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Abstract—Clustering has become an unavoidable step in big 
data analysis. It may be used to arrange data into a compact 
format, making operations on big data manageable. However, 
clustering of big data requires not only the capability of handling 
data with large volume and high dimensionality, but also the 
ability to process streaming data, all of which are less developed in 
most current algorithms. Furthermore, big data processing is 
seldom interactive, which stands at conflict with users who seek 
answers immediately. The best one can do is to process 
incrementally, such that partial and, hopefully, accurate results 
can be available relatively quickly and are then progressively 
refined over time. We propose a clustering framework which uses 
Multi-Dimensional Scaling for layout and GPU acceleration to 
accomplish these goals. Our domain application is the clustering 
of mass spectral data of individual aerosol particles with 8 million 
data points of 450 dimensions each. 
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I. INTRODUCTION 

Big data is everywhere we turn today, recording and 
affecting everyone and everything– the internet of things, social 
networks, economy, politics, astronomy, health science, film 
industry, military surveillance – just to name a few. The vast 
development of modern technology has made data never so easy 
to acquire for humankind. And this is especially meaningful for 
scientific research which has been revolutionized by big data in 
the past decade. For instance, Nature and Science have even 
published special issues dedicated to discussing the 
opportunities and challenges brought by big data [1][2].  

While it is generally believed that there can be huge 
academic and business opportunities emerging from big data, 
with the fast-growing volume and variety, the task of automated 
or semi-automated managing and extracting useful knowledge 
becomes more complex than ever. A major challenge, among 
all, is that the big storage required by the unprecedented growth 
of data volume has made the analytical, process, and retrieval 
operations of big data very difficult. A plausible solution is to 
label the data points so that they can be arranged into a compact 
format, for instance, via hierarchical indexing [3] and stratified 
sampling [4], making operations of big data more efficient and 
manageable regarding both time and memory cost.  

Although crowdsourcing, for instance, via Amazon 
Mechanical Turk [5],  can be leveraged in some smaller-scale 
cases to obtain data labelling, ultimately, it is impossible for 
human to match the fast-growing of the big data volume. As a 
result, automated clustering is often considered a more plausible 
way and thus an unavoidable first step in big data processing. 
However, current clustering techniques will mostly fail in the 
big data context due to their incapability of handling data of 
large volume and high dimensionality [6], as well as handling 
data streaming. All this makes scalable incremental clustering of 
large-scale data so far an unsolved challenge. 

In this paper, we tackle this challenge by proposing a novel 
scalable algorithm which parallelizes incremental k-means 
clustering [7]. The CPU version of the algorithm runs in an 
incremental way such that data points are read sequentially and 
each new point is compared to all existing clusters to see if it 
belongs to a certain cluster or should be recognized as a new 
cluster. However, such an algorithm can become extremely 
compute-intensive for big data since the points coming at a later 
time will have to be compared against all of the cluster centers 
that have come before it. In contrast, our parallelized algorithm 
iteratively reads unclustered points in a dataset and parallelly 
builds clusters in batches on the GPU. We will also suggest 
proper distance thresholds to users and apply dimension 
reduction to further boost the performance, both of which are 
GPU-accelerated. 

Our approach is necessitated by our domain application – the 
analysis of large-scale datasets acquired from a single particle 
mass spectrometer. We have implemented and tested our 
algorithm on a single-GPU platform as well as with multiple 
GPUs. However, the response will not be immediate on either.  
The best possible compromise is to give the user a glimpse of 
the partial result that can convey a good hint on what to expect 
when all is done. To communicate these evolving results, we 
have opted for visualization that uses Multi-Dimensional 
Scaling (MDS) to generate a dynamic 2D display of the 
emerging clustering results. Visual hints are given allowing 
users to appreciate relevance, updates and changes to the 
evolving landscape. 

Our paper is structured as follows. Section 2 discusses 
related work. Section 3 presents relevant background. Sections 
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4 and 5 describe our framework. Section 6 presents results, and 
Section 7 ends with conclusions and future work. 

II. RELATED WORK 

A broad survey of clustering algorithms for big data has 
recently been given by Fahad et al. [6]. In general, these 
algorithms can be categorized into five classes – partition-based 
(some well-knowns are k-means [8], PAM [9], FCM [10]), 
hierarchical-based (e.g. BIRCH [11], CURE [12], Chameleon 
[13]), density-based (DBSCAN [14], OPTICS [15]), grid-based 
(CLIQUE[16], STING [17]), and model-based (MCLUST [18], 
EM [19]). However, most of these algorithms cannot handle data 
on extreme scale, at least under a CPU implementation, due to 
their low computing efficiency. 

 To accelerate the computation, parallel algorithms utilizing 
either distributed architectures or GPUs have been widely 
studied. One that is most often being adapted is the k-means 
algorithm. Typically, k-means has two iterative steps. Step 1 
begins with k samples (the means) and assigns all other data 
points to the closest of these k means. Step 2 then computes a 
new mean for each of the k clusters upon which a new iteration 
begins. Iterations will continue until the total sum of errors falls 
below some threshold. As k-means does not guarantee the global 
minimum, users usually have to run the algorithm multiple 
times, also with different numbers of k. 

A typical approach to parallelize k-means on distributed 
architectures interconnected via MPI/OpenMP is to partition the 
N data points onto P processors. Then each processor runs step 
1 and 2 on its local data, and the global k means are found by 
averaging the local ones. This can occur in a map-reduce fashion 
[20][21], in which all mappers distribute their local k means to a 
set of P reducers which perform the averaging in parallel. The 
reducers then send the global k means back to the mappers for a 
new iteration. An alternative approach is to make each processor 
broadcast its local set of k means to all other processors which 
then all compute the global set locally. This is less parallel but 
requires less communication, thus better fits the situation where 
remote workstations are connected via TCP/IP [22]. 

Finally, the k-means algorithm has also been accelerated on 
GPUs [9][23][24] using CUDA. Most approaches typically only 
parallelize step 1 but not step 2 since the number of clusters is 
usually too low for parallelization. Our approach also uses GPUs 
and is implemented with CUDA but our purpose is not standard 
k-means where a fixed number of k clusters can have any extent 
as long as they do not overlap with other clusters. Rather, in our 
method, clusters cannot have an extent greater than a preset 
threshold, and the number of clusters need not to be specified by 
the user. This makes a direct comparison to the existing, more 
general work. 

III. BACKGROUND 

As mentioned, the clustering framework presented in this 
paper is necessitated by our domain application and is actually  
part of a larger visual analytic system we have been developing 
in the past ten years [7][25][26][27], collaborating with a group 
of aerosol scientists. The data is acquired by a state-of-the-art 
single particle mass spectrometer termed SPLAT II [28], 

recording 450-dimension mass spectra of individual aerosol 
particles. SPLAT II can acquire up to 100 particles per second 
at sizes between 50-3,000 nm with a precision of 1 nm. These 
data are used to understand the processes that control formation, 
physicochemical properties and transformations of particles 
relevant to nanotechnology, catalysis, combustion, atmospheric 
chemistry, and national security. 

The overall goal is to build a hierarchical structure of 
millions of collected particles based on their composition, which 
can then be used in subsequent automated classification of new 
particle acquisitions, either back in the lab or directly in the field. 
The tools we have developed to create this hierarchy tightly 
integrate the scientist into this process. Our system provides a 
variety of interactive controls that allow the scientists to 
delineate particle clusters directly in the high-dimensional space 
– a process which we refer to as cluster sculpting. Interactive 
and intuitive expert-driven tools for this process are strongly 
needed since the data are extremely complex and fully 
automated clustering tools do not return satisfactory results. 

Fig. 1 shows the interface of a prototype system, called 
SpectraMiner, with a complete particle hierarchy in form of a 
radial dendrogram [7][25]. Leaf nodes made up of particles are 
located in the outer ring. These are then merged into higher level 
nodes based on their distances. A heap sort algorithm merges the 
currently nearest pair of nodes until reaching the root at which 
all nodes have been merged.  

Since SPLAT II can acquire 100 particles/s, the number of 
particles gathered in a single run can easily reach 100,000, which 
takes just 15 minutes. Even 100,000 is a large number of points 
to compute the classification tree from, and so we have always 
relied on clustering with a tight bound to detect and remove 
redundant data points. Since in the onset the number of points 
was reasonably small, this clustering could be done on the CPU. 
But now, the experiments and field campaign are much longer 
and more frequent and so datasets of 5-10M particles have 
become the norm. This paper uses the dataset acquired during a 
month-long CARES field campaign in Sacramento, CA [29] in 
which SPLAT II operated 24/7 for the entire month. To keep the 
size of the dataset manageable, the sampling rate was reduced to 
20 particles/s. The CPU solution was insufficient to perform the 
clustering at this level of magnitude, which necessitated our 
high-performance GPU solution.  

Fig. 1 The SpectraMiner interface 



IV. OUR APPROACH 

The algorithm we present here adapts and parallelizes the 
incremental k-means algorithm proposed by Imrich et al. [7], 
making it amenable to GPU acceleration. The incremental 
clustering algorithm has the desirable property that the value of 
k does not need to be predetermined. However, it was not 
structured for a parallel implementation. 

A. Incremental K-Means 
The pseudo code of the incremental k-means algorithm is 

given in Alg. 1. The algorithm starts with making the first point 
of a dataset the initial cluster center, and then scans through all 
unclustered points. Each unclustered point p is compared to all 
found cluster centers. A point is clustered into the nearest center 
c if their distance, calculated by the function distance(p, c), is 
within some predefined threshold t, otherwise it is made a new 
cluster center for later points. The process stops when all points 
are clustered. The distance threshold t acts as the regulator for 
the clustering result, such that a larger t leads to a smaller 
number of clusters each with more points, while a small t could 
result in many small clusters. 

As the algorithm is running, it also keeps track of any small 
clusters that have not been updated for a while and marks them 
as outliers. Then, after all points are clustered, a second pass is 
performed to re-cluster the points in these outlier clusters. 
Different from that in the first pass in which each point is only 
compared to the cluster centers coming before it, each outlier 
point can be clustered into any cluster center generated during 
the first pass. 

One important advantage of the incremental k-means over 
other common clustering algorithms is that it can handle 
streaming data. Each new data point in a stream can be simply 
added to the nearest cluster or made into a new cluster center 
depending on the distance threshold. However, Alg. 1 is not very 
scalable and can gradually become slower with growing data 
size and number of clusters, as the points coming at a later time 
will have to be compared against all cluster centers that came 
before it. This can become extremely expensive regarding the 
time cost in the big data context, especially when the points are 
of high dimensionality and the cost of calculating the distance 
function distance(p, c) takes a non-negligible amount of time.   

B. Parallel Incremental K-Means 
The sequential nature of the incremental k-means makes it 

unclear how to map it to GPUs efficiently. The most naïve way 
would be to parallelize over the cluster centers such that each 
unclustered point is compared to all centers in parallel. 
However, there are a few problems with this approach. First, the 
GPU would be highly underutilized at the beginning period of 
the algorithm when there are too few clusters. Also, the points 
would still be iterated through in a sequential fashion which is 
actually the costliest part of the algorithm. Thus, a better choice 
could be to parallelize over the points so that all unclustered 
points are processed in parallel, comparing them to each cluster. 
Nevertheless, this approach has the practical difficulty that a 
large dynamic memory must be maintained on the GPU to 
handle the increasing number of clusters, along with the running 
of the algorithm. This is impossible, especially when processing 

data of large volume with potentially numerous clusters, since 
that the number of clusters cannot be known in advance, and that 
the GPU memory is typically very limited and must be pre-
allocated in fixed size before each invoking. 

Our solution, in consideration of all these issues, is to build 
clusters in batches, so that unclustered points and cluster centers 
in the batch can be parallelized over at the same time. The 
parallelized algorithm runs iteratively over unclustered points 
and builds clusters incrementally. In each iteration, the 
algorithm first scans unclustered points sequentially on the CPU 
to detect a batch of b cluster centers, denoted as B. As b is 
typically a very small number, only a few points will be scanned. 
Then the algorithm parallelly computes the distances between 
each unclustered point to each center in B on the GPU. The 
nearest center for each point is found at the same time so that a 
point can be assigned with a label of its nearest cluster if their 
distance is within the predefined threshold. However, a point can 
be officially assigned to a cluster only on the CPU after the 
labels are passed back from GPU memory. After this, the centers 
in B are updated and the batch is added to the output set C if it 
is stable, otherwise the process will be operated again until B is 

Algorithm 1: Incremental K-Means 

Input: data points P, distance threshold t 
Output: clusters C 
C = empty set 
for each unclustered point p in P 
     if C is empty then  

Make p a new cluster center and add it into C 
    else 

p = next unclustered point 
Find the cluster center c in C closest to p 
let d = distance(c, p) 
if d < t then Cluster p into c 
else Make p a new cluster center added to C 
end if 

end if 
end for 
return C 

 

Algorithm 2: Parallel Incremental K-Means 
Input: data points P, distance threshold t, batch size b, 

max iteration M 
Output: clusters C 
C = empty set 
while number of un-clustered points in P > 0 

Run Alg. 1 until a number of b clusters B emerge 
Iteration 𝑖 = 0 
while 𝑖 < 𝑀 and B is not stable 

in parallel: 
for each unclustered point 𝑝𝑖 

Find the center 𝑏𝑖 in B closest to 𝑝𝑖 
if 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑏𝑖 , 𝑝𝑖) < 𝑡 then 𝑐𝑖 = 𝑏𝑖  
else 𝑐𝑖 = null 

end for 
on CPU: Assign 𝑝𝑖 to 𝑏𝑖 if 𝑐𝑖 is not null 
in parallel:  update centers of B 

end while 
Add B to C 

end while 
return C 

 



stable or reaches the max iteration M. Empirically, we found M 
=5 is effective, but note that most iterations converge much 
earlier. Clustered points will not be scanned again in later 
iterations. At last, the outer iteration stops when all points are 
clustered. Alg. 2 presents the pseudo code of the whole process.  

Each outer iteration of Alg. 2 essentially merges Alg. 1 with 
a parallel implementation of the traditional k-means where 𝑘 =
𝑏. The advantage here is that a point will never be compared to 
more than b cluster centers. Also, a second pass for re-clustering 
“outliers” is no longer needed. The batch size 𝑏  controls the 
workload balance between CPU and GPU, and typically b 
should be a small number. Through experimentation, we chose 
𝑏 = 96. We found that setting 𝑏 > 96, although this means less 
iteration steps, would make the algorithm CPU bound, which 
means the GPU may have more idle time waiting for the CPU 
to build the batch. And conversely, a smaller b could result in 
GPU underutilization. The value of b is also suggested to be a 
multiple of 32 to avoid divergent warps with an NVIDIA GPU 
under CUDA implementation. 

C. Determine the Distance Threshold 
In both Alg. 1 and 2, the distance threshold t plays the central 

role for adjusting the clustering results. A good value of t 
reflecting the nature of the data can be chosen regarding the 
distribution of the point distances, e.g. the value indicating the 
intra-cluster distance of clusters. However, computing the 
distance matrix could be exhausting especially given a dataset 
of high dimensionality. 

We took two approaches to ease this issue. First, we reduce 
the number of dimensions by removing the irrelevant ones based 
on the dimension standard deviations computed from all points. 
This could also heavily reduce the computational load of the 
clustering algorithm. Second, when there are too many points, 
we only use a random sampling of, say, 20,000 to 50,000 points 
instead of all of them. The process of computing the distance 
histogram as well as computing the dimension standard 
deviations are all GPU accelerated to further boost the speed. 
Details of the implementation are given in section 5. 

D. Cluster Visualization 
We aim for a progressive display that can intuitively show 

the evolving data clusters along with the running of the 
clustering algorithm, so that users can estimate the final result at 
an early stage rather than waiting for the finish. The MDS is such 
a visualization for this purpose providing a low-dimensional 
embedding of the data into a 2D plane. Here we leverage 
Glimmer MDS [30] which is an iterative algorithm where points 
are embedded (i.e. reduced to a 2D layout) in the current level 
based on the embedding of the points at a previous level. The 
main advantage of Glimmer MDS is that the final embedding of 
a point is only decided by a small number of points. Although 
the set of referential points change at every iteration, the size 
remains the same and thus the computation cost is fixed, making 
the algorithm amenable for GPU acceleration. 

However, for our data (or any large-scale data), even a part 
of it can contain too many points such that the MDS 
visualization can easily become very clustered if we visualize all 
of them. Thus, a better approach is to only visualize the cluster 

center which is a tight representative of its members. Further, we 
also provide users options to filter clusters such that only 
significant clusters with more than a certain number of members 
are displayed. We also visualize the size distribution of clusters 
as histograms. 

The color of a point in the MDS visualization then represents 
the number of members in the cluster. We use a color map from 
white to blue, in which small clusters are mapped to mostly 
white and large clusters to saturated blue. As the background 
color is white, those significant clusters are emphasized in such 
mapping. However, the range of the number of members in each 
cluster can vary widely (e.g. from 1 to 317,786 in one of our 
applications), and the cluster sizes may not be evenly distributed 
across the range. A linear color mapping function might not 
effectively catch the difference in such case. Instead, we apply a 
piecewise transfer function linking the number of members in 
each cluster to the color saturation change of its representative 
point in the visualization. By such, we can exercise more control 
over how points are colored. Then, by incorporating this 
visualization component into our parallel incremental clustering 
algorithm we can provide a streaming experience where we 
initially visualize the first few cluster centers, and then update 
the view with new cluster centers as they are formed. 

V. LOW LEVEL IMPLEMENTATION 

Our parallel clustering algorithm described in the previous 
section was implemented on NVIDIA GPUs using CUDA. We 
took the Pearson distance metric in our application, which can 
be calculated as 𝑑𝑥𝑦 = 1 − 𝜌𝑥𝑦  where 𝜌𝑥𝑦  is the Pearson 
correlation coefficient of two points. We now introduce the 
detailed implementation in the following. 

A. Kernel for Parallel Clustering 
 For our parallel incremental clustering, each GPU thread 

block is set to have a thread dimension of 32 by 32. This means 
each block will compare 32 points to a batch of b (which is a 
multiple of 32) cluster centers. Thus, we lunch N/32 thread 
blocks if we have totally N data points. Fig. 2 briefly illustrates 
the GPU thread block access pattern. The x coordinate of a 
thread tells which point it will be operating on, and the y 
coordinate is mapped to a small group of b/32 cluster centers. 
More specifically, as we set 𝑏 = 96, each thread will process 
three cluster centers (96/32 = 3). The cluster centers and points 
are stored in GPU memory as two matrices with the same x 
dimension. Then, each thread will compute the distances 
between the corresponding point and the small group of cluster 
centers, and store the nearest cluster index and its distance value 
in the shared memory for further processing. 

Fig. 3 gives the pseudo code for the GPU kernel operated by 
each thread, where the two 32 by 32 shared memories are 
denoted distance[][] and cluster[][]. Each row of the 
distance[][] stores the distances between a point and its nearest 
cluster center in the small centers group. That is to say, each 
element of distance[][] stores the distance of the nearest center 
among the three that are compared against in a thread. 
Meanwhile, the index of the corresponding clusters are saved in 
cluster[][]. Then, after synchronizing all the threads in the block 
so that all shared memories are filled with stable results, each 



thread with x id of 0 will scan through one row of the shared 
memory, looking for the minimum distance and the nearest 
cluster. A point will be labeled with the nearest cluster id if the 
calculated distance is within threshold, otherwise -1 indicating 
the point is not clustered in the current iteration of the algorithm 
(see Alg. 2). After all thread blocks finish their job, the labels of 
all the points will be returned and be used for CPU to officially 
assign points to clusters. 

As mentioned, the batch size b can directly influence the per-
thread workload. A larger b means each thread will have to 
compare more cluster centers. The workload of GPU kernels is 
also affected by the dimensionality of data and the computing 
complexity of the distance metric. For our typical application, 
we found that setting 𝑏 = 96 could reach the best load balance 
between GPU and CPU, although the choice may vary for other 
datasets and different computing platforms. 

B. Standard Deviations and Pairwise Distances 
As mentioned, we perform simple dimension reduction to 

accelerate the computation. This is achieved by removing 
dimensions with small standard deviations, e.g. by a threshold 
of 0.01 of the max value of all standard deviations. The 
computation of standard deviations is done on GPU with an 

optimization technique called parallel reduction [31]. The 
technique takes a tree-like iterative approach within each GPU 
thread block, summing up all values mapped to each thread the 
block (illustrated in Fig. 4). 

 As the data of one dimension forms a very long vector, the 
calculation of the mean as well as the standard deviation of the 
vector can be transferred into a vector reduction operation. For 
our CUDA implementation, dimensions are mapped to the y-
coordinates of thread blocks. We launch 512 threads in a block, 
each mapped to the value of one data point in one dimension, 
i.e. each block has a thread dimension of 512×1. Thus, the block 
dimension is D×N/512, where N is the number of points and D 
is the data dimensionality. Each value mapped to a thread is 
initialized in the beginning, depending on the goal of the 
function. That is to say, for calculating the vector mean 𝜇, each 
value is initially divided by N, and for calculating the vector 
variance, each value 𝑥𝑖 is mapped to (𝑥𝑖 − 𝜇)2/𝑁. And then in 
each iteration step, the number of active threads in a block is 
halved, and the values of the second half of the shared memory 
are added to the first half, until there is only one active thread 
getting the final result of the block and storing it into the output 
vector. The pseudo code of the GPU kernel is given in Fig. 5. 

Fig. 2. GPU access pattern for the parallel clustering algorithm 

pid = blockDim.y * blockIdx.x + tid.x // point id 
C = centers to compare 
  
distance[tid.y][tid.x] = minimum distance between 

point[pid] and centers in C 
cluster[tid.y][tid.x] = id of the nearest cluster center in C 
syncthreads() 
  
if tid.x equals 0 then 
 min_dis = minimum of the row distance[tid.y] 
 if min_dis < distance threshold then 
  label[pid] = the corresponding cluster id 

sored in the row cluster[tid.y] 
 else label[pid] = -1 
 end if 
end if 

Fig. 3. Pseudo code of the CUDA kernel for parallel clustering 

Fig. 4. GPU thread block iterations of Parallel Reduction 



The result of the parallel reduction operation is a vector 
down-scaled by 512 times of the input. If this is still too large, 
we can conduct it again until we reach we reach the final output 
of a single summed value. However, as the cost of memory 
transfers may be higher than the benefit we can get from GPU 
parallelization when processing a short vector, a single CPU 
scan would be more than sufficient in such case. 

One practical difficulty, especially when implementing on a 
single GPU, is that there may not be enough GPU memory that 
can hold all the data. Even if there is, the length of the data array 
can go beyond the maximum indexable value such that they 
cannot be accessed. Our solution is to divide data into blocks of 
the size that can be held in GPU memory, and operate parallel 
reduction on each of them. Then an extra CPU scan is operated 
on results from data blocks to summarize the final output. 

The computation of the pairwise distance histogram faces a 
similar problem. Although we can sometimes fit the sampled 
data points in GPU memory, the length of the result vector can 
easily go beyond the indexable range (e.g. the pairwise distances 
of 50,000 points can form a vector of 1,249,975,000 elements). 
Then again, we divide sampled points into blocks of fixed size. 
As we only need the histogram, we update the statistics on the 
CPU whenever the distances of points from two blocks are 
returned by the GPU and then drop the result to save memory. 
The access pattern of GPU thread blocks for computing pairwise 
distances is straightforward – each thread calculates one pair of 
distances. As we use 32×32 thread blocks, there will simply be 
𝑁/32×𝑁/32 blocks launched. 

VI. RESULTS 

We have implemented our parallel incremental clustering 
algorithm (Alg. 2) on a server with 4 Tesla K20 GPUs. We also 
implemented the sequential algorithm presented earlier (Alg. 1). 
We tested our algorithm on the aerosol dataset introduced in 
Section 3. The total dataset contains 8 million points each in 450 
dimensions. 

A. Dimension Reduction and Distance Threshold 
We first perform the dimension reduction regarding the 

standard deviations presented in Fig. 6a. Here, by applying a 
threshold of 0.01 of the maximum value calculated, 36 

dimensions are selected out of 450 and marked red in Fig. 6a, 
while the rest colored blue (most of which are too small to be 
observed clearly). 

 The histogram of pairwise Pearson distances between each 
two of 20,000 samples is presented in Fig. 6b. We also have 
calculated such histograms with more samples, e.g. 50,000 
random points, but the shape of the histogram is basically the 
same as that in Fig. 6b, just with enlarged values for all the bars. 
This means 20,000 samples have been quite enough for 
describing the distance distribution. We can see there is a clear 
gap in the center between the peaks at the two ends of the 
distribution indicating the general intra and inter distances of 
clusters. Based on Fig. 6b, the user-defined distance threshold 
was set to a Pearson distance of 0.3 throughout our experiments.  

B. Clustering Quality and Timing 
The clustering quality is measured using the Davies-Bouldin 

(DB) index [32], calculated as 

 
𝐷𝐵 =

1

𝑛
∑max⁡(

𝜎𝑖 + 𝜎𝑗
𝑀𝑖𝑗

)

𝑛

𝑖=1

 

Here, 𝜎𝑖 is the dispersion measure of cluster 𝑖 calculated as 
the average distance of all elements in cluster to the center, 𝑀𝑖𝑗 
is the Pearson distance of two centers (dissimilarity measure), 
and n is the total number of clusters. With the DB index, the 
lower the score, the higher the quality of the clustering. 

In our experiments, we noticed that the sheer size of our 
datasets was the main performance bottleneck. With millions of 
points, each call to the GPU would take between 2-4 seconds. 
Since the GPU was being called thousands of times, this was 

pid = threadIdx.x // in thread point id 

d = blockIdx.y // dimension id 

i = blockIdx.x * blockDim.x + pid // point id 

// shared memory 

sdata[tid] = initialized value of point[i][d] 

s = blockDim.x / 2 

while s > 0 

if pid < s then 

sdata[pid] += sdata[pid + s] 

s = s / 2 and syncthreads() 

end while 

if pid == 0 then output sdata[0] to result 

Fig. 5. Pseudo code of the CUDA kernel for Parallel Reduction 

(a) 

(b) 
Fig. 6. Deciding the distance threshold. (a) Standard deviations of dimensions. 
The red bars correspond to the selected dimensions. (b) The distribution of 
pairwise Pearson distances from 20,000 sampled points. A threshold of 0.3 is 
selected regarding the gap in the middle. 



still a very time-consuming process. By removing points that 
were considered “close enough” to their respective cluster 
centers, the size of the dataset would decrease with every call to 
the GPU. This optimization, which we call sub-thresholding 
(ST), drastically reduced the computation time. By setting the 
sub-threshold to 0.2, for example, any point that has a Pearson 
distance of less than 0.2 for their current cluster will become 
ineligible for re-clustering (i.e. the point will stay in that cluster 
even if a closer cluster is introduced later). This effectively 
prevents points with a low intra-cluster distance from moving to 
a new cluster in a future iteration. As a result, these points can 
be removed from consideration. 

Table 1 compares the DB index of our parallel clustering 
algorithm to the sequential algorithm. Table 1 also shows how 
different ST levels affect quality. Unexpectedly, clustering with 
no ST does not produce the best results. This suggests that there 
is some discrepancy between what is locally optimal (i.e. each 
point lies in cluster where it is closest to the cluster center) and 
what is globally optimal (i.e. producing clusters with a low intra-
cluster distance and a high inter-cluster distance). 

Intuitively, this makes sense. Because the points are of high 
dimensionality, it is likely that if m points find clusters that are 
closer, they will be in m separate clusters. Within each cluster, a 
single point will have a small impact on the intra-cluster 
distance. The cluster that is losing m points, however, is going 
to suffer a large increase in its intra-cluster distance if those 
points were relatively close to the center. In addition, the m 
updated clusters will have a smaller inter-cluster distance.  

Fig. 7 shows how the timings scale with increasing data 
volume under different clustering settings. The graph compares 
the sequential to the parallel clustering with differing values of 
ST. Here we can see that our parallel approach is significantly 
faster than the sequential one. What’s more, as the data volume 
increases, the sub-thresholding optimization effectively helps to 
suppress the explosion in computing time. 

Also, we can see from Fig. 7 that the computing time, under 
any setting, grows at a super-linear rate with respect to the size 
of the data (i.e. more than double the compute time is required 
for processing doubled data). This makes the algorithm a good 
candidate for multi-GPU acceleration. Therefore, we have also 
implemented such a multi-GPU solution where the same cluster 
batch is passed to all CPUs and unclustered points are distributed 
to all GPUs evenly. The only difference from the single-GPU 
implementation is that one extra step is added on the CPU to 
merge the centers after all GPUs have finished clustering.  

  Fig. 8 shows the timings under different numbers of GPUs 
scaling with data sizes. The ST is set to be 0.15 as it performs 
overall best regrading Table 1. We can see here the time needed 
is basically halved when using two GPUs comparing to using a 
single GPU. This is because each GPU is only working on half 
of the dataset. However, such a speed-up is not observed when 
increasing the number of GPUs from two to four. This suggests 
that there is a diminishing rate of return in the multi-GPU 
approach, probably caused by the increasing cost in data 
transferring and more needed work in merging the results from 
different GPUs. 

C. Visualizations 

Fig. 9 shows some visualizations generated during the 
incremental clustering. For each state of the clustering result, we 
visualize the MDS layouts of cluster centers (on the left) as well 
as the histogram of the size of all clusters (on the right). The 
number of significant cluster centers being visualized (i.e. with 
more than 10 members) out of the total number of clusters 
processed is displayed on the top-left corner of each MDS 
layout. It is worth noting that the clusters appear rotated in MDS 
from plot to plot. This is purely due to the Glimmer MDS that 
does not preserve certain orientations. 

From the visualizations, we notice two interesting facts. 
First, several clusters are forming in the MDS layout. We 
believe this is due to the low threshold enforced by the 

TABLE I. DB SCORES UNDER DIFFERENT SETTINGS 

Size Sequential Parallel ST: 0.3 ST: 0.2 ST: 0.15 

10k 0.527 0.539 0.540 0.537 0.529 

50k 0.546 0.590 0.548 0.554 0.539 

100k 0.550 0.584 0.600 0.570 0.544 

200k 0.564 0.587 0.640 0.593 0.564 

DB scores measuring the cluster quality (lower is better). Quality of 
sub-thresholding (ST) is also presented. 

 

Fig. 7. Timings under different clustering with increasing data sizes. 

Fig. 8. Timings of the multi-GPU implementations (ST: 0.15) 



incremental clustering algorithm. Some clusters are actually 
close but not enough to form one single cluster. Second, the ratio 
of the significant clusters over the total clusters being processed 
is getting smaller. In the beginning the ratio is 82.3% but toward 
the end is only about 1%. From the last two figures, we also see 
that of the first 165,984 clusters, 4,002 of these are significant 
(>10 points), while for the second 171,010 clusters only about 
200 are significant. This is because most of the big clusters were 
generated during the early rounds and most of the clusters 
produced in the late iterations only have a small number of 
members. This is a major advantage of the visual feedback – 
users can easily determine when partial clustering results are 
sufficient to perform a subsequent analysis step. 

VII. CONCLUSION AND FUTURE WORK 

We have presented a novel algorithm for big data clustering. 
The algorithm parallelizes the incremental k-means and is 
implemented on the GPU with CUDA. We observe in 
experiments that the new parallel algorithm can speed up the 
clustering process by an order of magnitude and lead to a smaller 
growth of time cost along with the increasing of data size.  

Future work will include an out of core approach to handle 
even larger datasets. Although we are able to fit current data in 
RAM, ultimately, we need to adopt more efficient data storage 
facilities and load balancing strategies. For example, in the 
multi-GPU approach, we can redistribute points onto each GPU 
after every call to the parallel clustering function. Additional 
experiments will be done to determine if the latency of the extra 
data transfer is small enough to reach a net gain in performance. 

The overall goal of our domain application, as mentioned in 
Section 3, is to obtain the structural relationship embedded in 
data which can be used to classify new particles at real-time. The 
parallel clustering algorithm is the first step towards this goal. 
Although we have been able to build such structures on smaller 
datasets with a simple heap sort algorithm, this strategy becomes 
clumsy when facing big dataset where the number of leaf nodes 
are usually very large. A possible solution can be to build the 
structure with parallel clustering in a similar fashion as k-means 
trees [3]. This will be the major focus of our future work.  
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