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A B S T R A C T   

Despite considerable advancement in the study of network evolution, three basic limitations are common to the 
data collected: (1) examining a small number of networks, (2) not observing networks from scratch, (3) not 
collecting time-stamped, continuous records of all interactions among all members of groups. Here, we avoid 
these limitations by observing all aggressive interactions leading to network formation from the moment of 
introduction among all members of 45 groups of four individuals each in three species of animals: chickens, 
cichlid fish, and mice. We apply several recently developed methods for the visualization and analysis of network 
evolution to these unique datasets. We discover, first, that network evolution is a remarkably dynamic process 
across all three species: networks do not evolve to specific structures and then remain in those configurations. 
Instead, we find dynamic stability in which many groups continually return to a general class of structures. 
Second, we find considerable similarity across species in the pathways that the groups take through different 
possible network configurations as they evolve. Third, we show that transitive component triads are more stable 
than intransitive ones. Fourth, we track the evolution of individual ranks within groups and discover that many 
individuals do not have stable positions. Finally, we discuss fundamental questions that our findings raise for the 
study of networks in both animals and humans.   

1. Introduction 

Most of the early work in social networks examines cross-sectional or 
static network structures. However, networks are inherently dynamic, 
and researchers have increasingly recognized that cross-sectional ana
lyses provide only limited views of the actual social processes that 
generate the forms and operation of these structures. In response to this 
recognition, a number of researchers have investigated the evolution of 
networks in both small and large groups, and they have created 
accompanying methods to explain the development of network struc
tures. Despite these recent substantive and methodological advance
ments, three limitations still remain in the way that most network data 
sets are collected. 

The first limitation is that most studies have examined only one or a 
very small number of networks. Without investigating a considerable 
number of networks of one type, it is difficult to know whether the 
dynamics observed are unique or more generalizable to other networks. 

Second, many networks have not been observed from scratch, that is, 
from the initial introduction of group members and when the networks 
first begin to form. If groups are not observed from their beginnings, 
researchers are limited to truncated records of network evolution, and 
they cannot understand the initial phases of network development. 
Third, many studies of network evolution have not collected time- 
stamped, continuous records of network interaction among all the 
members of groups. For example, many organizations provide only 
aggregated, yearly snapshots of network interactions among their 
members. In these cases, researchers cannot see the timing of in
teractions within the periods for which the data are aggregated and can 
only report coarse patterns of network evolution (e.g., Barabási et al., 
2002; Garlaschelli and Loffredo, 2005; Gu et al., 2019; Rosenkopf and 
Padula, 2008). In other cases, particularly in small groups of humans 
and animals, researchers have not had the technical means to record all 
the interactions among all the members of a group at the same time. In 
response, they have had to use focal individual sampling, selecting 
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single individuals in succession, and only record the selected in
dividual’s network interactions with other individuals (e.g., Daniel 
et al., 2019; Schafer et al., 2010). Whatever the cause, the lack of 
complete, time-stamped records of interaction for all group members 
prohibits researchers from detecting the accurate evolution of ties in 
whole networks or in their component parts. 

In this paper, we avoid these limitations by presenting a study of 
network evolution based upon aggressive interactions in three species of 
animals: chickens, cichlid fish, and mice. In precluding the first limita
tion, we observed a total of 45 groups of four individuals each estab
lishing networks: 14 in chickens, 17 in cichlid fish, and 14 in mice. In 
response to the second limitation, we recorded interactions in the groups 
from the moment of introduction for a period of two days in the chickens 
and fish and three days in the mice. All the individuals in each group 
were previously unknown to each, or if they had been in the same group 
earlier, they had been separated for a period sufficient for them to forget 
one another (Chase, 1982). 

In circumventing the third limitation, we recorded all instances of 
aggressive interactions occurring among all the members of a group 
using specified sets of behaviors most appropriate for each species (see 
the Methods for more detail). This method resulted in the recording of 
hundreds of interactions in the chicken and mice groups and over 
10,000 in some of the fish groups. Each interaction was time stamped 
giving us continuous records in time order of the interactions in each 
group (see the Methods for more details). As far as we are aware, these 
are the longest, time stamped, continuous records of network evolution 
in small, face-to-face groups observed from introduction in either 
humans or animals (but some studies have collected quite long, time 
stamped records of network interaction in large human groups using 
electronic means, e.g., Kossinets and Watts, 2006; Leskovec et al., 2008; 
Viswanath et al., 2009). 

Our unique data sets allow new insights into the ways in which 
networks evolve. For example, we can assess the details of group 
network evolution and the dynamics of interaction that propel that 
evolution. We can identify the ways in which groups follow similar or 
different pathways as they evolve through the state space of possible 
network configurations. We can chart the level of stability of network 
structures in the groups and whether those structures reach stable 
configurations or continually change over time. Our data sets also allow 
us to look at the dynamics of interaction in the component triads, pairs, 
and individuals that make up the groups. We can determine the stability 
of transitive and intransitive triads and the interaction processes that 
convert transitive triads into intransitive ones as well as the converse. 
And we can evaluate the stability, or instability, of the structural posi
tions – the ranks – of individuals in their groups. 

In discovering these insights, we employ and extend several recently 
developed methods for the visualization and analysis of network evo
lution (Chase, 2006; Coelho et al., 2019; Doreian, 2006; Lindquist and 
Chase, 2009). These methods indicate the extent and kind of dynamic 
processes in network formation at the group level, in component triads, 
in pairs within triads, and in the ranks of individuals. 

The preview of our discoveries, as our title implies, is that network 
evolution is a very dynamic phenomenon at all levels: the group, triads, 
pairs, and individual positions. 

1.1. Research background 

Virtually all the early studies of network evolution examined small 
groups. Some examples are the development of networks in college 
students by Newcomb (1961); in school children by Coleman (1961), 
Hallinan (1974, 1979), Sørensen and Hallinan (1976), and Leinhardt 
(1973); in monks by Sampson (1969); and in groups of chickens by 
Chase (1982). Most of these studies investigated only one or a small 
number of networks and were not able to record data from the intro
duction of group members. However, Newcomb (1961) recorded re
lationships in a group of young men from the start of a college year, and 

Chase (1982) observed groups of chickens from introduction. 
More recently, researchers have investigated the evolution of net

works in both large and small groups. Some examples using larger net
works include investigations of social networking sites (Backstom et al., 
2006; Leskovec et al., 2008; Kwak and Kim, 2017; Viswanath et al., 
2009); scientific collaboration (Backstrom et al., 2006; Barabási et al., 
2002); international trade relationships (Garlaschelli and Loffredo, 
2005); venture capitalists (Gu et al., 2019); students, faculty, and staff at 
a large university (Kossinets and Watts, 2006); firms in the mobile 
communications industry (Rosenkopf and Padula, 2008); and scientific 
conference participants (Zhao et al., 2011). Examples of recent in
vestigations of network evolution in smaller groups include studies of 
preschool groups (Schafer et al., 2010; Daniel et al., 2019) and inter
national migrants (Lubbers et al., 2010; Ryan and D′Angelo, 2018). 

Like earlier studies, many of these more recent studies investigated 
only one or a small number of networks (although not examining 
network evolution, some studies have collected data on large numbers of 
networks, e.g., Osgood et al., 2013; Kim et al., 2015). This is under
standable given the difficulty of collecting network data, and because in 
some cases, such as the evolution of networks on major social media 
platforms, there is only one or a very small number of networks to study. 

Most of these studies also did not observe groups from scratch, but 
there are some exceptions such as Kossinets and Watts (2006) and 
Schaefer et al. (2010) that investigated networks from the beginnings of 
university or school years. Not observing groups from their beginnings is 
also understandable since the formation of new groups, especially large 
ones, that will establish networks is relatively rare. And rarer still is the 
access of network researchers to these groups. One way around this 
limitation is to establish groups in experimental settings (see, e.g., 
Newcomb, 1961; Chase, 1982), but this is largely limited to groups with 
smaller numbers of individuals. 

Many of these studies did not have access to time-stamped, contin
uous records of network interaction among all the members of groups. 
For example, Barabási et al. (2002), Garlaschelli and Loffredo (2005), 
Gu et al. (2019), Rosenkopf and Padula (2008) collected information 
from organizations that only provided aggregated data of interactions 
among group members on a yearly basis. This meant that they were 
forced to infer processes of evolution from longitudinal, yearly snap
shots of the networks. Other studies (e.g., Daniel et al., 2019; Schafer 
et al., 2010) relied on focal individual sampling to collect their data and 
thus had limited views of network evolution in their groups taken as 
wholes. 

Along with their descriptions of network evolution in both large and 
small groups, researchers have developed a variety of methodological 
tools to account for the mechanisms that might explain the development 
of network structures. For example, see Sørensen and Hallinan (1976), 
Wasserman and Iacobucci (1988), Doreian and Stockman (1997), Bar
abási and Albert (1999), Robins and Pattison (2001), Barabási et al. 
(2002), Burk et al. (2007), Leskovec et al. (2008), Snijders (2011), 
Ghoshal et al. (2013), Richards and Wormald (2014), Chase and Lind
quist (2016), Niezink et al. (2019). Researchers have used these tools to 
analyze network evolution in data that have the weaknesses we have 
described, but many approaches could just as easily be applied to data 
that do not have them. In the Discussion, we consider the application of 
these tools to the data we present here. 

The study of network evolution has greatly advanced in the last 20 
years from its beginnings in the last century. Despite this advance, there 
are major limitations in the kind of data that are currently used to 
investigate the evolution of networks. We suggest that overcoming these 
limitations will help us gain a deeper and more accurate understanding 
of how networks form and change. The goal of our work here is to give 
an example of how that can be achieved when these limitations of data 
are eliminated. 
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2. Methods 

2.1. Choice of animals and interactions recorded 

Chickens, cichlid fish, and mice represent three different taxa in the 
animal kingdom. The evolutionary line leading to cichlid fish split from 
that for chickens and mice about 350 million years ago, and the one for 
mice and chickens separated about 300 million years previously. 
Consequently, their social systems have evolved separately. This allows 
us to evaluate our results across three independent data sets. 

Our study tracks the evolution of networks based upon aggressive 
interactions rather than upon “dominance relationships”. Dominance 
relationships are usually defined by aggregating series of aggressive 
interactions and thus obscure the detailed dynamics of network evolu
tion which we are investigating here. See Section 3.4, “Dynamics of 
individual ranks”, below, for more information on the differences be
tween networks based upon aggressive interactions and dominance 
relationships. 

2.2. Animal methods 

We provide brief descriptions of the methods we used for observing 
the three species of animal groups here. More detailed information is 
provided in Appendix A. 

We observed 14 groups of four white Leghorn hens for six hours each 
day for two consecutive days. The hens were separated by partitions 
when they were not being observed. We recorded all instances of 
aggressive behaviors involving physical contact among the hens using a 
personal computer. We monitored17 groups of four female cichlid fish of 
the species Mylandia lombardoi for 12 h one day and six hours the next. 
The fish were separated by partitions when not being observed. We 

recorded all instances of the following aggressive behaviors: threat, 
chase, and nip. We logged the behaviors from video records using a 
custom-written, voice-recognition program. We used 14 groups of four 
male mice bred for laboratory work. The mice were placed in an 
enriched cage system and two video cameras recorded their behavior. 
Using the video records, we logged the winner and loser in every 
aggressive interaction occurring during the first 72 h of assembly for 
each group. 

2.3. Network states, network state space, paths through network state 
space, and state variants 

In our analysis of the evolution of network ties, we use and extend 
the methodology developed by Lindquist and Chase (2009) in their 
original analysis of the development of networks in chickens (also see 
Doreian, 2006). Our methodology reveals how groups initiate, maintain, 
and change their network ties from the moment of introduction until 
observation ends. Each tie represents an aggressive act directed from 
one individual toward another. We define a network state as each 
possible configuration of ties among the members of a group. The set of 
all possible network states is the network state space. A path is the route 
that a group takes through network state space. It consists of the suc
cessive network states that a group traverses as its network forms and 
changes. Fig. 1 shows the network state space for the 41 states that are 
possible for groups of four individuals (not counting state 0 which is the 
configuration before the individuals are introduced). More generally, 
this is the state space that is possible for groups of four individuals 
forming networks with asymmetric ties (and in which only the most 
recent tie between pairs is counted). For example, consider a group of 
chickens in which the first several interactions after introduction are: 1 
pecks 2, 3 pecks 2, 1 pecks 2, 1 pecks 4, and 4 pecks 1. This group takes 

Fig. 1. The network state space for the 41 states that are possible for groups of four individuals (not counting state 0 which is the configuration before the individuals 
are introduced). 
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the following path: state 0, state 1 (1 pecks 2), state 4 (3 pecks 2), state 
12 (1 pecks 4), and state 13 (4 pecks 1). The third act in the sequence of 
acts, 1 pecks 2, repeats the previous direction of the tie between 1 and 2 
and does not move the group to a new state. In contrast, the last act in 
the example, 4 pecks 1, does change the direction of the tie between 1 
and 4, and consequently does move the group to another state (see  
Fig. 2). 

In tracking a quad through state space, we consider that a tie is 
formed at the first occurrence of an aggressive act between a pair. If 
subsequent acts repeat the direction of the first act between a pair, the 
state of the group does not change. However, as in the example above, a 
subsequent behavior that does change the direction of attack in a pair – a 
“pair-flip” – reverses a tie and moves the group into another state. Thus, 
the state of a group of four individuals, indicates the most recent di
rections of attack between all the pairs in the group which have 
interacted. 

Each line of Fig. 1 shows the states in the same “link class”, that is, all 
the states that are possible with the same number of asymmetric ties. 
Each time a pair in a quad interacts that has not interacted before, the 
quad moves to a new link class that is 1.0 higher than its previous class. 
A pair-flip can in some cases move a group from one state to another in 
the same link class, but not from a state in one link class to one in 
another link class (see Lindquist and Chase, 2009 for more details). 

The 41 states represent only the possible structural configuration of 
asymmetric ties in groups of four and do not take into account the 
identity of the individuals. That is, two configurations of ties are the 
same if they differ only in vertex relabeling. An example using state 38 
can make this clear. Consider two groups. In the first, the interaction 
record shows that the latest attacks are: 1 has attacked 2, 3, and 4; 2 has 
attacked 3 and 4; and 3 has attacked 4. In the other, 2 has attacked 1, 3, 
and 4; 1 has attacked 3 and 4; and 3 has attacked 4 (see Fig. 3). Both of 
these groups are in state 38, but individuals 1 and 2 have swapped 
places. In the first group, 1 attacks everyone else, and in the second 2 
does. We define the “variants” of a state as the set of all the possible 
vertex relabelings of the state. That is, variants have the same structural 
configuration of ties but (at least two of) the individuals have different 
structural positions. (What we call variants are known more formally in 
graph theory as isomorphism classes.) Thus, in the example, the two 
groups show different variants of state 38. We use a standard method to 
label the variants of a state, so that a particular variant of a state has the 
same configuration of ties in all groups. The number of all possible 
variants for each state is shown in parentheses under Fig. 1. (All possible 
variants for each network state are provided in the Supplementary 
Material.). 

The use of states and not distinguishing among the variants of a state 
reduces the number of network configurations to a more manageable 
level and allows certain analyses that would not be feasible if the 
identities of the individuals were preserved. However, in other analyses, 
where it is possible, we do consider the number of state variants that a 
group transitions through. That is, we do analyze a group’s movement 
through versions of a state in which the individuals vary in their posi
tions within the state. Also see this website https://darius-coelho.gith 
ub.io/PeckVis/ 

for additional analyses using all state variants. Directions for using 
the website are given in this YouTube video: https://www.youtube. 

com/watch?v= 2s44L6STf6o&feature=youtu.be. 

2.4. Statistical methods 

In this paper we are evaluating the stability of network structures 
and describing the dynamics of network evolution. We use our three 
independent data sets to explore the level of robustness in our findings. 
But we are not primarily interested in distinctions among the three 
species, and consequently, we do not employ statistical tests to examine 
any possible differences. As much as possible, we present the raw data 
(e.g., the frequency of total interactions in different network configu
rations) and descriptive statistics. However, in keeping with our aim of 
discovering the processes of network evolution, we do employ statistical 
tests to determine if certain sequences of interaction in component triads 
and pairs differ from random. 

For each species, we performed two randomization tests. The first 
determined whether the initial structures in the component triads in the 
groups of a species were more frequently transitive than expected by 
chance (see Section 3.2 for more details). The initial structure of a triad 
was determined by its configuration when the last tie in the triad first 
formed (between the third pair in the triad). In the test, we first gener
ated a set of networks for each species based upon random interactions 
in four individuals. In the random networks, each interaction was a 
random attack between two randomly selected individuals (either x 
attacked y or y attacked x). The size of the set of networks was the same 
as the number of groups we observed in that species (n = 14 for chickens 
and mice and n = 17 for fish). We determined the total number of in
teractions in each random network by approximating the distribution of 
total interactions for groups in each species and drawing a random 
number from that theoretical distribution. This process was repeated 
10,000 times. We then computed the total number of initially transitive 
triads out of all triads within the random networks for each species for 
each of the 10,000 replications. We calculated the p-value for each 
species by determining how many times out of the 10,000 replications 
the groups in the random networks had a total number of initially 
transitive triads greater than or equal to the observed value. 

The second randomization test examined whether transitive triads, 
once formed, were more likely to be converted into new transitive triads 
than into intransitive triads at a rate higher than expected by chance (see 
Section 3.2 for more details). (The term “intransitive triad” appears 
commonly in the animal dominance literature and in some studies of 
human friendship networks. In graph theory, such triads are referred to 
as “cyclic”.) We followed a randomization process analogous to the one 
described above. Using this process, we compared the observed pro
portions of transitive triads converting to new transitive triads in a 

Fig. 2. An example showing the states created for the interaction sequence 1 pecks 2, 3 pecks 2, 1 pecks 2, 1 pecks 4, and 4 pecks 1. The number above each state 
indicates the state number and the number below each state indicates the number of interactions that the group stays in that the state. The box on the right indicates 
the node positions of the individuals ranked 1,2,3, and 4. 

Fig. 3. An example showing two variants - 1 and 7 - of state 38. Here the 
difference between the two is that the interaction between individuals 1 and 2 
are reversed. 
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species to the proportions generated in the simulations. We calculated 
the p-value for each species by determining how many times out of the 
10,000 replications the triads from the random networks had a pro
portion of transitive-to-transitive transitions greater than or equal to the 
observed value. 

We also used Wilcoxon tests to examine the pairs of individuals 
involved in converting transitive triads to new transitive triads and 
intransitive triads to transitive ones (see Section 3.2 for more details). 
For each species, we calculated the proportion of each type of pair-flip 
that occurred within each quad. We then determined if the pro
portions for all quads in each species were significantly different from 
chance by performing a one-sample Wilcoxon test against 0.50 for 
transitive-to-transitive transitions (where there two potential pair-flips) 
and 0.33 for intransitive to transitive transitions (where there are three 
potential pair-flips). 

3. Results 

3.1. Group-level analysis 

3.1.1. Number of interactions per group and visual display of interaction 
records 

We begin our analysis by presenting some basic information about 
our data sets: numbers of interactions in the groups and visual repre
sentations of their interaction records. Fig. 4 provides bar graphs of the 
total number of interactions recorded per group and median values for 
the three species. This figure shows that network evolution in all three 
species is a dynamic process: group members interacted hundreds, and 
in the case of fish, thousands of times during their observation periods. 

Fig. 5 shows visual representations of the complete records of 
interaction in two selected groups in each species using music notation 
graphics (Chase, 2006; Lindquist and Chase, 2009; Coelho et al., 2019). 
For each species, the graphs display the groups with the highest and 
lowest number of interactions. Music notation graphs illustrate the 
act-by-act evolution of networks in small groups and provide an indi
cation of the volume and complexity of interaction during the devel
opment of networks. These visualizations allow researchers to take 
advantage of our considerable human abilities of visual pattern recog
nition and to perceive processes of interaction during network evolution 
that they might not be able to recognize in simple listings of behavioral 
acts. 

In music notation graphs, horizontal lines represent an individual 

animal through time. The lines are arranged from top to bottom ac
cording to the David’s scores of the individuals at the end of their 
group’s observation record. A David’s score calculates the dominance 
rank of an individual based upon its record of attacking and being 
attacked by other individuals while taking into account the relative 
successes of its opponents in attacking and being attacking by other 
group members (see David, 1987; David, 1988; Gammel et al., 2003 for 
more details). Arrows indicate aggressive acts from one individual to 
another. They go from the initiator’s line to the receiver’s, and they are 
in the color of the initiator (green for the top line, orange for the second, 
blue for the third, and purple for the fourth). Arrows pointing down 
represent acts from higher-ranking to lower-ranking individuals, and 
those pointing up represent acts from lower- to higher-ranking 
individuals. 

Time runs from left to right in the graphs and is measured by in
teractions rather than clock time. Given various species differences, such 
as frequency of interaction and the necessarily different sizes and layout 
of group housing, we determined that using interaction time, rather than 
clock time, would be best for standardizing comparisons among the 
species. For example, in the first chicken group, Quad 12, at the 
beginning of interaction, chicken 1 attacks all the others and chicken 3 
occasionally attacks chicken 4. (We refer to the groups of four in
dividuals as quads.) Later in the record chicken 2 attacks 3 and 4. Some 
examples of music notation graphs using clock time are provided in 
Chase (2006) and Lindquist and Chase (2009). 

We have compressed these music notation graphs, especially for the 
fish, to show them on one page. (This website https://darius-coelho.gith 
ub.io/PeckVis/ allows the music notation graphs to be viewed in less 
compressed form, and this YouTube video https://www.youtube.com/w 
atch?v=2s44L6STf6o&feature=youtu.be explains how to use the web
site.) But even with the compression, the graphs give an idea of the 
dynamism and complexity of interaction during network evolution. 
Certain patterns, such as bursting (Lindquist and Chase, 2009), in which 
one individual attacks one or more other individuals several times in a 
row, are also readily apparent. The closed black circles above the graphs 
indicate changes in the network structure which we analyze immedi
ately below. 

3.1.2. How dynamic is network evolution? 
Here we investigate the number of structural variations that groups 

go through from introduction until observation ends. We count all states 
and variants. For example, a chicken quad evolves through the following 

Fig. 4. Bar graphs of the total number of interactions recorded per group and median values (horizontal line) for the three species – chickens, fish, and mice. Note 
that the number of interactions shown on the y-axis is different in each bar graph. 
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states and variants: state 1, state 2, state 6, state 28, state 38 (variant 1), 
state 39, state 38 (variant 1), and state 38 (variant 2). This quad pro
gresses through 8 structural variations counting the two times it is in 
state 38 (variant 1) and the one time it is in state 38 (variant 2). 

Fig. 6 displays the actual records of network evolution for the 
chickens and mice quads with the largest and smallest number of 
structural changes and the fish group with the smallest number of 
changes. The figure also shows the number of interactions that the 
groups spent in each structural configuration. Fig. 6 only presents the 
fish group with the smallest number of changes (40) because displaying 
the fish group with the largest number of structural transitions (1056) 
would exceed the space available. However, the records of network 
evolution for each quad in the three species, including the number of 
interactions a quad spent in each structural form, are available on 

https://darius-coelho.github.io/PeckVis/. Fig. 7 provides a bar graph 
for the number of structural changes in groups for the three species over 
the course of network evolution. Chickens have considerably fewer 
structural transformations than fish and mice, and fish also have 
considerably more transformations than mice. 

The number of structural changes occurring in the groups can be 
compared to the minimum number of changes that a group must go 
through to first reach a 6-link state. That number is 6. This number is 
achieved when a group moves directly through the successive link 
classes without ever visiting more than one variant in a link class. For 
example, a group starts upon introduction with no ties (the 0-link state) 
moves to some variant of a 1-link state, then directly to some variant of a 
2-link state, then again directly to some variant of a 3-link state, etc. In 
contrast, if a group started in the 0-link state, moved to one variant of a 

Fig. 5. Music notation graphs for the groups with the fewest and the most interactions in each of the three species - chickens, fish, and mice. The closed black circles 
above the graphs indicate changes in network structure. 
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Fig. 6. Network evolution records for the groups with the smallest and largest (except fish) number of structural changes in each species. The variants of states that a 
group passes through are shown above each network diagram, and the number of interactions that a group remains in a variant are shown below. 

Fig. 7. Bar graphs of the total number of changes in state variants recorded per group. The median values for the three species – chickens, fish, and mice – are 
represented by the horizontal line. Note that the number of changes shown on the y-axis is different in each bar graph. 

Table 1 
Heat map for CSF scores of network states for each species. The label “AAO” above a state indicates the presence of an individual that attacks all the others in that state, 
and the label “INTR” designates a state that contains an intransitive configuration. See the text for more detail.  
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1-link state, then directly to a variant of a 2-link, next to another variant 
of a 2-link state, the group would make at least 7 changes over the course 
of its journey to a 6-link state. Apart from a few chicken quads and one in 
the mice, most groups – especially in the fish – have far more structural 
transitions than the minimum number required. More specifically, the 
chicken groups averaged 2.5 more structural transformations than the 
minimum 6, the mice groups averaged 6.7 times more, and the fish 
groups averaged a stunning 66 times more. With just a few exceptions, 
network evolution in the groups is a highly dynamic and continuing 
process. Groups do not simply march through state space until they fill in 
all their ties and then remain in a particular 6-link state for the rest of 
observation. 

3.1.3. CSF and COF analysis 

3.1.3.1. Stability of network states. In this section we investigate how 
long groups stay in different states during network evolution. We ask: 
Are certain states more “attractive” than others during the development 
of networks? Are species similar or different in their patterns of visita
tion to the states? What might explain the differences in visitation pat
terns to the various states? 

We explore these questions using the CSF (Class Stability Factor) 
index developed by Lindquist and Chase (2009). They considered that 
the length of time (measured in number of interactions) that groups 
within a species remained in a particular state was an indication of that 
state’s stability. More specifically, the CSF score of a network state is the 
ratio of the number of interactions during which all groups in a species 
stay in that state to the total number of interactions that all groups 
remained in all states within the same link class of the state. For 
example, if the mice quads were in state 28 (one of the possible 5-link 
states) for 68.3% of all interactions that the quads spent in all the 
5-link states combined, the class stability factor (CSF score) for state 28 
is 0.68. 

An examination of Table 1 indicates high similarity across the three 
species in the most stable states for each link class. In all three species, 
the same states were most stable in the 3-, 4-, and 6-link classes – states 
6, 15, and 38, respectively. State 28 in the 5-link class was most stable 
for the chickens and mice, but state 29 was the marginally more stable 
for the fish (0.37 for state 28 vs. 0.38 for state 29). In the 2-link states, 
state 2 was highly stable for the fish and mice, but state 4 was for the 
chickens. Further, in all three species, except in the 5-link class for the 
fish, one state in each link class was much more stable – had a CSF score 
of 0.50 or larger – than any other state. (This website https://darius-co 
elho.github.io/PeckVis/ gives the CSF analyses by state variants for each 
group in the three species.). 

What factors are associated with high and low CSF scores? Lindquist 
and Chase (2009) suggested that states that had an individual that 
dominated all others would be more stable than those that did not. Here 
we define such groups as including an “AAO”, or an individual that at
tacks all others. Only states that have at least three links can have an 
AAO. In the 3- and 4- link classes, only one state in each class has an AAO 
(6 and 16, respectively), in the 5-link classes there are three (28, 29, and 
30), and in the 6-link classes there are two (38 and 39). For all three 
species, states 6 and 16 were the most stable in the 3- and 4-link classes. 
Taking their CSF scores together, states 28, 29, and 30 were the most 
stable for all species in the 5-link classes, and 38 was most stable for all 
in the 6-link class. Thus, in all three species, states with an AAO were 
considerably more stable than those without one – except for state 39. As 
just indicated, state 39 does have an AAO, but it also has an intransitive 
configuration which, as will be indicated below, is associated with low 
CSF scores. 

Lindquist and Chase (2009) found that CSF scores were low or zero in 
states that had intransitive configurations. In a state with an intransitive 
configuration or triad, there is at least one set of three individuals in 
which a first has attacked a second, the second has attacked a third, and 

the third has attacked the first. Table 1 indicates states that have at least 
one intransitive configuration. These states have either 0.00 or very low 
CSF scores across the three species. Groups either avoid or spend very 
little time in states with intransitive triads. 

A considerable number of other states besides those with intransitive 
triads have low CSF scores. It’s hard to say what these states have in 
common other than that they do not have an AAO. The one exception to 
this general pattern is for the chickens in 2-link states. However, as 
noted by Lindquist and Chase (2009) for the chickens, a general ten
dency across the species is for an AAO (DAO in their terminology) to 
emerge early in the evolution of networks in the groups. 

3.1.3.2. Frequency of occurrence of network states. The frequency of 
occurrence of network states is different from their stability. The class 
occurrence frequency (COF) of a state, as defined by Lindquist and Chase 
(2009), is the fraction of all groups within a species that visited a specific 
state within a link class of states. For example, 11 out of 17 fish quads 
visited state 2 within the total of three possible 2-link states for a COF 
score of 0.65. Because a group can visit more than one state in a link 
class through a reversal of a previous direction of attack between two 
individuals, the COF scores for a species for all the states in a link class 
can sum to more than 1.0. 

In general, a majority of the states (95.0%, not counting state 1 since 
all groups must go through it) were visited by at least one group in the 
three species during network evolution (Table 2). Consequently, there 
was much variation among the pathways that individual groups fol
lowed in the evolution of their networks. All groups eventually reached 
state 38, but they did so in many different ways. (This website 
https://darius-coelho.github.io/PeckVis/ gives the COF analyses by 
state variants for each group in the three species.). 

However, despite the variation in paths, there is one state in several 
of the link classes that was visited by half or more of the groups in at 
least one species. More specifically, the states with the highest COF 
scores are the same for the 2-, 3-, 4-, and 5-link classes link classes for the 
mice and fish. But the chickens diverge with their groups most often 
visiting the same state (16) as the fish and mice only in the 4-link class of 
states. The mice groups are the most “regimented” in the states they 
transition with one state in link classes 2 through 5 having a COF score of 
greater than 0.70. 

Although the CSF scores indicate that groups in all three species 
spent the great majority of their time in state 38 as compared to the 
other 6-link states, considerable fractions of the groups in the three 
species at least visited the other possible 6-link states (except for the 
chickens and state 41) as shown by their COF scores. 

The types of configurations in states that had high and low COF 
scores are less clear than those associated with high and low CSF scores. 
There was a tendency for large fractions of groups to visit states with an 
AAO, but there are exceptions in some states for the chickens and fish. 
Unlike the results for the stability scores, moderate fractions of groups 
do visit some states with intransitive configurations. And again, unlike 
the results for the stability scores, some proportions of groups pass 
through states that do not have an AAO. 

3.1.4. Dynamic stability of networks 
The CSF analysis showed that the fraction of interactions that groups 

spent in state 38, compared to the total numbers of interactions in all 6- 
link states, was very high: 0.98, 0.90, and 0.87, respectively, for 
chickens, fish, and mice. However, because the CSF analysis did not 
distinguish among variants of state 38 (see the Supplementary Material 
for all variants of state 38), a variety of dynamic patterns could have 
generated these CSF scores. Consider, for example, three different 
possible patterns of network evolution within a group. One possibility is 
that the network of ties in the group evolved to state 38, say, variant 1, 
as its first 6-link state. From that point on, the aggressive interactions in 
the group repeatedly reenacted the pattern of ties in variant 1 until 
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observation ended. This would be dynamic stability in that the config
uration of ties in variant 1 was continually recreated, but it would be a 
simple type compared to those we next describe. 

In a second and more complex kind of dynamic stability, the network 
of ties would again evolve to state 38, variant 1. Then as interactions 
continued, they would reestablish the ties in variant 1, but later, pair- 
flips would occur, and the group would move to another variant of 
state 38 or to other 6-link states. These excursions to other state 38 
variants or other 6-link states would be brief. After each excursion, the 
group would return to variant 1 of state 38 and stay there for relatively 
large numbers of interactions. This group would spend a large fraction of 
its 6-link interactions in variant 1, but it would do so by returning to that 
configuration each time it deviated from it. 

A third and yet more complex kind of dynamic stability would occur 
when the network evolved to state 38, variant 1, to begin with, but then 
moved to a different variant of state 38, say 3, and then to yet another 
variant, say 5, and so on. The group might also visit other 6-link states, 
besides variants of state 38, but these visits would be short on average. 
In this case a general type of network structure, state 38, would be 
dynamically stable, but the variants of this state and the ranks of the 
individuals within that general configuration would frequently change. 

Tables 3 and 4 give a variety of information about the dynamic 
stability of variants of state 38 in the networks of the three species. 
Table 3 provides information about the concentration of interactions for 
the most visited variant of state 38 in the groups. The column headings 
indicate ranges in per cents of all interactions in 6-link states that groups 
spent in their most visited variant of state 38 (not necessarily the same 

variant in each group). For example, consider the 78.6 entry for the 
chicken row in the 75.1–99.9% column. This indicates that 78.6% of the 
chicken groups spent between 75.1 and 99.9 per cent of all their in
teractions in 6-link states in the one specific variant of state 38 that they 
visited the most. Likewise, in 7.1% of the chicken quads (row 1, 50.1 – 

Table 2 
Heat map of COF scores of network states for each species. The label “AAO” above a state indicates the presence of an individual that has attacked all the others in that 
state, and the label “INTR” designates a state that contains an intransitive configuration. See the discussion of CSF scores above for more detail.  

Table 3 
The per cents of groups in each species that spent different per cents of all their 
interactions in 6-link states in their most visited variant of state 38.  

Species Per cents of all interactions in 6-link states that groups spent in their most 
visited variant of state 38 

0–25.0% 25.1–50.0% 50.1–75.0% 75.1–99.9% 100.0% 

Chickens  0.0  0.0  7.1  78.6  14.3 
Fish  11.8  70.6  17.6  0.0  0.0 
Mice  7.1  42.9  21.4  14.3  14.3  

Table 4 
Dynamics of state 38 variants in the three species.  

Species Avg. # of 
Variants (with 
repetition) 

Avg. # of 
Variants 
(without 
repetition) 

% of 
Possible 
Variants 

Avg. # of 
Interactions 

Chickens  4.5  2.1  8.9  120.8 
Fish  312.1  12.6  52.5  29.7 
Mice  19.0  4.9  20.2  18.7  
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75.0% column), the most often occupied variant of state 38 was visited 
between 50.1 and 75.0 per cent of all 6-link interactions. 

For Table 3, we operationalize that groups devoting 100% of all their 
6-link interactions to one variant of state 38 exhibit pattern one dynamic 
stability, groups passing between 75.1% and 99.9% of their interactions 
in their most visited variant of state 38 show pattern two dynamic sta
bility, and groups spending the percentages of time in 6-link interactions 
indicated by the 0 – 25.0%, 25.1 – 50.0%, and 50.1 – 75.0% columns in 
Table 3 present pattern three dynamic stability. Table 3 reveals that 
pattern one dynamic stability was rare. Only 14.3% each of the chicken 
and mice groups (two groups in each species) followed this type of dy
namic stability. A large majority of the chicken quads exhibited pattern 
two stability, none of the fish quads did, and a small percentage of the 
mice quads did. Finally, while all the fish quads and a large majority of 
the mice quads exhibited pattern three stability, only a small percentage 
of the chicken quads did so. 

Table 4 gives some further information about the dynamics of 
network evolution: the average number of variants of state 38 – with and 
without repetition – visited per group, the average number of variants 
visited per group as a percent of the total possible number of variants of 
state 38, and the average lifetime of state 38 variants. There are 24 (4!) 
possible variants of state 38. The lifetime of a variant of state 38 is the 
average number of interactions that quads within a species stay in that 
variant before transitioning to another variant of state 38 or to another 
6-link state. 

Inspection of this table reveals that the average chicken group visited 
a little over two variants of state 38 (without counting repetition of 
variants), the average mouse group almost five, and the average fish 
group almost 13. Put differently, the average chicken group explored a 
little under 10% of the possible number of state 38 variants, the average 
mice group reached about 20%, and the average fish group traversed 
over half of all the possible variants. Finally, the average lifetimes of 
state 38 variants vary from somewhat long to quite short in the various 
species: 120.8, 29.7, and 18.7 interactions in the chickens, fish, and mice 
respectively. 

3.2. Analysis of dynamic process in the component triads of the quads 

We now ask how the dynamics of interaction in component transitive 
and intransitive triads influence the quad-level findings we have just 

presented. We investigate the initial configurations of component triads, 
how many triads are ever intransitive, and the lifetimes of transitive and 
intransitive triads. We define a component triad as a subgroup of three 
individuals within a group of four. A transitive triad is a configuration in 
which one individual has most recently attacked a second, the second 
has most recently attacked the third, and the first has most recently 
attacked the third. In an intransitive triad, the first has most recently 
attacked the second, the second has most recently attacked the third, 
and the third has most recently attacked the first (see Fig. 8). 

First, almost all component triads in the three species initially 
formed with transitive configurations. The percentages of triads with 
initial transitive configurations were 96.4% each in the chickens and 
mice and 97.1% in the fish. For initial intransitive configurations, the 
percentages in the species were 3.6% each in the chickens and mice and 
2.9% in the fish. These results are highly significantly different from 
chance in each species (Randomization Tests, all p = 0.000). 

Second, after their initial configurations, many more component 
triads in the species became intransitive. In the chickens, 26.8% of the 
component triads developed intransitive structures at least once in their 
development, in the mice 46.4% did, and in the fish nearly all or 98.5% 
did. 

Third, while the analysis just presented indicated that large per
centages of triads were intransitive at some point in their evolution, our 
analysis above indicated that states with intransitive configurations had 
low CSF scores, i.e., groups only visited them briefly. This was true for 
both networks filling in their ties (3- to 5-link states) as well as for those 
that had all their ties in place (6-link states). Could this contrast between 
the low CSF scores and the high rates of occurrence of intransitive triads 
be explained by high instability in intransitive configurations? 

We examine this possibility by comparing the “lifetimes” of transi
tive and intransitive triads. By lifetime we mean how long in interaction 
counts a configuration lasts before it changes into a different structural 
arrangement. A transitive triad can “die” by converting into a different 
transitive configuration or into an intransitive triad (see Fig. 8). How
ever, an intransitive triad can only die by converting to a transitive triad 
(see Fig. 8). 

In all three species, transitive triads have considerably longer life
times than intransitive ones (Table 5). This difference in lifetimes is 
especially marked in chickens where transitive triads last an average of 
about 20 times longer than the intransitive ones. In fish and mice, 

Fig. 8. The possible ways in which transitive and intransitive triads can convert to other configurations.  
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transitive triads only survived about 4 and 3.7 times longer, respec
tively, than intransitive ones. 

For the chickens, the differences in lifetimes fits nicely with the CSF 
and other analyses above. The networks in the chicken quads evolved to 
mostly avoid states containing intransitive triads and spent all or most of 
their time in one variant of state 38 once they transitioned to a 6-link 
state. But for the fish and mice the differences in lifetimes for the two 
kinds of triads might seem a little perplexing. The networks in the fish 
and mice also spent large fractions of their time in states without 
intransitive configurations (from the CSF analysis), although not quite as 
large as was the case for chickens. Given the still relatively large 
avoidance of states with intransitive triads (in the CSF analysis), it might 
seem as if the differences in how long the two kinds of triads lasted in the 
fish and mice should be more like the case in the chickens. We carried 
out an additional analysis of the transitions in transitive triads to help 
resolve this possible confusion. 

In this analysis, we investigated how often transitive triads transi
tioned to either transitive or intransitive structures. If transitive triads 
often transitioned directly to another transitive configuration, this might 
explain our seemingly contrasting findings of relatively brief lifetimes of 
transitive triads, especially in the fish and mice, and high CSF scores in 
38 and other states with only transitive component triads in the group 
network. In this analysis we found that in the chickens 84.4% of tran
sitive triads converted to other transitive configurations while only 
15.6% changed to intransitive ones, in the fish the comparable figures 
were 89.2% and 10.8%, and in the mice 85.3% and 14.7%. 

In all three species, very high proportions of transitive triads tran
sition to other transitive configurations rather than to intransitive ones. 
The proportion of transitions from transitive to transitive versus 
intransitive was significantly higher than chance in each species 
(Randomization Tests; all p = 0.000). 

3.3. Analysis of dynamic processes in pairs 

In this section we search for patterns of change in the component 
pairs that might help explain the triad findings. We ask if the relation
ships in the pairs influence the conversion of one transitive triad to 
another or of an intransitive triad to a transitive one. Table 6 shows that 
a transitive triad can transition to another transitive structure by either a 
flip in the highest-ranking pair (1 and 2) or in the lowest-ranking pair (2 
and 3). Does one of these flip types occur more than the other? 

Table 6 also indicates that an intransitive triad can revert to a tran
sitive one by a flip in any of the three possible pairs making up the triad. 
This figure assumes that an original transitive triad (1 attacks 2, 2 at
tacks 3, and 1 attacks 3) was changed to an intransitive one by 3 flipping 
against 1 (3 attacks 1). However, which pair of individuals reverses the 
direction of their tie implies different possibilities for the possible 
mechanisms underlying the conversion of intransitive triads to transitive 
ones. First, consider the case in which 1 converts the triad back to 
transitivity by counterattacking 3. This does not suggest any ability of 
transitive inference or of a winner or loser effect on the part of the an
imals (Lindquist and Chase, 2009). Simply, one individual (1) has 
attacked another (3) in the initial transitive triad, the one attacked (3) 
counterattacked to form the intransitive triad, and the one counter
attacked (1) in turn itself counterattacked. (see, e.g., Bond et al., 2003; 
Paz-y-Mino et al., 2004; Oyegbile and Marler, 2005; Rutte et al., 2006; 
Grosenick et al., 2007; Oliveira et al., 2011; Harrison et al., 2018 for 
discussions of winner effects, loser effects, and transitive inference in 
animals). 

Second, consider the case in which 3 counterattacks 2. The flip be
tween this pair suggests the possibility of a winner effect or transitive 
inference in the dynamics by which the triad regained a transitive 
structure. That is, after attacking 1, 3 had a higher probability of 
attacking another individual (2). Or, 3 was able to infer, in some 
cognitive form, that if it attacked 1 and 1 attacked 2, then it should be 
able to attack 2. Third, consider the case in which 2 counterattacks 1. 
The flip between this pair suggests the possibility of a loser effect or 
transitive inference in the dynamics of return to transitive configura
tions. That is, 1 had a higher probability of losing a subsequent 
encounter with 2 after losing to 3, or 2 inferred that if it had attacked 3 
and 3 had attacked 1, then it should be able to attack 1. 

Inspection of Table 6 reveals no consistent pattern in the dynamics of 
reversals in the pairs by which transitive triads are converted to new 

Table 5 
The average lifetimes of transitive and intransitive triads in each species.  

Species Transitive Intransitive 

Chickens  110.2  5.3 
Fish  37.5  9.2 
Mice  24.6  6.7  

Table 6 
The dynamics in pairs by which transitive triads are converted to other transitive structures and by which intransitive triads are converted to transitive configurations. 
For transitive triads, the entries are the per cents of all transitive triads in a species that are converted to other transitive triads by the sequence labeling the columns. 
For the intransitive triads, the figures are the per cents of all intransitive triads that are converted to transitive ones via the sequence labeling the columns. The graphics 
over the table columns show the pairs involved in the reversals that are responsible for the conversions. Note that the double slash markers ( //) on the edges between 
nodes indicate relationships that have been reversed and cause the triad conversions.   

Transitive Triads Intransitive Triads  

Species 2 attacks 1 3 attacks 2 1 attacks 3 3 attacks 2 2 attacks 1 

Chickens  45.9  54.1  62.5  16.7  20.8 
Fish  39.8  60.2  58.1  23.3  18.6 
Mice  74.0  26.0  72.4  17.1  10.5  
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transitive triads. In the mice, significantly more conversions than chance 
are accomplished when the two highest ranking individuals (1 and 2) 
flip their ties (Wilcoxon test p < 0.01). But in the chickens and fish, 
slightly higher percentages of flips between the two lowest ranking in
dividuals (2 and 3) produce the conversions, although this was not 
significantly different than chance in either species (Wilcoxon tests, 
chickens p = 0.472, fish p = 0.071). However, in all three species, 
counterattacks by the previously top-ranked member (1) of the triads 
against currently top-ranked individual (3) are most often associated 
with conversion of intransitive triads to transitive ones. This type of 
conversion occurs significantly more than expected by chance across 
quads in each species (Wilcoxon tests; chickens p = 0.013, mice 
p = 0.002, fish p < 0.001). This finding suggests that neither transitive 
inference nor winner or loser effects account for the majority of trans
formations in intransitive triads. 

3.4. Dynamics of individual ranks 

Rather than examining networks based upon single aggressive acts, 
as we have here, most researchers in animal behavior have investigated 
the properties of what are referred to as “dominance hierarchies”. They 
view dominance hierarchies as networks of “dominance relationships”. 
Researchers usually define these relationships operationally by 
observing aggressive interactions over short periods of time and saying 
that one individual dominates another if it delivers all or a majority of 
aggressive acts to the other during that period. A dominance hierarchy is 
the network composed by all the dominance relationships between the 
pairs within the group. In line with the common assumption of much of 
network science, these dominance hierarchies are usually assumed to 
have static and enduring “linear” structures (e.g., Savin-Williams, 1980; 
Franz et al., 2015; Holekamp and Strauss, 2016, but see Oliveira and 
Almada, 1996; Hofmann et al., 1999). In a linear hierarchy, one animal 
dominates (has dominance relationships) with all the other group 
members, a second dominates all but the top individual, and so on. In a 
linear hierarchy, consequently, the individuals can be ranked from top 
to bottom by the number of other individuals that they dominate. As 
groups grow larger, more than 10 or so individuals, hierarchies may not 
be perfectly linear since some pairs may not be observed to interact. In 
such cases, these hierarchies usually have more transitive component 
triads, based upon dominance relationships, than expected by chance 
(Shizuka and McDonald, 2012). 

Using this assumption that dominance networks have static and 
enduring structures, researchers have examined whether the prior at
tributes of individuals, characteristics such as size, physiological mea
sures, and genetic background, predict later dominance ranks in groups 
(e.g., Buwalda et al., 2017; Chase et al., 2002; Holekamp and Strauss, 
2016; Williamson et al., 2016a; Varholick et al., 2018). Researchers 
have also investigated how ranks in dominance hierarchies might in
fluence the characteristics that individuals possess after groups have 
formed. These later characteristics include reproductive success, phys
iology, and bodily growth (Williamson et al., 2017; Beehner and Berg
man, 2017; Snyder-Mackler et al., 2016). However, our results 
demonstrating that networks based upon aggressive interactions are 
dynamic, implies that at least some individuals have fluctuating, rather 
than long-standing ranks within their groups. If this is so, then the 
correlations that researchers find using networks based upon dominance 
relationships between the ranks of individuals and either their prior or 
later attributes may be unreliable in magnitude or simply artifactual. 

In this section we investigate the dynamics of individual ranks to 
evaluate this possibility. We use Elo ratings, a common, well-researched 
measure of individual ranking within competitive situations (Elo, 1978; 
Neumann et al., 2011). We employ Elo ratings, rather than the David’s 
scores we used in the music notation graphs, since Elo ratings are more 
sensitive to short-term changes in individual ranks. In a comparison of 
ranking methods, Neumann et al. (2011) demonstrate that matrix-based 
methods, such as David’s scores, require longer series of interactions in 

making their ratings. They showed that David’s scores are less sensitive 
to rank changes during brief periods of interaction, for example, when 
individuals are introduced and when pairs of individuals rapidly reverse 
the direction of their attacks. 

We begin this analysis by displaying several possible patterns of in
dividual rank evolution in Fig. 9. Fig. 9a, for example, shows a group in 
which the ranks of the four individuals emerge early and remain well- 
differentiated throughout the observation period. This pattern 
occurred, holding for at least 50% of the interactions, in 7 out of 14 
groups of chickens, but never in the fish groups, and only in 1 mouse 
group. Some groups did show clear differentiation of the four ranks for 
at least very brief periods of time at the end of the observation periods: 
11 out of 14 groups in chickens (counting the 7 groups showing early 
and lasting differentiation), 4 out of 17 in fish, and 8 out of 14 in mice. 
The logically possible, but opposite pattern, in which none of the ranks 
ever clearly differentiated from the others over the course of an obser
vation record was not found, although some groups did come close, like 
the one displayed in Fig. 9b for a mouse quad. Here the individuals did 
sporadically achieve distinguished ranks in several brief windows of 
time. 

In nearly 90% of the fish groups, a little over three-quarters of the 
mice groups, and about a third of the chicken groups, there was little 
consistent rank differentiation among two or three of the individuals 
over at least half of the interactions in their respective groups. The two 
remaining graphs (Fig. 9c and d) illustrate some of the ways in which 
this happened: the bottom individual developed a clear rank but the top 
three did not and the top individual achieved a clear rank, but bottom 
three did not. However, as these latter two figures illustrate, even in 
groups in which two or three individuals did not show clear distinction 
in ranks, one individual, either the top or bottom rank, was often 
delineated. 

Overall, the modal pattern in the chickens was for all the ranks to be 
differentiated (7 out of 14 groups), and in the fish it was for the top rank 
to be clear and the bottom three not well-distinguished (13 out of 17 
groups). The mice groups were spread across several patterns with the 
most frequent two patterns being the top rank separated and the bottom 
three not (4 out of 14 groups) and the top and bottom individuals 
distinguished but the middle two not (3 out of 14 groups). 

We show the evolution of individual ranks in all the groups from the 
three species using small multiples in the Supplementary Materials 
(Tufte, 1990). This website shows higher-resolution graphs of rank 
evolution for each group in the three species: https://darius-coelho.gith 
ub.io/PeckVis/. 

4. Discussion 

4.1. Main findings 

In this study we have described network evolution in three data sets 
that avoid the limitations in many of the data sets used in previous in
vestigations of network evolution. Specifically, we examined a large 
number of groups forming networks, observed network interactions 
from the introduction of group members, and collected time-stamped, 
continuous records of all network interactions among all group mem
bers. In our analyses of the data sets, we employed and extended several 
recently developed methods for the visualization and analysis of 
network evolution. 

Our findings were robust across all three data sets. Network evolu
tion was a remarkably dynamic process across all structural levels – 
whole groups, triads, pairs, and individual ranks – in each of the species. 
The aggressive interaction networks in the groups were not stable and 
enduring as has often been assumed. The networks did not evolve to 
specific structures and remain in those structures for as long as we 
observed the groups (contrast the assumptions, e.g., in Chase et al., 
2002; Chase and Lindquist, 2009; Martin, 2009; Chase and Seitz, 2011; 
Franz et al., 2015; Williamson et al., 2016b). Network evolution was a 
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remarkably dynamic process with most groups transitioning through 
many different configurations of ties during observation. The networks 
in some fish groups, for example, made over 1000 structural changes. 

In formulating the “Freeman-Linton Hypothesis”, Skvoretz and Faust 
(2002) conjectured and found some evidence for the idea that the 
structure of ties in groups is more strongly determined by the type of 
relationship than by the species which compose the groups. The 
robustness of our findings across the three species suggests a reconsid
eration of this hypothesis, but for network dynamics rather than static 
network structures. 

Instead of a “fixed-point” stability – a state of unchanging structure – 
we discovered that the animal networks had, what we termed, dynamic 
stability. The CSF analyses showed that the groups in the three species 
spent large proportions of their interactions in state 38 (the complete 
transitive tournament) among all the 6-link states (0.98, 0.90, and 0.87 
of their interactions for the chickens, fish, and mice respectively in state 
38). That is, while many of the groups made brief excursions to other 6- 
link states (those with intransitive triads), they nearly always returned 
to some variant of state 38. But they did not show loyalty to one 
particular variant of state 38. Instead, most of the groups moved, often 
repeatedly, between two or more different variants of state 38. 

The CSF and COF investigations provided more detailed information 
about the transitions of the groups through network state space. The 
reader should recall that the CSF methods examined what proportions of 
their interactions groups within a species spent in various states, and the 
COF methods looked at what proportions of groups with a species visited 
each state (regardless of how many interactions they spent in those 
states). The CSF analyses indicated the states that were most “attractive” 
to a species on its journey of network evolution, and these analyses 
revealed that there was high similarity in those states across the three 
species. Many of the most attractive states had an AAO, an individual 
that had attacked all the others, but did not have intransitive triads. The 

COF analysis indicated that high proportions of the groups across the 
species visited the most attractive states in the CSF analysis. However, 
considerable proportions of the groups also visited almost every possible 
state in the network state space. Looking at all the groups together, 
although many of the groups tarried in the same states in their evolu
tionary journeys, they also at least transitioned through almost all the 
possible states. In other words, while there was similarity in the states 
that many groups found “attractive” (in terms of spending high pro
portions of their interactions), there was also considerable variation in 
the pathways through state space that individual groups followed in 
their network evolution. 

In investigating the processes within the triads that might underlie 
the results with the CSF analysis, we discovered that nearly all the 
component triads in the groups initially formed as transitive configu
rations. But those initial transitive configurations did not remain in 
place until the end of observations. Instead, there was also a kind of 
dynamic stability in the organization of the triads as well as of the quads. 
Many triads changed configurations over time, but transitive structures 
usually changed to other transitive structures (see Chase and Rohwer, 
1987 for similar findings in large groups of Harris’ sparrows). And if 
transitive configurations did change to intransitive ones, they usually 
only abided in those configurations for relatively few interactions before 
converting back to transitive. Congruent with these findings, we found 
that the average lifetimes of transitive triads were longer than those of 
intransitive ones in the three species. There is also evidence that net
works of friendship relationships in human groups evolve to have more 
transitive configurations over time (e.g., Leinhardt, 1973; Hallinan and 
Kubitschek, 1990; Krackhardt and Handcock, 2007). 

In examining the interactions in the pairs within triads that were 
responsible for converting transitive configurations to other transitive 
configurations, we did not find a pattern across the species. Reversals 
between the second- and third-ranked individuals in converting the 

Fig. 9. Several possible patterns of individual rank evolution in groups.  
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triads were more common in chickens and fish, but those between the 
top- and second-ranked members were more common in mice. However, 
there was a uniform pattern in the conversion of intransitive triads back 
to transitive ones. We found that the most conversions back to transi
tivity took place when the previously top-ranked individual attacked the 
previously third-ranked individual, i.e., when the previously top-ranked 
individual re-reversed its tie with the individual who made the initial 
reversal to convert the triad to intransitivity. 

We found that the ranks of individuals, like the dominance networks 
themselves, were dynamic within the three species. In many groups, 
particularly those in the fish and mice, many individuals did not have 
clear, long-lasting rank positions. In these groups, the ranks of many 
group members would have varied, depending upon the time at which 
measurements might have been made. It is important to note that we 
observed the formation of hierarchies among individuals with no pre
vious experience of each other. It is quite plausible that in long estab
lished groups that individual ranks may remain highly stable as has been 
observed for a number of species (Holekamp and Strauss, 2016). 

4.2. Implications 

In our studies we only observed three species of animals over the 
course of two or three days forming one kind of social network. 
Consequently, we do not know whether our findings will be replicated in 
humans or in other species forming networks based upon aggressive 
interactions or in other types of networks in small, face-to-face groups. 
However, the pervasiveness of the dynamic processes that we observed 
at every level of network organization raises some fundamental ques
tions for network studies: Are other networks in small groups as dynamic 
as those we report here? What about networks in large groups? If other 
networks are similarly dynamic, what does this mean for our de
scriptions of network organization? The terms that we use in these de
scriptions? The methods through which we show the dynamics? The 
models we employ to explain network evolution? How we explain the 
places of individuals within network organization? Below, we briefly 
sketch out some points in consideration of these questions. 

First, to determine the extent of dynamics in network organization 
for both humans and animal groups, researchers will have to employ 
methods for the collection of high-resolution data of the sort we used 
here: recording time-stamped records of all instances of interactions 
forming network ties among all group members over relatively long 
periods of time. Getting these data can demand considerable research 
time as it did for us in coding video records of interaction. However, new 
developments in computer vision and other electronic means offer the 
possibility of making these data easier to collect (see, e.g., Branson, 
2014; Peters et al., 2016; Mönck et al., 2018; Nilsson et al., 2020; Wyatt 
et al., 2011). 

Second, if networks of many types are as dynamic as our work here 
suggests, then many studies are reporting incomplete or misleading 
representations of network organization. Many studies only consider 
interactions occurring during brief periods of time, and the resulting 
network structures they describe may actually be temporary ones. This 
problem occurs in many studies which assume that networks based upon 
“dominance relationships” reach static “linear” configurations and then 
stop evolving (e.g., those such as Chase et al., 2002; Martin, 2009; Chase 
and Seitz, 2011; Franz et al., 2015). While these depictions may be 
helpful to some extent, they may not give a full picture of the extent of 
structural variation over even a brief period in a group’s history. In 
addition, presenting this view of network organization helps to reinforce 
the view that networks form stable and enduring structures. 

Third, to investigate the dynamics of network evolution in small 
groups, researchers will need a variety of new visualization and analysis 
methods. We have presented some methods here, and other researchers 
have also developed methods for examining network dynamics (e.g., 
Moody et al., 2005; Bender-deMoll and McFarland, 2006; Chu et al., 
2013; Crnovrsanin et al., 2014). We expect that there is much more to be 

done in this area. 
Fourth, our results suggest that researchers may need to modify and 

to add to the terms and concepts used in network research. As Moody 
(2009) points out, although there is considerable research on network 
dynamics, many of the concepts and terms still used in network research 
correspond to the conception of networks as having a static organiza
tion. Some examples are: “network structure”, “triadic census”, “posi
tion within a network”, “network centrality”, and “network 
configuration”. We have used some of these concepts and terms in this 
paper because we do not have others that would be more in keeping with 
the dynamics of network evolution that we have reported. We have 
suggested some new expressions and ideas in this paper, such as those 
coming through our CSF and COF analyses and those for the evolution of 
individual ranks, but there is much more work to be done in this area. 

Fifth, our analyses suggest new opportunities for models of network 
evolution that can account for the continual, dynamical changes of the 
sort we observed here. We indicated some models of network evolution, 
mostly in humans, earlier in the “Research Background” section, and 
some models that apply to dominance relationships and aggressive 
interaction in animals are Skvoretz et al. (1996), Chase and Lindquist 
(2016), and Skvoretz and Fararo (2016). A considerable number of these 
models, particularly those for animals, assume that networks evolve to a 
stable and enduring structural state. Others are not designed for in
teractions that repeatedly reinforce the directions of existing ties or that 
repeatedly alter the directions of existing ties. We propose that models of 
network evolution that can accommodate the sort of dynamics we have 
discovered here would be an important contribution to network science. 

Sixth, our finding that individuals in the groups we observed often do 
not have stable ranks suggests possible methodological problems in 
studies that report correlations between individual attributes and 
network positions, particularly in dominance studies. The fact that 
correlations, while perhaps statistically significant, are often of modest 
sizes, may reflect changing ranks for individuals, particularly for 
middle-ranking ones. 

In conclusion, this study investigates data sets that avoid the three 
main limitations of other data sets used in examining network evolution. 
It applies new methods for analyzing network evolution in these data 
sets, and those methods can be used across species and different types of 
networks. In the application of these methods, this study discovers 
several new insights into the dynamical development of network orga
nization. We suggest that collecting and analyzing other network data 
sets that avoid these limitations will help us make discoveries that can 
change how we think about network organization. 
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Appendix A. Detailed description of animal methods 

Chicken methods 

We used a total of 21 white Leghorn hens obtained from a com
mercial supplier. The supplier had given the hens small wing bands with 
unique identification numbers. During experiments, we used temporary 
wing badges with large numbers so that we could tell the hens apart. 
After a short period of group living, the hens were housed individually in 
76 × 51 × 61 cm cages between observations. We kept the hens on a 
12/12 light/dark cycle with lights on at 0600 h and off at 1800 h. The 
hens had both water and food ad libitum in their individual cages and 
when in experimental groups. We observed the hens in groups of four in 
a separate room in a 152 × 102 × 81 cm cage. Removable partitions 
kept the chickens apart when data were not being collected. We 
observed the hens through a small opening in a cloth partition. To 
prepare for an observation session, we took the hens one at a time from 
their home cages and placed each in a separate section of the observa
tion cage. This was done about two hours before lights out on the day 
before observations were to begin. Data collection on the next day began 
about 0900 h. Under low light, so that the hens would not interact, the 
observer removed the partitions separating them, switched the light 
back to normal intensity, and began recording aggressive interactions 
among the hens. We recorded the interactions live using a personal 
computer which also noted the time at which each interaction occurred. 
Each observer recorded interaction in alternate 1.5 h shifts for a total of 
six hours per day. The observers logged all instances of aggressive be
haviors involving physical contact between the hens: peck, jump on, and 
claw (see Chase, 1982 for more details). After the six hours of recording, 
the hens were again separated by partitions and observed the next day 
for six addition hours day following the previous day’s procedure. We 
used a balanced incomplete block design to assemble the groups of hens. 
This design allowed us to assemble groups so that no individuals met 
more than once, all individuals were in an equal number of groups, and 
each hen had at least three days’ rest between groups. We carefully 
monitored the hens for any sign of injury or pain. All experimental 
procedures were approved by the Stony Brook University Institutional 
Animal Care and Use Committee. 

Fish methods 

We used 80 female cichlid fish of the species Mylandia lombardoi 
obtained from a commercial breeder in Florida. This fish is native to East 
Africa and readily forms dominance hierarchies in the laboratory. We 
housed the fish in separate 19-liter compartments in 76-liter tanks with 
constant water temperature 22–23℃. We kept the fish on a 13/11 light/ 
dark cycle with lights on at 0700 h and off at 2000 h. To form a group of 
four fish, we weighed the fish, allowing the heaviest individual to be no 
more than 7% greater in weight than the lightest. The fish had at least 
two weeks rest between taking part in groups and no pairs of fish ever 
met more than once. After weighing, we placed each fish in a randomly 
chosen 19-liter compartment of a 76-liter observation tank in a room 
separate from the one in which the fish were housed. We put the fish in 
their compartments at approximately 1700 h and returned the next day 
at 0700 h to remove the partitions and record the interactions among the 
fish using high-definition video. After 12 h we replaced the partitions 
with the fish in their original compartments. We returned the next day at 
0700 h and following the first procedure, videoed the fish for an addi
tional 6 h. During observations we monitored the fish at one-hour in
tervals for any signs of excessive stress or injury. 

Trained observers used the video records to record all instances of 
the following aggressive behaviors: threat (the threatening individual 
approaches within one body length and the threatened individual swims 
at least one body length away), chase (the chasing individual ap
proaches another and the approached individual swims at least one body 
length away with the chasing individual following), and nip (the nipping 

fish brings its mouth into contact with the nipped individual). The ob
servers recorded the behaviors using a custom-written, voice-recogni
tion program. The program allowed an observer to say an observation, e. 
g., “1 chases 2′′, with the program logging this observation and the time 
at which it occurred using the time stamp information from the video 
record. The Stony Brook University Institutional Animal Care and Use 
Committee approved all experimental procedures. 

Mice methods 

A total of 56 male outbred Crl:CD1 (ICR) mice aged 7 weeks old were 
obtained from Charles River Laboratories (Wilmington, MA, USA). All 
mice were assigned with unique IDs and marked accordingly by dying 
their fur with nontoxic animal markers (Stoelting Co., Wood Dale, IL, 
USA). We provided standard chow and water ad libitum. Mice were kept 
under a 12/12 light/dark cycle with white light (light cycle) on at 
2400 h and red lights (dark cycle) on at 1200 h and under constant room 
temperature (22–23 ◦C) and humidity (30–50%). As it was imperative 
for this experiment that mice are unfamiliar to each other when intro
duced to a new social group of four males, we shipped mice in several 
shipments and noted the shipment groupings. Upon arrival, we housed 
mice from the same shipment groupings in pairs for seven days in 
standard sized cages (27 ×17×12 cm) with pine shaving bedding. Then 
we assigned mice from different shipment groupings into a new social 
group of four at 8 weeks of age 5–10 min before start of dark light cycle 
(1200 h) so mice could start socializing in dark. Each quad (group of 
four) was placed into an enriched cage system of dimensions 48.5 
(width) x 35.5 (length) x 14 (height) cm. This enriched cage system 
consists of two standard rat cages (dimensions of 35.5 ×20.5×14cm) 
filled with pine shaving bedding and enrichment objects. We installed a 
GoPro Hero3 camera above each enriched cage system to capture every 
social interaction during social hierarchy formation for the first 72 h of 
the group housing period. With the 72-hour video recording data, 
trained observers scored the winner and loser in every instances of 
agonistic interactions such as fighting, chasing, lunging, mounting, 
subordinate posture, and induced-flee behaviors as well as other social 
behaviors such as allogrooming and sniffing. Mice were monitored each 
day of the group housing period for any sign of injury or pain. We 
conducted all procedures with approval from the Columbia University 
Institutional Animal Care and Use Committee (IACUC protocols: AC- 
AAAQ4406). 

Appendix B. Supporting information 

Supplementary data associated with this article can be found in the 
online version at doi:10.1016/j.socnet.2021.09.002. 

References 

Backstrom, L., Huttenlocher, D., Kleinberg, J., Lan, X., 2006. Group formation in large 
social networks: membership, growth, and evolution. Proceedings of the 12th 
International Conference on Knowledge Discovery and Data Mining 44–54. https:// 
doi.org/10.1145/1150402.1150412. 

Barabási, A.-L., Albert, R., 1999. Emergence of scaling in random networks. Science 286, 
509–512. 
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