
Empty Space Skipping and Occlusion Clipping
for Texture-based Volume Rendering

Wei Li, Klaus Mueller, and Arie Kaufman ∗

Center for Visual Computing (CVC) and Department of Computer Science
Stony Brook University, Stony Brook, NY 11794-4400

(a) Engine (b) Knee (c) Head (d) Torso

Figure 1: Volumes rendered using 3D textures on commodity GPU. The rendering is accelerated by our empty space skipping. The images
are identical to those rendered without the acceleration, while the rendering is about 2 to 5 times faster.

Abstract

We propose methods to accelerate texture-based volume render-
ing by skipping invisible voxels. We partition the volume into
sub-volumes, each containing voxels with similar properties. Sub-
volumes composed of only voxels mapped to empty by the trans-
fer function are skipped. To render the adaptively partitioned sub-
volumes in visibility order, we reorganize them into an orthogo-
nal BSP tree. We also present an algorithm that computes incre-
mentally the intersection of the volume with the slicing planes,
which avoids the overhead of the intersection and texture coordi-
nates computation introduced by the partitioning. Rendering with
empty space skipping is 2 to 5 times faster than without it. To skip
occluded voxels, we introduce the concept of orthogonal opacity
map, that simplifies the transformation between the volume coor-
dinates and the opacity map coordinates, which is intensively used
for occlusion detection. The map is updated efficiently by the GPU.
The sub-volumes are then culled and clipped against the opacity
map. We also present a method that adaptively adjusts the optimal
number of the opacity map updates. With occlusion clipping, about
60% of non-empty voxels can be skipped and an additional 80%
speedup on average is gained for iso-surface-like rendering.

CR Categories: I.3.1 [Computing Methodologies]: Computer
Graphics—Hardware Architecture; I.3.3 [Computing Methodolo-

∗e-mail: {liwei,mueller,ari}@cs.StonyBrook.edu

gies]: Computer Graphics—Picture/Image Generation; I.3.7 [Com-
puting Methodologies]: Computer Graphics—Three-Dimensional
Graphics and Realism

Keywords: Graphics hardware, texture-based volume rendering,
empty space skipping, occlusion clipping, orthogonal opacity map

1 Introduction

Many acceleration techniques of volume rendering are based on
skipping invisible voxels. There are usually two types of invisi-
ble voxels. The first is an empty voxel that is assigned fully trans-
parency or zero color values by the transfer function. The other
is an occluded voxel, that is blocked completely by other voxels
lying between it and the view point. Empty space skipping that
skips empty voxels and early ray termination that skips occluded
voxels, have been successfully applied in software-based volume
rendering while there is little effort in exploiting them in texture-
based approaches. Conventional texture-based volume renderers,
although much faster than software renderers due to the accelera-
tion by graphics hardware, barely achieve interactive frame rates
for small to medium-sized datasets on state-of-the-art GPUs, espe-
cially when using 3D textures. Furthermore, the size of the datasets
required by applications keeps expanding. In this paper, we present
techniques for skipping both empty voxels and occluded voxels,
without loss of image quality.

In traditional texture-based volume rendering, the whole dataset
is represented as one (or more) 3D texture(s) or stacks of 2D tex-
tures. All the textures are loaded into texture memory and rendered.
We have shown in our previous work [Li and Kaufman 2003] that,
in order to skip empty regions, we can partition a volume dataset
into sub-volumes, by grouping voxels with similar properties in
both the volume domain (position) and the transfer function domain
(densities and gradient magnitudes) into the same sub-volume. Due
to the coherence that usually exists in the transfer function domain,
voxels having similar properties are likely assigned similar opac-
ities. A reasonable transfer function generally maps certain den-



sities (or gradient magnitudes) clustered in a neighborhood of the
transfer function domain to fully transparent. Those sub-volumes
comprised of only invisible (i.e., transparent) voxels can be skipped
for rendering.

The sub-volumes need to be rendered in visibility order, and re-
sorted whenever the viewpoint (for perspective projection) or the
view direction (for parallel projection) changes. In our previous
work [2003], we only used stacks of 2D textures for rendering. In
the present work, we extend the scope to 3D textures which are
known to produce images of better quality. However, the arbitrary
orientation of slicing planes requires new sorting strategies. Thus,
to simplify the sorting, we reorganize the sub-volumes into an or-
thogonal BSP tree, where all the partitioning planes are orthogonal
to a major axis. We also devise an algorithm to compute incremen-
tally the intersection of the axis-aligned sub-volumes with the slic-
ing planes, such that the overhead of computing the intersections
and texture coordinates due to the partitions is negligible.

Figure 1 shows images of four datasets rendered on commodity
graphics hardware with 3D textures, accelerated by our proposed
empty space skipping.The images are identical to those rendered
without the acceleration while the speed is about 2 to 5 times faster
(see Table 1 for detail). The datasets are lighted with a Phong model
while the surfaces are enhanced by gradient magnitude modulation.

To detect occluded voxels, an opacity map is created and is up-
dated from the contents of the frame buffer during the rendering.
The opacity map is a low resolution map on a plane orthogonal to
one of the major axes of the dataset. The opacity map is created
with the functionalities of the GPU, such as projective texture, in-
terpolation and blending functions. The sub-volumes are then pro-
jected onto the opacity map, and are culled and clipped accordingly.
Finally, we also present an algorithm that adjusts the number of map
updates automatically.

The main contributions of this paper are: (1) extending the ap-
proach in [Li and Kaufman 2003] to 3D textures by converting
the box sets bounding the sub-volumes to an orthogonal BSP tree,
(2) developing an incremental slicing algorithm to render the axis-
aligned boxes, (3) introducing the concept of orthogonal opacity
map to cull and clip sub-volumes efficiently, (4) presenting meth-
ods to create the orthogonal opacity map efficiently on the GPU,
along with an algorithm for adaptive update.

2 Related Work

Empty space skipping has been extensively exploited to accelerate
volume rendering, mainly for software-based methods. It avoids
processing empty voxels with the help of various pre-computed
data structures, such as a pyramid of binary volumes [Levoy 1990],
proximity clouds [Cohen and Sheffer 1994], macro regions [Dev-
illers 1989], bounding convex polyhedra [Avila et al. 1992], and 3D
adjacency data structures [Orchard and Möller 2001].

With the recent advances of commodity graphics hardware,
texture-based volume rendering has achieved satisfying image qual-
ity with frame rates better than software-based methods (e.g.
[Rezk-Salama et al. 2000; Engel et al. 2001; Kniss et al. 2001]).
Since the shape of a texture has to be a rectangle or a box, it is not
straightforward for many of the empty-space-skipping techniques,
which are designed for software renderers, to be applied to hard-
ware accelerated rendering.

Both Boada et al. [2001] and LaMar et al. [1999] subdivide the
texture space into an octree. They skip nodes of empty regions and
use low-resolution textures for regions far from the view point or
of lower interest. One of our previous works computes the texture
hulls [Li and Kaufman 2002] of all connected non-empty regions.
The hulls are arbitrarily shaped geometry, that separate the empty
regions from the rest rather accurately, and therefore usually skip
more voxels than those methods that partition a dataset with regular

bricks. However, texture hulls are restricted to 2D textures and are
transfer-function-dependent. Thus, in later work [Li and Kaufman
2003], we partition a volume with ”growing boxes”, that cluster
voxels according to their properties in both the volume domain and
the transfer function domain. The growing boxes skip empty re-
gions efficiently and are independent of the transfer function. In
this paper, we extend our growing boxes to 3D textures. Specifi-
cally, we convert an arbitrary box set into an orthogonal BSP tree
for efficient visibility sorting. The orthogonal BSP tree is equiva-
lent to a Kd-tree, which has been used to render adaptive mesh re-
finement (AMR) data [Kähler and Hege 2002; Kreylos et al. 2002]
on texture hardware. Creating a Kd-tree for AMR data is similar
to reorganizing the growing boxes into a BSP tree, while we also
utilize the properties of the boxes for merging to reduce the number
of boxes. Besides, in our work, the BSP tree does not affect the
storage of the sub-volumes, nor does it increase the number of the
replicated voxels.

We also present a method for computing incrementally the inter-
section of a volume with parallel slicing planes. The idea is not new
and has been applied in traditional scan conversion algorithms for
many years. Yagel et al. [1996] use a similar approach to slice un-
structured grids incrementally. The contribution of our incremental
intersection method lies in that it is dedicated to textures and is very
efficient by utilizing the characteristics of the axis-aligned boxes. In
addition, we compute incrementally both the intersection as well as
the texture coordinates.

Occlusion culling has been thoroughly studied as well, espe-
cially for surface rendering (e.g. [Greene and Kass 1993; Greene
1996; Zhang et al. 1997; Klosowski and Silva 2001; Meißner et al.
2001]). In the field of volume rendering, early ray termination is
probably the best known acceleration technique for image-order
[Levoy 1990] and hybrid-order [Lacroute and Levoy 1994] meth-
ods. For object-ordered approaches, Mueller et al. [1999] proposed
a voxel culling scheme for splatting. All of these techniques use a
per-voxel occlusion test, which, however, is not efficient for texture-
based volume rendering. Considering that the primitives in texture-
based volume rendering are the textures which typically contain
thousands of voxels, we would desire a coarser granularity for the
test at the sub-volume level. In their object-order ray caster, Mora
et al. [2002] use the so-called hidden volume removal to skip oc-
tree nodes according to a hierarchical occlusion map. Similarly, we
test the occlusion at the sub-volume level, but we also clip the sub-
volumes, instead of just culling them. In the shear-warp method
[Lacroute and Levoy 1994], sheared (and scaled for perspective
projection) volume slices are composited into a volume-aligned
plane, which is also used for early ray termination and is similar
to our orthogonal opacity map. However, both the shear-warp ap-
proach and Mora et al’s method are software based, while our or-
thogonal opacity map is designed for graphics hardware, hence we
require new techniques that create the map efficiently on the GPU.
Krüger and Westermann [2003] implement volume ray casting on
GPU, and utilize the early-z test to skip occluded voxels in ray level,
while our occlusion culling is on the sub-volume level.

3 Empty Space Skipping

The principle of our empty space skipping algorithm is to divide the
volume space into sub-volumes. The visibility of each sub-volume
is then determined according to the current transfer function, and
invisible sub-volumes are skipped for rendering. There are several
ways for partitioning the volume, such as dividing it into uniform-
sized bricks or into an octree. We exploit the growing boxes [Li
and Kaufman 2003] approach that partitions the volume adaptively
based on the voxel properties. In the next sub-section, we briefly
review our growing boxes approach, which is the basis of the empty
space skipping of this paper using 3D textures.



3.1 Growing Boxes

With the aim of accelerating volume rendering, a good partitioning
should have the property that, for various reasonable transfer func-
tions, the visible box subset encloses few invisible voxels. Naively,
this can be approached by increasing the number of the boxes.
However, the more boxes we have, the more textures we render,
and the more overhead is incurred for setting-up and switching the
textures. Furthermore, to ensure proper interpolation, we replicate
voxels at the borders of the sub-volumes. Hence, increasing the
number of the boxes increases such replicated storage as well.

The most commonly used transfer function is a 1D lookup table,
mapping density to color and opacity. Typically, one can partition
the transfer function domain into a number of ranges and only a
subset of the ranges have non-zero opacity. It is natural to partition
neighboring texels whose densities vary in a small range (32 in our
experiment) into a sub-texture. We refer to a box enclosing such a
sub-texture as a uniform box.

However, this only works well for unilluminated rendering. For
volume rendering with lighting, only the voxels near surfaces con-
tribute to the lighting. In most cases, the uniform boxes on both
sides of a surface are visible which unnecessarily involves many
voxels with zero gradient magnitude for lighting computation. To
avoid such inefficiency, we separate the voxels with non-zero gradi-
ent magnitude from the rest by a set of gradient boxes, before cov-
ering the uniform regions with uniform boxes. Because we place a
restriction on the minimal size of a uniform box, there may still be
some spaces left, which are filled by other boxes. Figure 2a shows
the projection of the box set onto a slice of the Head dataset. The
type of the boxes is represented by color, red for uniform, blue for
gradient, and green for other.

(a) (b)

Figure 2: Growing boxes. (a) A slice of the Head dataset is parti-
tioned. (b) The box set in (a) is converted into a BSP tree.

We define a cost function for each box. The partitioning should
balance between the number of boxes and the total cost of the
boxes. One way of computing the boxes would be to apply region
growing to find all the connected regions that each observes certain
criteria, such as low density variance, followed by a division of the
connected regions so that the region can be approximated by a set
of boxes. Instead, we decided to choose a more direct goal-oriented
method yielding the set of boxes in a one-stage process. That is,
the boxes grow themselves to enclose voxels of similar properties.
Hence, the general rule is to let the boxes grow as large as possible
while keeping the accumulated cost function smaller than a prede-
termined threshold.

Although the growing boxes are expected to be applicable to
both 2D and 3D textures, we have only experimented with the
method using 2D textures in our previous work. To extend this con-
cept to 3D textures, we devise an orthogonal BSP tree for the grow-
ing boxes and incremental intersection of the volume with parallel
slicing planes, described in the next sections.

3.2 Orthogonal BSP Tree

The partitioned sub-volumes should be rendered in visibility order,
either front-to-back or back-to-front. For 2D textures, we simply
render slice by slice, while for 3D textures, the only efficient order
is box by box. In an adaptive partitioning, the size and position
of each box are arbitrary. In addition, there may exist a cyclic or-
der from specific viewpoints. Consequently, the visibility sorting
cannot be trivially done as in uniform partitioning.

Therefore, we convert a set of grown boxes into an orthogonal
BSP tree, in which every splitting plane is object-aligned. With the
BSP tree, the visibility sorting becomes trivial. During the conver-
sion, some boxes are split and some others are merged. However,
we keep the total number of boxes comparable to that before the
conversion. Figure 2b shows the BSP tree converted from the box
set of Figure 2a. Note that the magnitude of the two sets is sim-
ilar. In the BSP tree, each node is associated with a list of boxes
and the bounding box of their union, which we refer to as a room.
Initially, the root node contains all growing boxes. We split a node
as follows:

1: Create two child nodes, front and back
2: Choose a partitioning plane, split the room into two boxes, set

them as the rooms of front and back
3: for each box in the list do
4: if the box is completely enclosed in the room of front (or

back) then
5: Move the box to the box list of front (or back)
6: end if
7: if the box is cut by the plane then
8: Create two boxes by splitting the box, put the two new

boxes in the lists of the child nodes, one to front, one to
back

9: if the box is an original grown box (has no parent) then
10: Set the box as the parent of the two new boxes
11: else
12: Set the parent of box as the parent of the two new boxes
13: Delete box
14: end if
15: end if
16: end for

The criterion for choosing the partitioning plane is to minimize the
number of boxes to be split. Actually, we only attempt the positions
for partitioning planes that coincide with the faces of at least two
boxes. In a finished BSP tree, each leaf node contains exactly one
box, either one of the original grown boxes, or a child box generated
from splitting. The parent boxes reside on the non-leaf nodes of the
tree. Note that no box can be a child and a parent at the same time
due to line 9 to 14 of the pseudo-code. Or in other words, there is
only one level of the parent-child hierarchy. We create sub-volumes
according to the boxes that do not have a parent, whereas the ren-
dering utilizes only the boxes at the leaf nodes (some of them are
child boxes). A child box shares the texture of its parent with its
siblings, instead of dividing the texture and distributing the smaller
textures to all the children. Otherwise, we would have to repli-
cate the texels along the boundary of the smaller textures to ensure
proper interpolation, increasing the memory requirement.

The total number of boxes at the leaf nodes after the splitting can
be significantly greater than the total of the original grown boxes.
We therefore reduce the BSP tree with a bottom-up merging oper-
ation. The type of a box resulting from merging is redetermined
according to the enclosed voxel properties. If two child nodes be-
ing merged have different parent boxes, the parent boxes are deleted
and all their children become parentless. The front child and back
child are merged if either one of the following conditions is true:
(1) The boxes of both front and back are uniform, and the merged
box is still a uniform box; (2) Both the boxes are other boxes or



both of them are gradient boxes; and (3) One of the box is tiny or
very thin (the size along one axis is smaller than a threshold).

3.3 Incremental Intersection and Texture Coordi-
nates Computation

In texture-based volume rendering, the bounding box of the dataset
is intersected with a set of parallel slicing planes. The intersection
points with each slicing plane define a polygon that is used to ex-
tract one slice from the dataset with proper texture coordinates. All
the extracted slices are blended sequentially.

If the slicing planes are kept orthogonal to the major axes of the
volume, which is a typical choice when using 2D textures, then
the intersection polygon is always a rectangle. In such case, the
intersection points are determined trivially by the bounding box and
the position of the slicing plane.

However, if the slicing planes are oriented parallel to the im-
age plane, then the number of intersection points of each non-
degenerated polygon varies from 3 to 6. Conventionally, for each
slicing plane, the intersection with of each of the 12 edges of the
bounding box is computed. Then, all the intersection points inside
a plane are sorted clockwise or counterclockwise so that they can
be sent to the graphics hardware sequentially as the vertices of a
polygon.

Partitioning the volume into sub-volumes increases the burden
for the computation of the intersection and the texture coordinates,
regardless of the partitioning scheme. For volume-aligned slicing,
the cost of the intersection can be ignored, and the texture coor-
dinates are independent of the viewing direction, hence they can
be pre-computed. For image-aligned slicing, however, the inter-
section points and the texture coordinates change with the view-
ing direction. Simply applying the intersection procedure for each
sub-volume can wipe out all the speedup gained by skipping empty
spaces, since the intersection calculation becomes the bottleneck.

We therefore propose a method to compute the intersection and
the texture coordinates incrementally. Since the slicing planes are
all parallel and uniformly spaced, the difference between the inter-
section positions on the same edge of adjacent slicing planes is a
constant. The same is true for texture coordinates. For each sub-
volume, we first compute the delta values in intersection position
deltaPos and texture coordinates deltaTexCoords. We also compute
the intersection and texture coordinates of each edge with the first
slicing plane in the traditional way and then insert all the intersec-
tions into an ActiveIntersectionList, after sorting them. The inter-
sections with the next slicing plane are computed incrementally, as
shown in the following pseudo-code, in which the variables refer-
enced and explained in this section are in italic:

1: for each intersection in ActiveIntersectionList do
2: if (!intersection.bUpdated) then
3: newPos = intersection.position[edgeOrientation] + delta-

Pos[edgeOrientation]
4: intersection.bUpdated = true
5: if newPos is inside the edge then
6: intersection.position[edgeOrientation] = newPos
7: intersection.texCoords[edgeOrientation] += deltaTex-

Coords[edgeOrientation]
8: else
9: RemoveIntersection(intersection)

10: IntersectNeighborEdges(intersection.edge, plane)
11: end if
12: end if
13: end for

We take advantage of the characteristics of the axis-aligned
boxes, that are generally unavailable in unstructured grids. Specif-
ically, we know that each box has 12 axis-aligned edges, and that
each pair of intersecting edges forms an angle of 90 degrees. Hence

both deltaPos and deltaTexCoords have only one non-zero element.
For every slicing plane except the first one, a new intersection po-
sition of each active intersection is computed using deltaPos. If the
new position is still inside the corresponding edge e, update the in-
tersection. Otherwise, the plane either does not intersect the box at
all or intersects at most two other edges that are not in ActiveInter-
sectionList yet. We then remove intersection from ActiveIntersec-
tionList.

Next, in function IntersectNeighborEdges(), we keep tracking
edges from edge e according to a connection list in breadth-first or-
der, until two intersections are found. In most cases, the two new
edges intersected are directly connected to edge e, while all three
edges form one of the vertices of the box. Then the search termi-
nates immediately. One or both or the two edges found may already
be in ActiveIntersectionList. We use the bUpdated flag to prevent
intersecting an active edge with the slicing plane or adding it to
ActiveIntersectionList multiple times. We then add the new inter-
sections to ActiveIntersectionList at the position of the intersection
just removed. Only the new intersections are sorted, instead of all
the intersections in the list.

The connection list is indexed by two arguments, the end point
of the edge beyond which the slicing plane goes and the sign of the
projection of the view direction on the edge. Obviously, the connec-
tion list depends on neither the slicing planes nor the sub-volumes,
hence can be a global data structure. The deltaPos depends only
on the viewing direction, hence is invariant for all the sub-volumes.
The deltaTexCoords, however, may depend on the actual size of the
texture, if all the texture coordinates are scaled into the [0, 1] range.
We may choose to pack all the sub-volumes into a large 3D texture,
such that the delta values of the texture coordinates are constants
for all the sub-volumes as well.

4 Occlusion Clipping

Early ray termination is an effective way to skip occluded voxels
in ray casting, especially when rendering with a transfer function
that highlights opaque surfaces inside the volume. Our occlusion
clipping is similar in principle but is targeted towards texture-based
volume rendering. We render the slices from front to back. Dur-
ing the rendering of each frame, an opacity map is updated several
times by projecting the frame buffer to an object-aligned plane. The
opacity map is also down-sampled to a low-resolution image during
the projection in order to reduce the transfer cost from GPU to main
memory. The bounding box of each sub-volume is then projected
onto the opacity map and is culled and clipped accordingly.

4.1 Orthogonal Opacity Map

Our opacity map is orthogonal to the major axis of the dataset that
is most parallel to the viewing direction, while the two axes of the
map are parallel to the other two major axes. Hence the name or-
thogonal opacity map. Figure 3c displays the orthogonal opacity
map that results from transforming the frame buffer image of the
engine dataset, as shown in Figure 3a. For illustration purpose,
we also show in Figure 3b the projection of Figure 3a using the
same transformation as Figure 3c, which is not generated in prac-
tice. Note that the front face of the dataset in Figure 3b is oriented
to align with the axes of the opacity map.

Each pixel in the opacity map corresponds to a (usually non-
rectangular) region of the frame buffer, and the value of the pixel
in the opacity map represents the minimum opacity of the frame
buffer pixels in the region. To detect whether an object is occluded,
we project the bounding box of the object onto the opacity map. If
the projected area is fully covered by pixels whose opacity value
is greater than the opacity threshold (typically chosen as 95% of
the maximum opacity), we can safely skip the object. Since the



(a) (b) (c)

Figure 3: Orthogonal opacity map. (a) An image of the Engine
dataset; (b) the Engine image projected onto an orthogonal plane;
and (c) the orthogonal opacity map.

bounding box of every sub-volume is aligned with the major axes
of the dataset, we simply project the front and the back faces of the
bounding box, whose projections are still rectangles, and then com-
bine the two projections. Note that projecting a rectangle onto an
orthogonal opacity map requires only a scaling and a translation for
perspective projection and just a translation for parallel projection.
More importantly, since the voxels are also axis-aligned, a slice
from a volume sampled on a regular grid forms an equidistance
regular grid after the projection, if the slice is parallel to the opacity
map. As shown in Figure 4, the distance between adjacent voxels
is d. After projection, the distance becomes d′ = d(l1 + l2)/l1,
which is a constant across the whole slice that is parallel to the
opacity map.

4.2 Creation of the Opacity Map

d d d d dd

d'd' d' d' d' d'

camera

opacity
map

voxel
grid

l2

l1

Figure 4: Projection of the
voxel grid onto the orthogonal
opacity map.

There are two tasks to accom-
plish when creating an or-
thogonal opacity map. The
first is to project the frame
buffer to an object-aligned
plane. The second is to down-
sample the opacity map to re-
duce the resolution. There
are two reasons for the down-
sampling. One is to limit
the cost of transferring the
map from graphics memory
to main memory, the other
is that the occlusion clipping
has to be done quickly while
a high-resolution opacity map
would imply a large amount
of comparisons. A typical
size of the low-resolution map is 64 × 64.

Both of the two tasks are done on the GPU. One solution is to
first create a high-resolution opacity map by copying the current
frame buffer FB into a texture TFB and applying projective tex-
turing onto a rectangle R parallel to the object-aligned orthogonal
plane. As shown in Figure 5, we can imagine rectangle R to be a
screen oriented orthogonal to the camera used to generate the opac-
ity map, and the frame buffer image TFB to be a slide projected
onto R by a projector at the position of the camera used for render-
ing the scene. The textured rectangle R is orthogonally projected
onto a pixel buffer PBhm that has enough resolution so that each
pixel in FB maps to at least one pixel in PBhm. We then bind
PBhm to a texture Thm which now contains the high-resolution
opacity map.

Next, we down-sample the opacity map with a multi-pass ren-
dering process. We use a pixel buffer PBm of the same size as the
desired low-resolution opacity map, and project the high-resolution
map Thm orthogonally. By setting the texture coordinates prop-
erly, we align the center of each pixel of PBm with the center of

4 neighboring texels in Thm and use linear interpolation in texel
fetching. In Figure 5, the arrows from R to PBm illustrate the
mapping of the texels of Thm to the pixels of PBm. Therefore,
each pixel in PBm gets the average value of the corresponding 4
texels. We then set the blending function to MIN, and translate the
texture coordinates so that each pixel in PBm maps to the center
of another 4 texels in Thm that have not contributed in the previous
rendering passes. This step is repeated until all the texels in Thm

have contributed to the opacity map. Suppose the high-resolution
map is N × N and the low-resolution map is n × n, then the total
rendering passes needed is �(�N/2�)/n�2, where � � is the ceiling
function. Finally, we read the contents of PBm to main memory.

In practice, we combine the projection and the down-sampling
steps into a single step to avoid creating the high-resolution opac-
ity map explicitly (note that it is still a multi-pass procedure due
to the down-sampling). That is, the projective texturing is targeted
to PBm, the low-resolution pixel buffer, directly. In this case, we
can’t translate the texture coordinates for the down-sampling, since
they are generated by the hardware automatically (using TexGen)
and are used to access the frame buffer image TFB . Instead, we ap-
ply a translation to the view volume (using glOrtho() in OpenGL),
as shown in Figure 5.

projector
pixel buffer of the
opacity map PBm

frame buffer
image TFB

mapping in
the first pass

mapping in the
second pass

one pixel

view volume of
the first pass

view volume the
second pass

rectangle R
and Thm

Figure 5: Creating an opacity map with projective texturing and
down-sampling.

4.3 Culling and Clipping

Following Zhang et al [1997], we create a hierarchical map on the
CPU from the map obtained from the GPU to speed up the culling
and clipping. Since the map from GPU is already of low-resolution,
the cost of computing the hierarchy is minimal. Before rendering a
frame, a desired number of updates of the opacity map k is set. We
then divide the total number of voxels enclosed in the non-empty
boxes by k + 1. The quotient DeltaV oxels is the number of vox-
els needed to be rendered before each opacity map update. When
we start to render each frame, the opacity map is set to invalid.
The textures are rendered as if opacity clipping is not used. After
DeltaV oxels or more voxels have been rendered, the opacity map
is updated and becomes valid, and the culling and clipping start.
When at least 2 × DeltaV oxels are rendered, the opacity is up-
dated again, and so on. Obviously, the value of each pixel in the
opacity map increases monotonically during the rendering of the
same frame (see Figures 8q-t). It is likely that a sub-volume con-
tains more voxels than DeltaV oxels. Therefore, the actual number
of map updates can be smaller than the desired number.

The occlusion culling proceeds as follows. We first project the
bounding geometry of the object onto the opacity map and obtain
the bounding rectangle of its projection Rp. Then, we search for all
the transparent pixels in the map that cover Rp. Each of these pixels



represents a visible region. Part or even the entire rectangle Rp may
fall out of the border of the opacity map, which is then added to the
visible regions. Next, we compute the bounding rectangle Rv of all
the visible regions. Rv is then used for culling and clipping.

To clip a sub-volume, we back-project Rv to the front and back
faces of the sub-volume that are parallel to the opacity map and get
Rvpf , Rvpb. We then compute the union of Rvpf and Rvpb as Rvp.
If Rvp is empty, the sub-volume is culled. Otherwise, we use Rvp

as the front and back faces to create a new bounding box of the
clipped sub-volume.

4.4 Adaptive Number of Updates of the Opacity
Maps

The frame rate varies significantly with the number of map up-
dates k. The optimal number depends on many factors, such as
the dataset, the transfer function, and the viewing angle. The per-
centage of the non-empty voxels skipped is a function of the desired
and the actual number of map updates. Naturally, the actual num-
ber of updates increases with the desired number. The percentage
of voxels skipped usually increases with the desired and the ac-
tual numbers, but there are local fluctuations. However, reading the
frame buffer is expensive and k should not be set too high. Since it
is impossible to find a work-for-all number, we choose to adjust the
number of updates adaptively.

The system starts with an empirically determined number of map
updates k, while maintaining a performance history window with
2 ∗ hw + 1 slots centered at k, that store the performances of using
k − hw to k + hw number of updates per frame. Typically, we
choose k = 9 and hw = 3. Each slot is associated with an age.
A slot that is too old is set to be invalid. Then, at every nth frame,
say n = 10, the system polls the performance using the number
in the range of [k − hw, k + hw] that has not been updated for
the longest. All the slots get older by 1 except the one just polled.
When all the slots are valid, the system picks the slot with the best
performance as the new center of the window. That is, k changes to
the new center and all the performance statistics are shifted accord-
ingly. The natural performance indicator is the frame rate. How-
ever, the measurement of the frame rate by rendering just a single
frame is very unreliable. Therefore, we actually use a performance
function: p = v − ck′. Where v is the percentage of voxels culled
and clipped, while k′ is the actual number of map updates, and c is a
constant. For the datasets we experimented with, we use c = 0.02.
Figure 6 shows the desired and the actual number of map updates
per frame for four different views of the Engine dataset.

(a) 9,4 (b) 17, 6 (c) 17, 7 (d) 10, 4

Figure 6: The desired and the actual number of map updates per
frame selected adaptively by the system for four different views of
the Engine dataset.

5 Experimental Results

We have experimented with our empty space skipping and occlu-
sion clipping techniques on a Pentium IV 2.53GHz PC with 1GB
RDRAM and a GeForce 4 Ti 4600. All renderings have used 3D
textures with a slice distance of 0.5 voxel.

Figure 1 shows the images of four datasets, rendered with gradi-
ent magnitude modulation and Phong lighting with two directional

light sources. The images are rendered with empty space skipping,
yet are identical to those rendered without the acceleration. Ta-
ble 1 compares the performance of the conventional 3D texture-
based volume rendering without the acceleration (Basic) with our
empty space skipping (ESS) using adaptive partitioning with grow-
ing boxes. Note that, the rendering speed depends on several fac-
tors, such as the size of the window, the zoom factor, the sampling
distance, and when rendering with empty space skipping, also the
transfer function. However, within each row of the table showing
frame rates, the values are obtained under the exact same condition,
except for using different rendering methods. On average the ren-
dering accelerated by skipping empty spaces is 2.8 times faster than
without it.

Table 1: Performances of Empty Space Skipping (ESS)

dataset Size Basic ESS Speedup
Engine 256 × 256 × 110 4.2 9.3 2.2
Knee 208 × 248 × 201 1.5 7.0 4.7
Head 256 × 256 × 225 2.7 5.0 1.9
Torso 256 × 256 × 256 3.1 7.5 2.4

Average 2.8

Occlusion clipping obviously is not effective for rendering with
gradient magnitude modulation. Figure 7 shows images of the same
datasets, but using transfer functions highlighting the surfaces and
without using gradient magnitude modulation. The lighting con-
figuration is identical to Figure 1. The rendering is accelerated by
both empty space skipping and occlusion clipping. The differences
in images of Figure 7 from those generated without the acceleration
are negligible. We can also generate identical images by setting the
opacity threshold to 100%, which however is unnecessary in prac-
tice.

Table 2 exhibits the performance of the occlusion clipping. The
columns under ”Frame rates” list the rendering speed of five differ-
ent rendering settings. ”Basic” stands for conventional 3D texture-
based volume rendering. ”ESS” represents accelerated by empty
space skipping, while ”ESS+CC” is for accelerated by both empty
space skipping and occlusion culling and clipping. For comparison,
we also include ”ESS+M”, accelerated by empty space skipping
with all the computations of updating opacity maps and clipping the
sub-volumes against the map, but without skipping any occluded
voxels, and ”ESS+C” which is accelerated by empty space skipping
and occlusion culling only (no clipping). By comparing ”ESS+M”
and ”ESS”, we can estimate the overhead of the opacity map and the
clipping to be about 10% of the rendering time of ”ESS” on aver-
age, since both methods render exactly the same number of voxels.
The advantage of culling plus clipping over culling only is obvious
by comparing ”ESS+CC” with ”ESS+C”.

The columns under ”Occluded voxels skipped (%)” in Table
2 show the percentage of the skipped voxels due to occlusion.
”Culled” accounts for the voxels in fully occluded boxes; ”Clipped”
stands for voxels clipped away in the partially occluded boxes; and
”Total” is the percentage of non-empty voxels that are skipped
for rendering. On average, over 57% of non-empty voxels are
skipped due to culling and clipping, among which, nearly one quar-
ter (13.9%/56.2%) is contributed by clipping. The last column
group lists the speedups. ”ESS” is the speedup of empty space
skipping vs. the conventional method whose frame rates are in the
column of ”Basic”; ”CC” is the speedup of occlusion culling and
clipping plus empty space skipping vs. empty space skipping only;
and ”ESS+CC” is for occlusion clipping plus empty space skip-
ping vs. the conventional. Note that ”ESS+CC” is the product of
”ESS” and ”CC”. In certain cases, such as those of the Head and



the Torso datasets in Figure 7, empty space skipping is not very ef-
fective, since not many voxels are empty, while the occlusion clip-
ping shows its power with an additional 80% acceleration. The two
methods combined achieve an average speed up factor of 3.3.

(a) Engine (b) Knee

(c) Head (d) Torso

Figure 7: Volume rendering of the same datasets as in Figure 1
but with different transfer functions and without gradient magni-
tude modulation. The rendering is accelerated by both empty space
skipping and occlusion clipping.

We illustrate the progress of occlusion culling and clipping by
showing the sub-volumes rendered between consecutive map up-
dates. Figures 8a-e are rendered without culling or clipping oc-
cluded voxels, 8f-j are generated with culling only, while 8k-o are
created with both culling and clipping. Figures 8a, 8f, and 8k dis-
play the sub-volumes rendered before the first update of the opacity
map, hence the three images are the same. The final image is shown
in Figure 8p, which can be obtained by blending either one of the
left three columns of images in Figure 8. Culling removes fully oc-
cluded sub-volumes, while clipping chops partially occluded sub-
volumes. Obviously, there are still many occluded voxels that have
not been skipped. From Table 2, we learn that typically 50-60%
of non-empty voxels are excluded from rendering. The number is
smaller than we have expected, but is reasonable, since our method
trades off between the accuracy of occlusion detection and its effi-
ciency on GPU. For example, the low resolution opacity map is one
of the reasons. Figures 8q-t show the opacity maps that are updated
immediately before the left images in the corresponding rows are
rendered. Note the opacities increase monotonically.

6 Discussion

In this paper, we have described acceleration methods for 3D
texture-based volume rendering, namely, empty space skipping and
occlusion clipping. The two techniques complement each other in
that empty space skipping is more efficient when there is a large
amount empty of voxels, such as when applying gradient magni-
tude modulation, whereas occlusion clipping is good for scenarios
in which there are many non-empty voxels and much occlusion.

(a) (f) (k) (p)

(b) (g) (l) (q)

(c) (h) (m) (r)

(d) (i) (n) (s)

(e) (j) (o) (t)

Figure 8: Sub-volumes rendered between consecutive map updates
of the head dataset. (a)-(e) without culling or clipping, (f)-(j) with
culling only, and (k)-(o) with both culling and clipping. (p) is the
result by compositing any one of the top three rows of images. (q)-
(t) are the corresponding opacity map.

.

Our current implementations of both the empty space skipping
and the occlusion clipping require the involvement of the CPU, as
well as the data transfer across the AGP bus. As a future optimiza-
tion, we may store the bounding boxes of the adaptively partitioned
sub-volumes as a vertex array. Then, by passing the box (vertex) ID,
the orientation, and the position of each slicing plane to the vertex
processor, the vertices of the slicing polygon as well as the texture
coordinates are computed on the GPU. When the vertex processor
can access texture, which is expected to materialize in a couple of
years, the per-sub-volume occlusion culling and clipping proposed
in the paper can be done by the vertex processor as well.

Recently, a hardware occlusion query has become available in
certain GPUs, and has been exploited for visibility culling in ren-
dering opaque surfaces to avoid reading back the frame buffer (e.g.



Table 2: Performances of occlusion clipping

Dataset Frame rates Occluded voxels skipped (%) Speedup
Basic ESS ESS+CC ESS+M ESS+C Culled Clipped Total ESS CC ESS+CC

Engine 4.9 10.6 16.8 9.4 14.1 41.1 12.0 53.1 2.2 1.6 3.4
Knee 1.8 4.2 8.5 4.1 7.1 52.1 11.7 63.8 2.3 2.0 4.7
Head 2.7 3.9 6.5 3.7 5.3 33.8 14.5 48.4 1.4 1.7 2.4
Torso 2.3 3.0 5.7 2.8 4.7 42.2 17.2 59.4 1.3 1.9 2.5

Average 42.3 13.9 56.2 1.8 1.8 3.3

ESS: empty space skipping, CC: opacity culling and clipping, C: culling only, M: opacity map creation and occlusion testing.

[Govindraju et al. 2003]). The query reports the number of frag-
ments reaching the frame buffer, typically depending on a depth
test. To utilize it for volume rendering, a comparison with the opaci-
ties in the frame buffer is also needed, which is not supported by the
current hardware. A work-around is to copy the frame buffer to a
texture, then map it onto the bounding box of the sub-volumes, fol-
lowed by controlling whether a fragment reaches the frame buffer
based on the opacity value of the texture. In this way, the work load
of the per-sub-volume occlusion detection is shifted to the fragment
processor.

We can also add another level of occlusion test for further im-
provement, by using the frame buffer as a texture and performing a
per-pixel occlusion test. It requires the fragment processor to sup-
port acceleration by fragment killing, which is similar to the alpha
test, but needs the fragment processor to be able to terminate the
program of the current fragment and start processing the next one.

Acknowledgments

This work is supported by the following grant: ONR
N000140110034, NSF Career ACI-0093157, NSF CCR-0306438,
NYSTAR, CAT Biotechnology, and NIH CA82402. The datasets
are courtesy of the National Library of Medicine Visible Human,
Center for Visual Computing of Stony Brook University, UNC, and
GE.

References

AVILA, R., SOBIERAJSKI, L., AND KAUFMAN, A. 1992. Towards a Com-
prehensive volume Visualization System. IEEE Visualization, 13–20.

BOADA, I., NAVAZO, I., AND SCOPIGNO, R. 2001. Multiresolution Vol-
ume Visualization with a Texture-Based Octree. The Visual Computer
17, 3, 185–197.

COHEN, D., AND SHEFFER, Z. 1994. Proximity clouds, an acceleration
technique for 3D grid traversal. The Visual Computer 11, 1, 27–28.

DEVILLERS, O. 1989. The macro-regions: an efficient space subdivision
structure for ray tracing. Eurographics (September), 27–38.

ENGEL, K., KRAUS, M., AND ERTL, T. 2001. High-Quality Pre-Integrated
Volume Rendering Using Hardware-Accelerated Pixel Shading. Euro-
graphics / SIGGRAPH Workshop on Graphics Hardware, 9–17.

GOVINDRAJU, N., SUD, A., AND MANOCHA, D. 2003. Interactive visi-
bility culling in complex environments using occlusion-switches. ACM
Symposium on Interactive 3D Graphics, 103–112.

GREENE, N., AND KASS, M. 1993. Hierarchical z-buffer visibility. SIG-
GRAPH, 231–240.

GREENE, N. 1996. Hierarchical polygon tiling with coverage masks. SIG-
GRAPH (Aug.), 65–74.

KÄHLER, R., AND HEGE, H.-C. 2002. Interactive volume rendering of
addaptive mesh refinement data. The Visual Computer 18, 8, 481–492.

KLOSOWSKI, J. T., AND SILVA, C. T. 2001. Efficient conservative vis-
ibility culling using the prioritized-layered projection algorithm. IEEE
Transactions on Visualization and Computer Graphics 7, 4 (Oct - Nov),
365–379.

KNISS, J., KINDLMANN, G., AND HANSEN, C. 2001. Interactive volume
rendering using multi-dimensional transfer functions and direct manipu-
lation widgets. IEEE Visualization (Oct.), 255–262.

KREYLOS, O., WEBER, G., BETHEL, E., SHALF, J., HAMANN, B., AND

JOY, K. 2002. Remote interactive direct volume rendering of AMR data.
LBNL technical report.

KRÜGER, J., AND WESTERMANN, R. 2003. Acceleration techniques for
GPU-based volume rendering. IEEE Visualization (in these proceed-
ings).

LACROUTE, P., AND LEVOY, M. 1994. Fast volume rendering using
a shear-warp factorization of the viewing transformation. SIGGRAPH
(July), 451–458.

LAMAR, E. C., HAMANN, B., AND JOY, K. I. 1999. Multiresolution
techniques for interactive texture-based volume visualization. IEEE Vi-
sualization (October), 355–362.

LEVOY, M. 1990. Efficient ray tracing of volume data. ACM Transactions
on Graphics 9, 3 (July), 245–261.

LI, W., AND KAUFMAN, A. 2002. Accelerating volume rendering with
texture hulls. IEEE / SIGGRAPH Symposium on Volume Visualization
and Graphics (October), 115–122.

LI, W., AND KAUFMAN, A. 2003. Texture partitioning and packing for
accelerating texture-based volume rendering. Graphics Interface, 81–
88.

MEISSNER, M., BARTZ, D., GÜNTHER, R., AND STRASSER, W. 2001.
Visibility driven rasterization. Computer Graphics Forum 20, 4, 283–
293.

MORA, B., JESSEL, J.-P., AND CAUBET, R. 2002. A new object-order
ray-casting algorithm. IEEE Visualization (Oct.), 203–210.

MUELLER, K., SHAREEF, N., HUANG, J., AND CRAWFIS, R. 1999. High-
quality splatting on rectilinear grids with efficient culling of occluded
voxels. IEEE Transactions on Visualization and Computer Graphics 5,
2 (April - June), 116–134.

ORCHARD, J., AND MÖLLER, T. 2001. Accelerated splatting using a 3D
adjacency data structure. Graphics Interface (June), 191–200.

REZK-SALAMA, C., ENGEL, K., BAUER, M., GREINER, G., AND ERTL,
T. 2000. Interactive volume rendering on standard pc graphics hard-
ware using multi-textures and multi-stage rasterization. SIGGRAPH /
Eurographics Workshop on Graphics Hardware (August), 109–118.

YAGEL, R., REED, D. M., LAW, A., SHIH, P., AND SHAREEF, N. 1996.
Hardware assisted volume rendering of unstructured grids by incremen-
tal slicing. Symposium on Volume Visualization, 55–62.

ZHANG, H., MANOCHA, D., HUDSON, T., AND HOFF, K. 1997. Visibility
culling using hierarchical occlusion map. SIGGRAPH, 77–88.


