence of high variations between the 

possible targets and the images stored in the database, and (2) the need to store a large number of full-size 

images can lead to excessive hardware requirements, such as disk space and management. In order to 

overcome these challenges we recently presented some preliminary work (Ha et al 2013) that replaced the 

image database with a database of small 7×7 patches. This has several advantages: (1) it simplifies the 

restoration pipeline because it eliminates the need for registration, and (2) by storing only patches we can 

remove a good amount of redundancy and in its place store more diversity.  

In the preliminary work just mentioned we added region tags to the stored patches. The region-tagged 

patches were extracted from relevant anatomical structures using a machine learning approach, and we 

subsequently called the database the localized patch-database. The same machine learning approach was 

then also used to map the patches to the appropriate anatomical regions in the noisy target. The region-

tagging represented a conservative mechanism to explicitly guide the search for patches – to ensure that 

no patch from another anatomy was used in the regularization of a certain anatomical site in the target. 

In this paper, we contrast the results obtained with this localized patch-database with a simpler one in 

which the region tags are not stored, call it the global patch-database. Such a global approach is strongly 

motivated by the success of the existing work that employed NLM filtering for low-dose CT restoration 

and also used patches originating from distant image regions (but in the same image). It provided good 

results because the pixel statistics encoded in the 7×7 patch has sufficiently strong discriminatory power 

to identify similar edge and contract configurations. The global patch database is desirable since it 

eliminates the tedious and possibly error-prone region tagging step and it saves us from the need to decide 

how differentiated the region tagging needs to be – for example, should we distinguish between portions 

of the heart or is a single region tag for the heart sufficient, and so on. Our paper presents evidence that a 

global patch database indeed might be sufficient.      
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2. Methods 

Figure 1 illustrates the overall pipeline of our proposed patch-based low-dose CT image restoration 

process. It consists of an online and an offline phase. In the offline phase, the patch database is 

constructed using a collection of regular-dose CT images taken from the same or different patients. As 

mentioned, we have studied two types of patch databases – global (Figure 1c) and localized (Figure 1d) – 

according to the degree of database segmentation (see below). In the online phase a noisy low-dose CT 

(target) image is restored using the NLM filtering mechanism in conjunction with either the global or the 

localized patch database. Specifically, for each pixel px its 7×7 patch Px centered at location x is first 

extracted and then matched with the regular-dose patches stored in the database to find N similar patches. 

Then, the NLM filter mechanism is applied to obtain the filtered pixel, 𝑝𝑥
′  according to this equation: 

𝑝𝑥
′ =

∑ exp (− ∑
𝐺𝑎(𝑡)|𝑝𝑥+𝑡 − 𝑝𝑦+𝑡|

2

ℎ2𝑡∈𝑃 ) ∙ 𝑝𝑦𝑦∈𝑆𝑁

∑ exp (− ∑
𝐺𝑎(𝑡)|𝑝𝑥+𝑡 − 𝑝𝑦+𝑡|

2

ℎ2𝑡∈𝑃 )𝑦∈𝑆𝑁

 (1)  

Here, 𝑆𝑁 is the set of patches retrieved from the database which are similar to the target patch located at x, 

and y indexes the matched patches with values py at their centers. The patch similarity is measured by the 

Gaussian weighted 𝐿2 distance between two patch vectors with t representing the index within a patch and 

𝐺𝑎 being a Gaussian kernel with standard deviation 𝑎. The factor h controls the strength of the filtering.  

2.1 The Localized Patch Database 

To create the region tags for the patches in the localized patch database we first process the collection of 

regular-dose CT images with a localization algorithm to detect and identify their internal structures. In our 

Figure 1. Our low-dose CT image restoration pipeline using the patch database: (a) is the low-dose CT image to be restored 

into (b) via NLM filtering using either (c) the global patch database or (d) the localized patch database. Both databases are 

generated from a collection of CT images (top), but the latter adds a region tag using random forest class segmentation.    
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case, we are particularly interested in a localization algorithm that is applicable in a medical setting and 

for a variety of cases (patients). One of the state-of-the-art algorithms that meet this requirement is the 

regression forest method proposed by Criminisi et al. (2011). This method captures anatomical structures 

within rectangular bounding boxes aligned with the Cartesian coordinate system (see Figure 2). Its 

framework follows the intuitive observation that a set of distinct density clusters (the anatomical 

structures) can predict the position of another anatomical structure with high confidence. The localized 

patch database is then constructed by labeling the extracted patches with the corresponding localized 

structures. In the actual implementation, instead of labeling each patch with the detected structure(s), we 

bin the patches into sets according to the localized structures contained in them. Finally, the same 

algorithm is then also used to locate anatomical structures in the target images for the localized patch 

matching.  

2.2 The Global Patch Database 

The global patch database, on the other hand, is simply a set of image patches extracted from the 

collection of normal-dose CT images regardless of their anatomical structures. As mentioned, the existing 

work that used NLM filtering for low-dose CT restoration also did not make use of local information. 

This indicates that the feature vectors represented by the patches may have sufficiently strong 

discriminatory power to identify local structures implicitly. The assumption is further supported by the 

intuitive observation that each anatomical structure represented in CT imagery has a unique dynamic 

range and shape. For example, Ye et al. (2009) used local shape and intensity dispersion information for 

the detection of lung nodules in thoracic CT images. The intensity information has also often been used as 

a key parameter in segmentation tasks (Pham et al. 2000). And finally, the Hounsfield number (HN) 

ranges often overlap for pairs of anatomical regions (for example, the HN range of the heart is mostly 

contained in that of the liver) and therefore patches can be shared if the texture patterns of the different 

regions are sufficiently similar. In the following section, we provide some empirical evidence that all this 

seems indeed to be the case.   

3. Comparing the localized patch database with the global patch database 

To test our database-assisted low-dose CT restoration pipeline, we constructed a small case study with 

images obtained from the online human lung database (http://www.giveascan.org). We selected the CT 

images of five patients and matched their quality by re-generating them from 720 projections over 360° 

with a fan-beam geometry (fan angle = 20°). The 720 projections were the point at which there was no 

more quality improvement, as gauged by the RMS error with the original CT image.  

We built three localized patch databases, one each for the right lung, the heart, and the spine regions 

using four of the five selected images. The anatomical structures of interest were marked with rectangular 

bounding boxes using the localization algorithm proposed by Criminisi et al. (2011). Each localized patch 

database was independent, storing only the patches for the anatomical region it was designed for. The 

global patch database, on the other hand, was constructed using the full set of patches extracted from the 

four images. This set contained patches not only from the tagged regions but also from surrounding 

regions not covered by the boxes shown in Figure 2. The global patch database was hence much larger.  

Figure 2. The lung dataset. The tagged anatomical regions are shown annotated by colored rectangular boxes (green: right 

lung, white: heart, red: spine region). The left-most image is the target low-dose CT image (reconstructed from 720 

projections, 40 SNR Gaussian noise), while the other images are regular-dose CT images which we used to construct the 

global and localized patch database, respectively. 

http://www.giveascan.org/
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After constructing the various databases, we generated a low-dose CT target image by adding 40 SNR 

Gaussian noise to the sinogram of the 5
th
 image before CT reconstruction. Figure 2 shows the CT image 

data used in our experiments, along with their anatomical annotations.  

We used a patch size of 7×7 and ran the NLM filtering with the set of top 40 matches to the target. 

These top 40 matches were found based on the Gaussian weighted L2-norm similarity metric. The two 

NLM parameters – h (the NLM smoothing parameter) and a (the Gaussian standard deviation) – were 

experimentally determined by the settings (h=600 and a=1) that gave the best restored image quality in 

terms of RMSE. We confirmed these finding by subsequent visual inspection. The parameter settings 

could be further optimized using the approach of Zheng et al. (2013). We chose 40 as the magnitude of 

the set of top matches since it yielded the best results. It is also close to the number of patches that fall 

into a typical NLM search window, as used for example by Xu et al. (2013). The 40 matches were 

identified via exhaustive search, but we accelerated this procedure on the GPU to make it computationally 

feasible. We currently do not utilize any space decomposition, dimension reduction, or clustering schemes 

to prune this search.   

3.1 Patch Database Statistics 

A database is considered good if it is of sufficient size (that is, it stores an appropriate number of patches) 

and of sufficient diversity. We measure size as the number of patches in a database, while diversity is 

estimated as the trace of the covariance matrix 𝚺 of the database patches: 

𝐷𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦 =  Tr(𝚺) (2)  

Table 1 shows the statistics of the patch databases we constructed – localized and global – as well as 

the patch-wise statistics of the target image we used in this study. The size is reported as the percentage 

amount of the full image. The global patch database covers the entire image and has a size of 100%, while 

the localized patch databases only cover small image areas, with the right lung being the largest at 10%.     

The diversity is more interesting. First, we notice that for each anatomical region the diversity is 

similar. Further, summing the individual diversity values for the three anatomical regions in the localized 

database yields a value that is only about 1.5 times greater than the diversity of the global database. This 

suggests that there is a considerable amount of redundancy and duplication in the localized databases (as 

is manifested by the overlapping regions) and it also demonstrates the compactness of the global database, 

at least when it comes to diversity. Another interesting observation is that even though the size of the 

global patch database is about 6 to 10 times larger than any of the localized patch databases, its diversity 

is only about twice of these. This suggests that the CT images involved in constructing the databases 

consist of a fairly limited number of local patterns and this confirms that a global patch database is likely 

all that is needed. We note that currently the global patch database has not been optimized for size via 

standard sampling and summarization methods. A large database size can lead to excessive delays in the 

matching phase as the application is scaled up. Optimizing the patch database in terms of diversity and 

size is subject of current research. 

Table 1. Characteristic of patch database and target low-dose CT image 

Type Na Region Sizec (%) Diversity 

Localized 
4 

Heart 9 1.099 

Right Lung 16 1.102 

Spine 8 1.227 

Global Allb 100 2.226 

Target 1 

Heart 11 0.134 

Right Lung 16 0.126 

Spine 9 0.140 

Allb 100  0.345d 
a The number of CT images (512 × 512, 262,144 patches) used for each patch set. 
b The whole image area is covered. 
 c Normalized by the total number of patches used (1,048,576 and 262,144 for the patch database and target image, respectively). 
d Only patches within the field of view (FOV) of the target image are considered (the noisy background region is excluded). 
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We make similar observations also for the target image (see lower half of Table 1). In following, we 

will more closely study what image regions and features the patches are derived from and relate this to the 

restoration quality that can be obtained.  

3.2 Restoration Quality  

Figure 3 shows qualitative comparisons of the restored images for both the localized and the global patch 

databases. Note that we only restored pixels in the three anatomical regions we had trained the 

localization method to identify – right lung (top row), heart (center row), and spine (bottom row). 

Although the global patch database could have restored the other pixels as well, we constrained the 

restoration to these regions only. In Figure 3, column (a) shows the noisy target image, and columns (b) 

and (d) show the restoration results obtained with the local database and the global database, respectively. 

Columns (c) and (e) show the respective difference images: |target – restored|. Finally, column (f) shows 

the regular dose version of the noisy target image as a gold standard for comparison.    

We observe that both databases succeed in removing the noise in the target image while preserving 

small detail to a similar extent. The difference images are fairly structure-less which means that the 

method was able to well separate the noise from the image features. However, it becomes also evident 

that the global database removes less structural information than the localized database. The difference 

image of the localized database shows several small features (indicated by arrows) which have been either 

completely removed from the restored image or are excessively smoothed. Conversely, these same 

features are still present or appear sharper in the image restored with the global database. This indicates 

that the larger patch variety provided by the global database can be an advantage, and it also indicates the 

need for a sufficiently feature-rich database. While our present database is admittedly relatively small, 

sizing it up to contain such richness is just a matter of (big) data gathering which is absolutely possible 

given access to such a trove of data.  

3.3 Qualitative Match Location Analysis 

For further insight, we have tracked the patches used for restoration in two aspects and for both databases. 

We have created what we call a prior map where we visualize for each target pixel the prior that 

contained the top ranked patch used for its restoration, and we have created a set of reference maps, one 

for each prior pA, pB, pC, and pD (see Figure 2), where we visualize the locations of these top ranked 

patches. Both maps can help in determining the role each prior played in the restoration process and they 

also show that the matching addressed appropriate regions in the priors.   

Figure 3. Qualitative comparisons of the restoration results. (a) low-dose (target) image, restored using (b) the localized 

database and (d) the global database; (c) difference image of local database restoration |(a)-(b)| and (e) difference image of 

global database restoration |(a)-(d)}; (f) regular dose version of the target. 
 

(a) (b) (c) (d) (e) (f) 
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In these maps, we only consider the top ranked prior patch for each pixel because in most cases: (1) it 

has the largest impact on restoration quality, (2) it is most similar to the corresponding gold standard 

patch, and (3) the next best patches are usually quite close to it.       

Figure 4 shows the prior map for each of the three anatomical regions we studied in our test data. We 

observe that for both databases there is a tendency to borrow prior values from pD for the plain regions 

like tissues and air (the low-frequency regions), while the other priors (pA, pB, pC) are mostly used to 

restore detail information, such as bones, vessels and other boundaries of sub-structures (or high-

frequency regions) in each anatomical structure. We, however, also notice that the global database leads 

to a somewhat nosier prior map possibly due to the greater variety of patches.  

Figure 4. Prior maps for the three anatomical regions we studied (a) the global and (b) the localized patch database. Red, 

green, blue and yellow colors are used to represent the priors pA, pB, pC and pD, respectively (see Figure 1 for the priors). 

(a) 

(b) 

Figure 5. Reference maps for each prior (pA, bP, pC, and pD) for (a) spine (red), (b) heart (yellow) and (c) left lung (green) 

for the global database (left column) and localized database (right column). 

(a)                                                        (b)                                                          (c) 
       Global                 Local                          Global                  Local                       Global                  Local  

pA 

pB 

pC 

pD 
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The reference maps in Figure 5 show the locations of the top ranked patches in the four priors, pA, pB, 

pC, and pD, for both the global and the localized database. These maps confirm what we have already 

seen in Figure 4 – the prior pD is used most pre-dominantly to restore the low-frequency regions of the 

target, most likely because it has a similar dynamic range. Conversely, the remaining three priors may 

have a similar density change ratio (or gradient magnitude) around the boundaries of the internal 

structures and are therefore more often used to restore the boundary pixels of the target. We also observe 

that although the retrieved patches spread more widely in the global database, as opposed to the region-

confined distribution in the localized database, the image features they access are similar. This visually 

confirms that the global database is able to return valid patches for image restoration, but without having 

the explicit structural knowledge the localized database has.   

3.4 Quantitative Match Location Analysis  

We have also conducted a more quantitative study of the patches retrieved with the global and localized 

databases. Specifically, we have compared the top ranked prior patches with regards to: (1) type, (2) 

origin and match with the intended target region, and (3) similarity with patches retrieved from the 

localized database. Table 2 shows a summary of our results, to be discussed in the following.  

 Consistency of patch: We first studied whether the top ranked patches obtained from the global and 

localized patch databases were the same or different. For this test, we relaxed the meaning of same patch 

to patches that originated from the same prior than the reference patch and were within a radius of 13 

pixels from the reference patch location. We found that even with this relaxed criterion none of the top 

ranked patches retrieved from the global database fit this measure of equality with respect to the localized 

database. This finding splits Table 2 into two main sections: same patch and different patch.  

Consistency of prior: The second test we ran was to determine whether the top ranked patches 

extracted from the global database came from the same prior in the localized database. Here we found that 

this was true for 63-75% of the test patches, depending on anatomy. This breaks the second section of 

Table 2 into two subsections: same prior and different prior.   

HIT test: The HIT test checked for all patches retrieved from the global database how many of these 

fell within the bounding box of the corresponding region. We found that this was true on average for 

about 50% of the top ranked patches in the same prior category and for about 5% patches in a different 

prior category. 

3.5 Appearance Analysis  

The previous tests checked for location similarity only. But as suggested before, the likelihood to find a 

similar patch elsewhere in an image is quite high in the domain of CT images. Our ultimate goal is restore 

a noisy image into one that matches the perceived appearance of a human observer. So it is appropriate to 

Table 2. Comparisons of top first ranked prior patches used for restoration
 

Region 
Same 

patch 

Different patch 

Same prior Different prior 

Total HIT SSIMb Total HIT SSIM 

Heart 0 
19,696 

(69.70%) 

11,989 

(60.87%)a 

0.89 

(0.06) 

8,564 

(30.30%) 

517 

(6.04%) 

0.85 

(0.09) 

Right Lung 0 
31,206 

(74.62%) 

15,702 

(50.32%) 

0.91 

(0.05) 

10,614 

(25.38%) 

639 

(6.02%) 

0.85 

(0.09) 

Spine 0 
14,238 

(63.64%) 

5,860 

(41.16%) 

0.82 

(0.10) 

8,136 

(36.36%) 

269 

(3.31%) 

0.82 

(0.11) 
a
 Percentage is computed over corresponding Total number. b Mean of SSIM with variance in parentheses 

 
Table 3. Similarity of top first ranked prior patches in SSIM index and L2-norm 

 Heart Right Lung Spine 

SSIM 0. 93  0.94 0.93 

L2-norm (%) 95.6 95.3 95.3 
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compare two candidate patches with a suitable perceptual metric, such as the Structural Similarity (SSIM) 

index defined by Wang et al. (2004). We compute the SSIM index of two patches, 𝑃𝑥 and 𝑃𝑦, as follows: 

𝑆𝑆𝐼𝑀(𝑃𝑥 , 𝑃𝑦) =
(2𝜇𝑥𝜇𝑦 + 𝑐1)(2𝜎𝑥𝑦 + 𝑐2)

(𝜇𝑥
2 + 𝜇𝑦

2 + 𝑐1)(𝜎𝑥
2 + 𝜎𝑦

2 + 𝑐2)
 (3)  

Here, 𝜇 and 𝜎2 is the average and the variance of a patch, respectively, and 𝑐1 and 𝑐2 are constant values 

to stabilize the division for weak denominators. We set the constant values as suggested by Wang et al. 

(2004) to 6.5 (𝑐1) and 58.5 (𝑐2) for CT images normalized to [0 255]. Here SSIM index values of 0.8 and 

greater are considered acceptable, values exceeding 0.9 are considered excellent, while a value of 1.0 is 

only reachable when 𝑃𝑥 and 𝑃𝑦 are identical. 

Inter-database test: The first appearance test we conducted was to compare the corresponding 

patches retrieved from the global and localized databases. The results are reported in the right-most 

columns of the same prior and different prior sections in Table 2 where we list the mean SSIM index over 

all patches in each category along with the standard deviation of each such distribution. The results 

confirm that most of the patches found from the global database have acceptable to excellent structural 

similarity with the corresponding patches retrieved from the localized database despite the fact that they 

originate from different locations either in the same or in a different prior.  

Gold standard test: The final and possibly ultimate test is to compare the patches retrieved from the 

global database with the regular dose version of the target image – the gold standard (Figure 2f). A strong 

similarity of these pairs would suggest a successful restoration to be taking place since these patches form 

the basis of this process. For this purpose, we compared all top ranked patches with their corresponding 

gold standard patches and measured their similarity using the SSIM index and the L2-norm. Table 3 

presents the results of these measurements. We observe that the mean SSIM index is an excellent 0.93 for 

each of the three regions and the L2-norm is over 95%, which are very comforting results. 

4. Comparing our global database method with other popular image denoising methods 

We conclude our paper with a study that compares our global database approach with other denoising 

methods that have become popular in low dose CT reconstruction – specifically NLM and TVM. To 

make our study comparable, the NLM and TVM filters were also applied as a post-processing step 

following a filtered back-projection reconstruction of the same data. For this purpose we selected a new 

patient from the online human lung database and followed the low-dose image generation procedure 

described in Section 3. No changes were applied to the database – we used the same global patch database 

that was employed throughout this study. All parameters of the NLM, TVM, and proposed filters were 

carefully adjusted to yield the best restoration quality. Our results are presented in Figure 6, windowed to 

two different grey level ranges (row 1 and 2). The first row (W1) presents the [-1000, 1000] Hounsfield 

window and allows an assessment of the overall restoration quality, while the second window (W2) is 

narrower [-1000, 00] and is specifically tuned for the lung region. The third row shows close-up views of 

the fissures of the lung for the images in row 2.  

We observe that all three methods can restore the bone structures well, but the noise was not overly 

significant there. Other structures, such as tissues, vessels, and tiny (but important) features, show greater 

differences. Here both NLM and TVM cause blurring – TVM more than NLM – and therefore lose small 

details in their attempt to remove the noise. They also reduce the sharpness of the edges, such as those of 

the bony structures. Our global patch database method on the other hand performs significantly better in 

all of these respects. For example, only our database method can preserve the fissures of the Lungs 

(annotated with a red arrow), which is an important anatomic landmark in the interpretation of chest CT 

scans (Hayashi et al. 2001). The restoration of this intricate detail is only possible because our patch 

database contained a similar local pattern, extracted automatically in the database building process from 

the regular dose lung images of different patients. The implicit filtering guidance by a template of this 

feature is the crucial difference that distinguishes our database from the standard NLM and others 

filtering methods which have no access to such deep anatomical knowledge. 
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5. Conclusions 

Using a database of priors in conjunction with image filtering for the restoration of noisy low-dose CT 

images can recover image features that are difficult to preserve with conventional denoising approaches. 

In this work, we have described a new regularization method that employs a database of 7×7 high-quality 

CT image patches to remove the noise artifacts that typically appear in low-dose CT images obtained with 

reduced X-ray flux. The database can be private and only store CT image patches from the patient’s prior 

regular-dose scan, or it can be public and store CT image patches of many regular-dose scans of a diverse 

patient population. Our method uses similarity matching to retrieve, for each noisy pixel in the target 

image, a set of suitable patches from this database and then applies them for NLM-type similarity-

weighted filtering. Using patches, as opposed to images, simplifies the overall complexity of the 

restoration pipeline and eliminates the tedious and error-prone image registration that plagued previous 

methods of this kind. Further, by storing a database of image patches we can remove a great amount of 

redundancy and in its place store more diversity.  

In our studies we have shown that it is sufficient to store the patches without anatomical tags since 

their statistics is sufficiently strong to yield good similarity matches from the database. Matches of high 

quality can be obtained this way, which then enable image restorations of equally high quality. Since no 

classification and segmentation of images is needed our scheme is quite easy to implement.      

Having demonstrated the power and validity of our method in principle, future work aims to scale up 

our system and construct a comprehensive global patch databases with clinical data. This database would 

eventually cover different sections of anatomy, such as chest, neck, head, thorax, abdomen, brain and so 

on and also different CT scanners, scan protocols, and reconstruction parameters. Our present study 

Figure 6: Comparing our method with other popular denoising schemes for a new lung dataset visualized with two 

Hounsfield windows (row 1: wide [-1000 1000], row 2: lung and [-1000 0]) and row 3: close-up views of the fissure of the 

Lung in row 2). (a) the low-dose CT image subject to denoising, (b) gold standard image, (c) NLM with our global patch 

database, (d) standard NLM, (e) TVM. 

 

(a)                                   (b)                                    (c)                                   (d)                                  (e) 

W1 

W2 
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already included a diversity of scan configurations, albeit only of the lung. Once the database would get 

larger and extend to more diverse anatomical regions, we might re-introduce some tagging to cull the 

search space. But in that case the tagging would be at a higher level than in our current local patch 

database, say to distinguish brain from abdomen. Finding the best strategy will be subject of further study. 

But in any event, to make such an effort practical, an efficient patch extraction framework will be needed 

to deal with this large body of data. For this purpose, we will apply techniques from big data management 

and accelerate them on GPUs.  
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