
 

      
Abstract--The task of reconstructing an object from its 

projections via tomographic methods is a time-consuming process 
due to the vast complexity of the data. For this reason, 
manufacturers of equipment for computed tomography (CT), 
both medical and industrial, rely mostly on special ASICs to 
obtain the fast reconstruction times required in clinical, 
industrial, and security settings. Although modern CPUs have 
gained enough power in recent years to be competitive for 2D 
reconstruction, this is not the case for 3D reconstructions, 
especially not when iterative algorithms must be applied. 
Incidentally, this has prevented some very effective algorithms to 
be used in clinical practice, and the need for proprietary 
reconstruction hardware has also hampered new equipment 
manufacturers in their effort on entering the market. However, 
the recent evolution of GPUs has changed the picture in a very 
dramatic way. In this paper, we will show how floating point 
GPUs can be exploited to perform both analytical and iterative 
reconstruction from X-ray and functional imaging data at clinical 
rates and good quality. For this purpose, we derive a 
decomposition of three popular 3D reconstruction algorithms into 
a common set of base modules. All of these base modules can be 
executed on the GPU and their output linked internally. The data 
never leaves the GPU, which eliminates the previous GPU-CPU 
bottlenecks. Visualization of the reconstructed object is also easily 
done since the object already resides in the graphics hardware, 
and one can simply run a visualization module at any time to view 
the reconstruction results. Our implementation allows speedups 
at a factor of 20, compared to software implementations, at 
comparable image quality.  

I. INTRODUCTION 

HERE is a great variety of 3D tomographic 
reconstruction algorithms, which can be separated into 

iterative and analytical reconstruction methods. Analytical 
methods rely on the Fourier Slice Theorem and the Radon 
Transform, which state that one can reconstruct an object by 
filtering its X-ray projections by a (modified) ramp filter in the 
frequency domain and then backprojecting the filtered 
projections into a 3D grid. A popular 3D algorithm is the 
Feldkamp-Davis-Kress algorithm (FDK) [3], while popular 
iterative algorithms are the Algebraic Reconstruction 
Technique (ART) [4] and its cousin Simultaneous ART 
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(SART) [1], and the Expectation Maximization (EM) 
algorithm [7], sped up by the Ordered Subsets EM (OS-EM) 
[5]. An important extension to algorithms used for emission 
tomography is to take into account the (transmissive) 
attenuation of the travelling photons caused by the traversed 
object tissue [8].  

3D tomographic reconstruction is an expensive process 
due the huge magnitude of the data. This is even more true for 
iterative algorithms that must perform multiple passes through 
the projection data. Usually, one needs N projections of size N2 
to reconstruct a volume with N3 voxels. Thus, the complexity 
is O(N5) per iteration. This complexity conflicts dramatically 
with the goals of clinical diagnostic imaging, especially when 
it comes to interactive radio-treatment planning or image-
based surgery, where fast reconstruction rates are required. 
Presently, only custom chips (ASICS or FPGAs) can provide 
the speeds necessary to accomplish these tasks, for the 
analytical algorithms, while no chips exist, to our knowledge, 
for the iterative algorithms. A downside for custom chips is 
their inflexibility to accommodate the latest algorithmic 
advances, and besides, they are also quite expensive and 
therefore inaccessible to researchers and small emerging 
companies 

But hope is on the way with the recent revolution in 
commodity PC-based GPU (Graphics PU) technology. 
Although graphics hardware has been around for over a 
decade, the hampering factors were the restriction to fixed 
point precision of 8 or 12 bits and the severe limitations on the 
set of operations that could be performed on the data [6]. The 
limited precision made it impossible to reconstruct objects at 
clinical contrasts, while the limited set of operations paired 
with the limited precision required a great number of data 
swaps from texture memory to main memory and back. We 
will show that this is no longer the case with the latest 
innovations by NVidia (GeForce FX) and ATI (Radeon 9700), 
which both provide floating point arithmetic as well as a rich 
instruction set for their programmable shaders, at a price of 
less than $500. 

In this paper we derive a decomposition of three popular 
3D reconstruction algorithms into a common set of base 
modules. All of these base modules can be executed on the 
GPU and their output linked internally. The data never leaves 
the GPU, which eliminates the previous GPU-CPU 
bottlenecks. We also devise a language API and a GUI, which 
can be employed to compose arbitrary reconstruction 
pipelines, say a filtered-backprojection followed by two OS-
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EM iterations, to fully execute on the hardware. Finally, 
visualization of the reconstructed object is easily done since 
the object already resides in the graphics hardware, and one 
can simply run a visualization module at any time to view the 
reconstruction results. 

 
II. OUR APPROACH 

 
To derive the projection equations used in this research let 

us assume a volumetric object composed of a material with 
emission function C(x,y,z) and attenuation function µ(x,y,z). 
Then a ray emanating from a source with initial energy C0, 
traversing the object and collecting in bin (u,v) of a detector 
oriented at angle φ will have energy Cφ(u,v) (see Fig. 1): 

where s and t are parametric variables defined along the ray, 
and L is the distance between source and detector bin. In the 
following discussion, we will denote Ci = Cφ(u, v) for 

Mi <≤0 , where M is the total number of pixels (rays) in 
the acquired projection set. These pixels will be organized into 
images Pφ acquired at detector angles kϕ , Sk <≤0 , where 
S is the total number of acquired projection images. 
   

We can decompose the reconstruction problem into two 
parts: first estimating the attenuation function µ(x,y,z) and then 
estimating the emission function C(x,y,z). To estimate µ let us 
assume that the Ci are free of contributions from emissive 
sources. Then we can rewrite the second part of (1) as follows:  

The first part of (1) will be reconstructed once µ is known, 
using a hardware-implementable formulation that will be 
derived in the full paper.  

 Since it is our goal to reconstruct a discrete grid of voxels, 
with values for emission C and for attenuation µ, it helps to 

rewrite the integral equation in an alternative, voxel-centric 
form: 
where the vj are the values for the reconstructed voxels (Cj or 
µj) at (x,y,z) and the wij are the weights with which the values 
of the vj contribute to the pixels pi. We can re-write the update 

for a specific voxel vj, 
30 Nj <≤ , as follows: 

Note that the meaning of the weight factors wij varies 
depending on the reconstruction algorithm used. In a 
Feldkamp-type grid update equation, a weight factor wij is the 

product of the interpolation weight for each pixel pi in the 
projection images and a depth weighting factor.   
  On the other hand, the iterative method of Expectation 
Maximization (EM) [7] has the following grid update 
equation: 

We can rewrite this equation in terms of grid correction factors 
di: 

The term in the denominator of (4) in the most-inner bracket is 
a projection operator, where the wij can just be the voxel 
weights, or the combined voxel/attenuation weights, if one 
would like to incorporate the attenuation effects of the volume. 
The grid update factors di are computed and backprojected into 
the grid, using the same wij than in the projection step. A 
normalization step follows after all updates have been 
backprojected (thus a temporary accumulation volume for 
weights and updates is needed), and the result is multiplied 
(not added as in SART or Feldkamp) by the current voxel 
value. The procedure for OS-EM is very similar, just operating 
on a smaller set of projections.   
  Thus all algorithms can be decomposed into very similar 
main elements, i.e., a set of projection and backprojection 
operations. The outcomes of these operations may be 
combined in different ways with simple arithmetic operations, 
such as multiplications and additions, on both the pixel level 
(to compute the grid corrections delivered by each ray) and on 
the voxel level (to compute the individual voxel updates), and 
a normalization step may be required. But all of these 
additional (glue) operations can be implemented in the latest 
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Figure 1: Transmission and emission imaging. An external X-ray 
source emits X-rays and internal radionuclides emit photons at 
sites of biochemical (metabolic) activity. Both are attenuated by 
the object’s densities.  
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Figure 2: (Left): Shepp-Logan phantom reconstructed in hard-
ware with (a) Feldkamp and (b) SART; (Center) Volume ren-
dered CT head: (a) original, (b) reconstructed. (Right) Slices of 
CT head: (a) original, (b) reconstructed. 

generation of GPUs. The incorporation of attenuation 
correction is achieved by maintaining an attenuation integral 
during projection and backprojection to composite the wij. 
  GPUs give us a choice of 2D textures and 3D textures to 
store a volume, but only 2D texture stacks allow the 
backprojection operation. We therefore use two stacks of 2D 
textures, one for each of the two major viewing directions 
implied by a circular orbit. In the iterative algorithms, our use 
of two stacks of 2D textures will lead to inconsistencies if one 
stack of textures is updated by ways of backprojection but the 
other is not. Therefore we must update a texture stack 
whenever its projection proceeds an update of the other texture 
stack. This is frequently the case since two subsequent 
projections should be close to orthogonal to maximize the rate 
of convergence. By using a tiled texture, this texture stack 
compounding can also be performed rapidly in hardware. 
 

III. RESULTS 
 First, we reconstructed the 3D Shepp-Logan phantom, on 

the usual 1283 grid. We used Feldkamp and 3 iterations of 
SART and 80 projections (see Fig. 2, left column). We see that 
all features, even the small tumors on the bottom, have been 
captured. We also reconstructed a CT head volume. We 
employed a high quality projection algorithm to simulate a set 
of 80 projections, and used SART to reconstruct. The results 
are shown in Fig. 2 in column 2 and 3. We used a simple 
hardware volume renderer without shading for the 3D 
rendering. To illustrate the reconstruction differences, we used 
the same transfer functions for both original and reconstructed 
volume, but we could obtain very similar images if we 
changed one of the transfer functions slightly. The slice images 
show that the reconstructions are quite accurate, with a slight 
low passing effect, as one might expect. 

Table 1 gives some insight into the reconstruction speed 
we were able to accomplish. Right now, we can perform a 
reconstruction of a 1283 volume with the FDK algorithm on 
the GeForce FX in seconds, and with the iterative algorithms 
in less than a minute, with 80 projections. We also found that 
these times scale linearly with the size of the dataset. 
Compared to a software implementation that uses raycasting, 
the present hardware implementation is already about 20 times 
faster. We expect the timings to improve as the drivers 
become more efficient. 
Algorithm Projection Backproj. 1 iteration Complete 

FDK - 6s - 7s 
SART 5s 6s 12s 36s 

EM-OS 5s 12s 19s 57s 
 
Table 1: Timings for our reconstructions of a 1283 volume with 
80 projections and, for the iterative algorithm, 3 iterations. The 
EM uses full attenuation correction. 
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