
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

Progressive Clustering of Big Data with GPU
Acceleration and Visualization

Jun Wang1, Eric Papenhausen1, Bing Wang1, Sungsoo Ha1, Alla Zelenyuk2, and Klaus Mueller1

1Visual Analytics and Imaging Lab, Computer Science Department
Stony Brook University, Stony Brook, NY, USA

Email: {junwang2, epapenhausen, wang12, sunha, mueller}@cs.stonybrook.edu

2Chemical and Material Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
Email: alla.zelenyuk@pnnl.gov

Abstract—Clustering has become an unavoidable step in big
data analysis. It may be used to arrange data into a compact
format, making operations on big data manageable. However,
clustering of big data requires not only the capability of handling
data with large volume and high dimensionality, but also the
ability to process streaming data, all of which are less developed in
most current algorithms. Furthermore, big data processing is
seldom interactive, which stands at conflict with users who seek
answers immediately. The best one can do is to process
incrementally, such that partial and, hopefully, accurate results
can be available relatively quickly and are then progressively
refined over time. We propose a clustering framework which uses
Multi-Dimensional Scaling for layout and GPU acceleration to
accomplish these goals. Our domain application is the clustering
of mass spectral data of individual aerosol particles with 8 million
data points of 450 dimensions each.

Keywords—clustering, big data, GPU, visualization

I. INTRODUCTION

Big data is everywhere we turn today, recording and
affecting everyone and everything– the internet of things, social
networks, economy, politics, astronomy, health science, film
industry, military surveillance – just to name a few. The vast
development of modern technology has made data never so easy
to acquire for humankind. And this is especially meaningful for
scientific research which has been revolutionized by big data in
the past decade. For instance, Nature and Science have even
published special issues dedicated to discussing the
opportunities and challenges brought by big data [1][2].

While it is generally believed that there can be huge
academic and business opportunities emerging from big data,
with the fast-growing volume and variety, the task of automated
or semi-automated managing and extracting useful knowledge
becomes more complex than ever. A major challenge, among
all, is that the big storage required by the unprecedented growth
of data volume has made the analytical, process, and retrieval
operations of big data very difficult. A plausible solution is to
label the data points so that they can be arranged into a compact
format, for instance, via hierarchical indexing [3] and stratified
sampling [4], making operations of big data more efficient and
manageable regarding both time and memory cost.

Although crowdsourcing, for instance, via Amazon
Mechanical Turk [5], can be leveraged in some smaller-scale
cases to obtain data labelling, ultimately, it is impossible for
human to match the fast-growing of the big data volume. As a
result, automated clustering is often considered a more plausible
way and thus an unavoidable first step in big data processing.
However, current clustering techniques will mostly fail in the
big data context due to their incapability of handling data of
large volume and high dimensionality [6], as well as handling
data streaming. All this makes scalable incremental clustering of
large-scale data so far an unsolved challenge.

In this paper, we tackle this challenge by proposing a novel
scalable algorithm which parallelizes incremental k-means
clustering [7]. The CPU version of the algorithm runs in an
incremental way such that data points are read sequentially and
each new point is compared to all existing clusters to see if it
belongs to a certain cluster or should be recognized as a new
cluster. However, such an algorithm can become extremely
compute-intensive for big data since the points coming at a later
time will have to be compared against all of the cluster centers
that have come before it. In contrast, our parallelized algorithm
iteratively reads unclustered points in a dataset and parallelly
builds clusters in batches on the GPU. We will also suggest
proper distance thresholds to users and apply dimension
reduction to further boost the performance, both of which are
GPU-accelerated.

Our approach is necessitated by our domain application – the
analysis of large-scale datasets acquired from a single particle
mass spectrometer. We have implemented and tested our
algorithm on a single-GPU platform as well as with multiple
GPUs. However, the response will not be immediate on either.
The best possible compromise is to give the user a glimpse of
the partial result that can convey a good hint on what to expect
when all is done. To communicate these evolving results, we
have opted for visualization that uses Multi-Dimensional
Scaling (MDS) to generate a dynamic 2D display of the
emerging clustering results. Visual hints are given allowing
users to appreciate relevance, updates and changes to the
evolving landscape.

Our paper is structured as follows. Section 2 discusses
related work. Section 3 presents relevant background. Sections

New York Scientific Data Summit (NYSDS), New York City, August 2017

4 and 5 describe our framework. Section 6 presents results, and
Section 7 ends with conclusions and future work.

II. RELATED WORK

A broad survey of clustering algorithms for big data has
recently been given by Fahad et al. [6]. In general, these
algorithms can be categorized into five classes – partition-based
(some well-knowns are k-means [8], PAM [9], FCM [10]),
hierarchical-based (e.g. BIRCH [11], CURE [12], Chameleon
[13]), density-based (DBSCAN [14], OPTICS [15]), grid-based
(CLIQUE[16], STING [17]), and model-based (MCLUST [18],
EM [19]). However, most of these algorithms cannot handle data
on extreme scale, at least under a CPU implementation, due to
their low computing efficiency.

 To accelerate the computation, parallel algorithms utilizing
either distributed architectures or GPUs have been widely
studied. One that is most often being adapted is the k-means
algorithm. Typically, k-means has two iterative steps. Step 1
begins with k samples (the means) and assigns all other data
points to the closest of these k means. Step 2 then computes a
new mean for each of the k clusters upon which a new iteration
begins. Iterations will continue until the total sum of errors falls
below some threshold. As k-means does not guarantee the global
minimum, users usually have to run the algorithm multiple
times, also with different numbers of k.

A typical approach to parallelize k-means on distributed
architectures interconnected via MPI/OpenMP is to partition the
N data points onto P processors. Then each processor runs step
1 and 2 on its local data, and the global k means are found by
averaging the local ones. This can occur in a map-reduce fashion
[20][21], in which all mappers distribute their local k means to a
set of P reducers which perform the averaging in parallel. The
reducers then send the global k means back to the mappers for a
new iteration. An alternative approach is to make each processor
broadcast its local set of k means to all other processors which
then all compute the global set locally. This is less parallel but
requires less communication, thus better fits the situation where
remote workstations are connected via TCP/IP [22].

Finally, the k-means algorithm has also been accelerated on
GPUs [9][23][24] using CUDA. Most approaches typically only
parallelize step 1 but not step 2 since the number of clusters is
usually too low for parallelization. Our approach also uses GPUs
and is implemented with CUDA but our purpose is not standard
k-means where a fixed number of k clusters can have any extent
as long as they do not overlap with other clusters. Rather, in our
method, clusters cannot have an extent greater than a preset
threshold, and the number of clusters need not to be specified by
the user. This makes a direct comparison to the existing, more
general work.

III. BACKGROUND

As mentioned, the clustering framework presented in this
paper is necessitated by our domain application and is actually
part of a larger visual analytic system we have been developing
in the past ten years [7][25][26][27], collaborating with a group
of aerosol scientists. The data is acquired by a state-of-the-art
single particle mass spectrometer termed SPLAT II [28],

recording 450-dimension mass spectra of individual aerosol
particles. SPLAT II can acquire up to 100 particles per second
at sizes between 50-3,000 nm with a precision of 1 nm. These
data are used to understand the processes that control formation,
physicochemical properties and transformations of particles
relevant to nanotechnology, catalysis, combustion, atmospheric
chemistry, and national security.

The overall goal is to build a hierarchical structure of
millions of collected particles based on their composition, which
can then be used in subsequent automated classification of new
particle acquisitions, either back in the lab or directly in the field.
The tools we have developed to create this hierarchy tightly
integrate the scientist into this process. Our system provides a
variety of interactive controls that allow the scientists to
delineate particle clusters directly in the high-dimensional space
– a process which we refer to as cluster sculpting. Interactive
and intuitive expert-driven tools for this process are strongly
needed since the data are extremely complex and fully
automated clustering tools do not return satisfactory results.

Fig. 1 shows the interface of a prototype system, called
SpectraMiner, with a complete particle hierarchy in form of a
radial dendrogram [7][25]. Leaf nodes made up of particles are
located in the outer ring. These are then merged into higher level
nodes based on their distances. A heap sort algorithm merges the
currently nearest pair of nodes until reaching the root at which
all nodes have been merged.

Since SPLAT II can acquire 100 particles/s, the number of
particles gathered in a single run can easily reach 100,000, which
takes just 15 minutes. Even 100,000 is a large number of points
to compute the classification tree from, and so we have always
relied on clustering with a tight bound to detect and remove
redundant data points. Since in the onset the number of points
was reasonably small, this clustering could be done on the CPU.
But now, the experiments and field campaign are much longer
and more frequent and so datasets of 5-10M particles have
become the norm. This paper uses the dataset acquired during a
month-long CARES field campaign in Sacramento, CA [29] in
which SPLAT II operated 24/7 for the entire month. To keep the
size of the dataset manageable, the sampling rate was reduced to
20 particles/s. The CPU solution was insufficient to perform the
clustering at this level of magnitude, which necessitated our
high-performance GPU solution.

Fig. 1 The SpectraMiner interface

IV. OUR APPROACH

The algorithm we present here adapts and parallelizes the
incremental k-means algorithm proposed by Imrich et al. [7],
making it amenable to GPU acceleration. The incremental
clustering algorithm has the desirable property that the value of
k does not need to be predetermined. However, it was not
structured for a parallel implementation.

A. Incremental K-Means
The pseudo code of the incremental k-means algorithm is

given in Alg. 1. The algorithm starts with making the first point
of a dataset the initial cluster center, and then scans through all
unclustered points. Each unclustered point p is compared to all
found cluster centers. A point is clustered into the nearest center
c if their distance, calculated by the function distance(p, c), is
within some predefined threshold t, otherwise it is made a new
cluster center for later points. The process stops when all points
are clustered. The distance threshold t acts as the regulator for
the clustering result, such that a larger t leads to a smaller
number of clusters each with more points, while a small t could
result in many small clusters.

As the algorithm is running, it also keeps track of any small
clusters that have not been updated for a while and marks them
as outliers. Then, after all points are clustered, a second pass is
performed to re-cluster the points in these outlier clusters.
Different from that in the first pass in which each point is only
compared to the cluster centers coming before it, each outlier
point can be clustered into any cluster center generated during
the first pass.

One important advantage of the incremental k-means over
other common clustering algorithms is that it can handle
streaming data. Each new data point in a stream can be simply
added to the nearest cluster or made into a new cluster center
depending on the distance threshold. However, Alg. 1 is not very
scalable and can gradually become slower with growing data
size and number of clusters, as the points coming at a later time
will have to be compared against all cluster centers that came
before it. This can become extremely expensive regarding the
time cost in the big data context, especially when the points are
of high dimensionality and the cost of calculating the distance
function distance(p, c) takes a non-negligible amount of time.

B. Parallel Incremental K-Means
The sequential nature of the incremental k-means makes it

unclear how to map it to GPUs efficiently. The most naïve way
would be to parallelize over the cluster centers such that each
unclustered point is compared to all centers in parallel.
However, there are a few problems with this approach. First, the
GPU would be highly underutilized at the beginning period of
the algorithm when there are too few clusters. Also, the points
would still be iterated through in a sequential fashion which is
actually the costliest part of the algorithm. Thus, a better choice
could be to parallelize over the points so that all unclustered
points are processed in parallel, comparing them to each cluster.
Nevertheless, this approach has the practical difficulty that a
large dynamic memory must be maintained on the GPU to
handle the increasing number of clusters, along with the running
of the algorithm. This is impossible, especially when processing

data of large volume with potentially numerous clusters, since
that the number of clusters cannot be known in advance, and that
the GPU memory is typically very limited and must be pre-
allocated in fixed size before each invoking.

Our solution, in consideration of all these issues, is to build
clusters in batches, so that unclustered points and cluster centers
in the batch can be parallelized over at the same time. The
parallelized algorithm runs iteratively over unclustered points
and builds clusters incrementally. In each iteration, the
algorithm first scans unclustered points sequentially on the CPU
to detect a batch of b cluster centers, denoted as B. As b is
typically a very small number, only a few points will be scanned.
Then the algorithm parallelly computes the distances between
each unclustered point to each center in B on the GPU. The
nearest center for each point is found at the same time so that a
point can be assigned with a label of its nearest cluster if their
distance is within the predefined threshold. However, a point can
be officially assigned to a cluster only on the CPU after the
labels are passed back from GPU memory. After this, the centers
in B are updated and the batch is added to the output set C if it
is stable, otherwise the process will be operated again until B is

Algorithm 1: Incremental K-Means

Input: data points P, distance threshold t
Output: clusters C
C = empty set
for each unclustered point p in P
 if C is empty then

Make p a new cluster center and add it into C
 else

p = next unclustered point
Find the cluster center c in C closest to p
let d = distance(c, p)
if d < t then Cluster p into c
else Make p a new cluster center added to C
end if

end if
end for
return C

Algorithm 2: Parallel Incremental K-Means
Input: data points P, distance threshold t, batch size b,

max iteration M
Output: clusters C
C = empty set
while number of un-clustered points in P > 0

Run Alg. 1 until a number of b clusters B emerge
Iteration 𝑖 = 0
while 𝑖 < 𝑀 and B is not stable

in parallel:
for each unclustered point 𝑝𝑖

Find the center 𝑏𝑖 in B closest to 𝑝𝑖
if 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑏𝑖 , 𝑝𝑖) < 𝑡 then 𝑐𝑖 = 𝑏𝑖
else 𝑐𝑖 = null

end for
on CPU: Assign 𝑝𝑖 to 𝑏𝑖 if 𝑐𝑖 is not null
in parallel: update centers of B

end while
Add B to C

end while
return C

stable or reaches the max iteration M. Empirically, we found M
=5 is effective, but note that most iterations converge much
earlier. Clustered points will not be scanned again in later
iterations. At last, the outer iteration stops when all points are
clustered. Alg. 2 presents the pseudo code of the whole process.

Each outer iteration of Alg. 2 essentially merges Alg. 1 with
a parallel implementation of the traditional k-means where 𝑘 =
𝑏. The advantage here is that a point will never be compared to
more than b cluster centers. Also, a second pass for re-clustering
“outliers” is no longer needed. The batch size 𝑏 controls the
workload balance between CPU and GPU, and typically b
should be a small number. Through experimentation, we chose
𝑏 = 96. We found that setting 𝑏 > 96, although this means less
iteration steps, would make the algorithm CPU bound, which
means the GPU may have more idle time waiting for the CPU
to build the batch. And conversely, a smaller b could result in
GPU underutilization. The value of b is also suggested to be a
multiple of 32 to avoid divergent warps with an NVIDIA GPU
under CUDA implementation.

C. Determine the Distance Threshold
In both Alg. 1 and 2, the distance threshold t plays the central

role for adjusting the clustering results. A good value of t
reflecting the nature of the data can be chosen regarding the
distribution of the point distances, e.g. the value indicating the
intra-cluster distance of clusters. However, computing the
distance matrix could be exhausting especially given a dataset
of high dimensionality.

We took two approaches to ease this issue. First, we reduce
the number of dimensions by removing the irrelevant ones based
on the dimension standard deviations computed from all points.
This could also heavily reduce the computational load of the
clustering algorithm. Second, when there are too many points,
we only use a random sampling of, say, 20,000 to 50,000 points
instead of all of them. The process of computing the distance
histogram as well as computing the dimension standard
deviations are all GPU accelerated to further boost the speed.
Details of the implementation are given in section 5.

D. Cluster Visualization
We aim for a progressive display that can intuitively show

the evolving data clusters along with the running of the
clustering algorithm, so that users can estimate the final result at
an early stage rather than waiting for the finish. The MDS is such
a visualization for this purpose providing a low-dimensional
embedding of the data into a 2D plane. Here we leverage
Glimmer MDS [30] which is an iterative algorithm where points
are embedded (i.e. reduced to a 2D layout) in the current level
based on the embedding of the points at a previous level. The
main advantage of Glimmer MDS is that the final embedding of
a point is only decided by a small number of points. Although
the set of referential points change at every iteration, the size
remains the same and thus the computation cost is fixed, making
the algorithm amenable for GPU acceleration.

However, for our data (or any large-scale data), even a part
of it can contain too many points such that the MDS
visualization can easily become very clustered if we visualize all
of them. Thus, a better approach is to only visualize the cluster

center which is a tight representative of its members. Further, we
also provide users options to filter clusters such that only
significant clusters with more than a certain number of members
are displayed. We also visualize the size distribution of clusters
as histograms.

The color of a point in the MDS visualization then represents
the number of members in the cluster. We use a color map from
white to blue, in which small clusters are mapped to mostly
white and large clusters to saturated blue. As the background
color is white, those significant clusters are emphasized in such
mapping. However, the range of the number of members in each
cluster can vary widely (e.g. from 1 to 317,786 in one of our
applications), and the cluster sizes may not be evenly distributed
across the range. A linear color mapping function might not
effectively catch the difference in such case. Instead, we apply a
piecewise transfer function linking the number of members in
each cluster to the color saturation change of its representative
point in the visualization. By such, we can exercise more control
over how points are colored. Then, by incorporating this
visualization component into our parallel incremental clustering
algorithm we can provide a streaming experience where we
initially visualize the first few cluster centers, and then update
the view with new cluster centers as they are formed.

V. LOW LEVEL IMPLEMENTATION

Our parallel clustering algorithm described in the previous
section was implemented on NVIDIA GPUs using CUDA. We
took the Pearson distance metric in our application, which can
be calculated as 𝑑𝑥𝑦 = 1 − 𝜌𝑥𝑦 where 𝜌𝑥𝑦 is the Pearson
correlation coefficient of two points. We now introduce the
detailed implementation in the following.

A. Kernel for Parallel Clustering
 For our parallel incremental clustering, each GPU thread

block is set to have a thread dimension of 32 by 32. This means
each block will compare 32 points to a batch of b (which is a
multiple of 32) cluster centers. Thus, we lunch N/32 thread
blocks if we have totally N data points. Fig. 2 briefly illustrates
the GPU thread block access pattern. The x coordinate of a
thread tells which point it will be operating on, and the y
coordinate is mapped to a small group of b/32 cluster centers.
More specifically, as we set 𝑏 = 96, each thread will process
three cluster centers (96/32 = 3). The cluster centers and points
are stored in GPU memory as two matrices with the same x
dimension. Then, each thread will compute the distances
between the corresponding point and the small group of cluster
centers, and store the nearest cluster index and its distance value
in the shared memory for further processing.

Fig. 3 gives the pseudo code for the GPU kernel operated by
each thread, where the two 32 by 32 shared memories are
denoted distance[][] and cluster[][]. Each row of the
distance[][] stores the distances between a point and its nearest
cluster center in the small centers group. That is to say, each
element of distance[][] stores the distance of the nearest center
among the three that are compared against in a thread.
Meanwhile, the index of the corresponding clusters are saved in
cluster[][]. Then, after synchronizing all the threads in the block
so that all shared memories are filled with stable results, each

thread with x id of 0 will scan through one row of the shared
memory, looking for the minimum distance and the nearest
cluster. A point will be labeled with the nearest cluster id if the
calculated distance is within threshold, otherwise -1 indicating
the point is not clustered in the current iteration of the algorithm
(see Alg. 2). After all thread blocks finish their job, the labels of
all the points will be returned and be used for CPU to officially
assign points to clusters.

As mentioned, the batch size b can directly influence the per-
thread workload. A larger b means each thread will have to
compare more cluster centers. The workload of GPU kernels is
also affected by the dimensionality of data and the computing
complexity of the distance metric. For our typical application,
we found that setting 𝑏 = 96 could reach the best load balance
between GPU and CPU, although the choice may vary for other
datasets and different computing platforms.

B. Standard Deviations and Pairwise Distances
As mentioned, we perform simple dimension reduction to

accelerate the computation. This is achieved by removing
dimensions with small standard deviations, e.g. by a threshold
of 0.01 of the max value of all standard deviations. The
computation of standard deviations is done on GPU with an

optimization technique called parallel reduction [31]. The
technique takes a tree-like iterative approach within each GPU
thread block, summing up all values mapped to each thread the
block (illustrated in Fig. 4).

 As the data of one dimension forms a very long vector, the
calculation of the mean as well as the standard deviation of the
vector can be transferred into a vector reduction operation. For
our CUDA implementation, dimensions are mapped to the y-
coordinates of thread blocks. We launch 512 threads in a block,
each mapped to the value of one data point in one dimension,
i.e. each block has a thread dimension of 512×1. Thus, the block
dimension is D×N/512, where N is the number of points and D
is the data dimensionality. Each value mapped to a thread is
initialized in the beginning, depending on the goal of the
function. That is to say, for calculating the vector mean 𝜇, each
value is initially divided by N, and for calculating the vector
variance, each value 𝑥𝑖 is mapped to (𝑥𝑖 − 𝜇)2/𝑁. And then in
each iteration step, the number of active threads in a block is
halved, and the values of the second half of the shared memory
are added to the first half, until there is only one active thread
getting the final result of the block and storing it into the output
vector. The pseudo code of the GPU kernel is given in Fig. 5.

Fig. 2. GPU access pattern for the parallel clustering algorithm

pid = blockDim.y * blockIdx.x + tid.x // point id
C = centers to compare

distance[tid.y][tid.x] = minimum distance between

point[pid] and centers in C
cluster[tid.y][tid.x] = id of the nearest cluster center in C
syncthreads()

if tid.x equals 0 then
 min_dis = minimum of the row distance[tid.y]
 if min_dis < distance threshold then
 label[pid] = the corresponding cluster id

sored in the row cluster[tid.y]
 else label[pid] = -1
 end if
end if

Fig. 3. Pseudo code of the CUDA kernel for parallel clustering

Fig. 4. GPU thread block iterations of Parallel Reduction

The result of the parallel reduction operation is a vector
down-scaled by 512 times of the input. If this is still too large,
we can conduct it again until we reach we reach the final output
of a single summed value. However, as the cost of memory
transfers may be higher than the benefit we can get from GPU
parallelization when processing a short vector, a single CPU
scan would be more than sufficient in such case.

One practical difficulty, especially when implementing on a
single GPU, is that there may not be enough GPU memory that
can hold all the data. Even if there is, the length of the data array
can go beyond the maximum indexable value such that they
cannot be accessed. Our solution is to divide data into blocks of
the size that can be held in GPU memory, and operate parallel
reduction on each of them. Then an extra CPU scan is operated
on results from data blocks to summarize the final output.

The computation of the pairwise distance histogram faces a
similar problem. Although we can sometimes fit the sampled
data points in GPU memory, the length of the result vector can
easily go beyond the indexable range (e.g. the pairwise distances
of 50,000 points can form a vector of 1,249,975,000 elements).
Then again, we divide sampled points into blocks of fixed size.
As we only need the histogram, we update the statistics on the
CPU whenever the distances of points from two blocks are
returned by the GPU and then drop the result to save memory.
The access pattern of GPU thread blocks for computing pairwise
distances is straightforward – each thread calculates one pair of
distances. As we use 32×32 thread blocks, there will simply be
𝑁/32×𝑁/32 blocks launched.

VI. RESULTS

We have implemented our parallel incremental clustering
algorithm (Alg. 2) on a server with 4 Tesla K20 GPUs. We also
implemented the sequential algorithm presented earlier (Alg. 1).
We tested our algorithm on the aerosol dataset introduced in
Section 3. The total dataset contains 8 million points each in 450
dimensions.

A. Dimension Reduction and Distance Threshold
We first perform the dimension reduction regarding the

standard deviations presented in Fig. 6a. Here, by applying a
threshold of 0.01 of the maximum value calculated, 36

dimensions are selected out of 450 and marked red in Fig. 6a,
while the rest colored blue (most of which are too small to be
observed clearly).

 The histogram of pairwise Pearson distances between each
two of 20,000 samples is presented in Fig. 6b. We also have
calculated such histograms with more samples, e.g. 50,000
random points, but the shape of the histogram is basically the
same as that in Fig. 6b, just with enlarged values for all the bars.
This means 20,000 samples have been quite enough for
describing the distance distribution. We can see there is a clear
gap in the center between the peaks at the two ends of the
distribution indicating the general intra and inter distances of
clusters. Based on Fig. 6b, the user-defined distance threshold
was set to a Pearson distance of 0.3 throughout our experiments.

B. Clustering Quality and Timing
The clustering quality is measured using the Davies-Bouldin

(DB) index [32], calculated as

𝐷𝐵 =

1

𝑛
∑max⁡(

𝜎𝑖 + 𝜎𝑗
𝑀𝑖𝑗

)

𝑛

𝑖=1

 

Here, 𝜎𝑖 is the dispersion measure of cluster 𝑖 calculated as
the average distance of all elements in cluster to the center, 𝑀𝑖𝑗
is the Pearson distance of two centers (dissimilarity measure),
and n is the total number of clusters. With the DB index, the
lower the score, the higher the quality of the clustering.

In our experiments, we noticed that the sheer size of our
datasets was the main performance bottleneck. With millions of
points, each call to the GPU would take between 2-4 seconds.
Since the GPU was being called thousands of times, this was

pid = threadIdx.x // in thread point id

d = blockIdx.y // dimension id

i = blockIdx.x * blockDim.x + pid // point id

// shared memory

sdata[tid] = initialized value of point[i][d]

s = blockDim.x / 2

while s > 0

if pid < s then

sdata[pid] += sdata[pid + s]

s = s / 2 and syncthreads()

end while

if pid == 0 then output sdata[0] to result

Fig. 5. Pseudo code of the CUDA kernel for Parallel Reduction

(a)

(b)
Fig. 6. Deciding the distance threshold. (a) Standard deviations of dimensions.
The red bars correspond to the selected dimensions. (b) The distribution of
pairwise Pearson distances from 20,000 sampled points. A threshold of 0.3 is
selected regarding the gap in the middle.

still a very time-consuming process. By removing points that
were considered “close enough” to their respective cluster
centers, the size of the dataset would decrease with every call to
the GPU. This optimization, which we call sub-thresholding
(ST), drastically reduced the computation time. By setting the
sub-threshold to 0.2, for example, any point that has a Pearson
distance of less than 0.2 for their current cluster will become
ineligible for re-clustering (i.e. the point will stay in that cluster
even if a closer cluster is introduced later). This effectively
prevents points with a low intra-cluster distance from moving to
a new cluster in a future iteration. As a result, these points can
be removed from consideration.

Table 1 compares the DB index of our parallel clustering
algorithm to the sequential algorithm. Table 1 also shows how
different ST levels affect quality. Unexpectedly, clustering with
no ST does not produce the best results. This suggests that there
is some discrepancy between what is locally optimal (i.e. each
point lies in cluster where it is closest to the cluster center) and
what is globally optimal (i.e. producing clusters with a low intra-
cluster distance and a high inter-cluster distance).

Intuitively, this makes sense. Because the points are of high
dimensionality, it is likely that if m points find clusters that are
closer, they will be in m separate clusters. Within each cluster, a
single point will have a small impact on the intra-cluster
distance. The cluster that is losing m points, however, is going
to suffer a large increase in its intra-cluster distance if those
points were relatively close to the center. In addition, the m
updated clusters will have a smaller inter-cluster distance.

Fig. 7 shows how the timings scale with increasing data
volume under different clustering settings. The graph compares
the sequential to the parallel clustering with differing values of
ST. Here we can see that our parallel approach is significantly
faster than the sequential one. What’s more, as the data volume
increases, the sub-thresholding optimization effectively helps to
suppress the explosion in computing time.

Also, we can see from Fig. 7 that the computing time, under
any setting, grows at a super-linear rate with respect to the size
of the data (i.e. more than double the compute time is required
for processing doubled data). This makes the algorithm a good
candidate for multi-GPU acceleration. Therefore, we have also
implemented such a multi-GPU solution where the same cluster
batch is passed to all CPUs and unclustered points are distributed
to all GPUs evenly. The only difference from the single-GPU
implementation is that one extra step is added on the CPU to
merge the centers after all GPUs have finished clustering.

 Fig. 8 shows the timings under different numbers of GPUs
scaling with data sizes. The ST is set to be 0.15 as it performs
overall best regrading Table 1. We can see here the time needed
is basically halved when using two GPUs comparing to using a
single GPU. This is because each GPU is only working on half
of the dataset. However, such a speed-up is not observed when
increasing the number of GPUs from two to four. This suggests
that there is a diminishing rate of return in the multi-GPU
approach, probably caused by the increasing cost in data
transferring and more needed work in merging the results from
different GPUs.

C. Visualizations

Fig. 9 shows some visualizations generated during the
incremental clustering. For each state of the clustering result, we
visualize the MDS layouts of cluster centers (on the left) as well
as the histogram of the size of all clusters (on the right). The
number of significant cluster centers being visualized (i.e. with
more than 10 members) out of the total number of clusters
processed is displayed on the top-left corner of each MDS
layout. It is worth noting that the clusters appear rotated in MDS
from plot to plot. This is purely due to the Glimmer MDS that
does not preserve certain orientations.

From the visualizations, we notice two interesting facts.
First, several clusters are forming in the MDS layout. We
believe this is due to the low threshold enforced by the

TABLE I. DB SCORES UNDER DIFFERENT SETTINGS

Size Sequential Parallel ST: 0.3 ST: 0.2 ST: 0.15

10k 0.527 0.539 0.540 0.537 0.529

50k 0.546 0.590 0.548 0.554 0.539

100k 0.550 0.584 0.600 0.570 0.544

200k 0.564 0.587 0.640 0.593 0.564

DB scores measuring the cluster quality (lower is better). Quality of
sub-thresholding (ST) is also presented.

Fig. 7. Timings under different clustering with increasing data sizes.

Fig. 8. Timings of the multi-GPU implementations (ST: 0.15)

incremental clustering algorithm. Some clusters are actually
close but not enough to form one single cluster. Second, the ratio
of the significant clusters over the total clusters being processed
is getting smaller. In the beginning the ratio is 82.3% but toward
the end is only about 1%. From the last two figures, we also see
that of the first 165,984 clusters, 4,002 of these are significant
(>10 points), while for the second 171,010 clusters only about
200 are significant. This is because most of the big clusters were
generated during the early rounds and most of the clusters
produced in the late iterations only have a small number of
members. This is a major advantage of the visual feedback –
users can easily determine when partial clustering results are
sufficient to perform a subsequent analysis step.

VII. CONCLUSION AND FUTURE WORK

We have presented a novel algorithm for big data clustering.
The algorithm parallelizes the incremental k-means and is
implemented on the GPU with CUDA. We observe in
experiments that the new parallel algorithm can speed up the
clustering process by an order of magnitude and lead to a smaller
growth of time cost along with the increasing of data size.

Future work will include an out of core approach to handle
even larger datasets. Although we are able to fit current data in
RAM, ultimately, we need to adopt more efficient data storage
facilities and load balancing strategies. For example, in the
multi-GPU approach, we can redistribute points onto each GPU
after every call to the parallel clustering function. Additional
experiments will be done to determine if the latency of the extra
data transfer is small enough to reach a net gain in performance.

The overall goal of our domain application, as mentioned in
Section 3, is to obtain the structural relationship embedded in
data which can be used to classify new particles at real-time. The
parallel clustering algorithm is the first step towards this goal.
Although we have been able to build such structures on smaller
datasets with a simple heap sort algorithm, this strategy becomes
clumsy when facing big dataset where the number of leaf nodes
are usually very large. A possible solution can be to build the
structure with parallel clustering in a similar fashion as k-means
trees [3]. This will be the major focus of our future work.

ACKNOWLEDGEMENT

This research was partially supported by NSF grant IIS
1527200 and the Ministry of Science, ICT and Future Planning,
Korea, under the “IT Consilience Creative Program (ITCCP)”
supervised by NIPA. Partial support (for Alla Zelenyuk and Jun
Wang) was also provided by the US Department of Energy
(DOE) Office of Science, Office of Basic Energy Sciences,
Division of Chemical Sciences, Geosciences, and Biosciences.

REFERENCES

[1] “Big data,” Nature, vol. 455, no. 7209. pp. 1–136, 2008.

[2] “Dealing with data,” Science, vol. 331, no. 6018. pp. 639–806, 2011.

[3] M. Muja and D. G. Lowe, “Scalable nearest neighbor algorithms for high
dimensional data,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 36, no.
11, pp. 2227–2240, 2014.

[4] “Stratified sampling,” Wikipedia. [Online]. Available:
https://en.wikipedia.org/wiki/Stratified_sampling. [Accessed: 20-May-

79/96

998/3360

3001/52800

4002/165984

4207/336994

2004/13920

Fig. 9. Cluster visualization along with the clustering process. The number
on the top-left corner of each pair of figures is the number of clusters being
visualized vs. the total number of clusters. Clusters with less than 10 members
are not visualized.

2017].

[5] “Amazon Mechanical Turk.” [Online]. Available:

https://www.mturk.com/mturk/welcome.

[6] A. Fahad et al., “A survey of clustering algorithms for big data:
Taxonomy and empirical analysis,” IEEE Trans. Emerg. Top. Comput.,
vol. 2, no. 3, pp. 267–279, 2014.

[7] P. Imrich, K. Mueller, R. Mugno, D. Imre, A. Zelenyuk, and W. Zhu,
“Interactive Poster: Visual data mining with the interactive dendrogram,”

in IEEE Information Visualization Symposium, 2002.

[8] J. MacQueen, “Some methods for classification and analysis of
multivariate observations,” in the fifth Berkeley symposium on
mathematical statistics and probability, 1967, vol. 1, no. 14, pp. 281–297.

[9] R. Farivar, D. Rebolledo, and E. Chan, “A parallel implementation of k-
means clustering on GPUs,” in PDPTA, 2008, pp. 340–345.

[10] J. C. Bezdek, R. Ehrlich, and W. Full, “FCM: The fuzzy c-means
clustering algorithm,” Comput. Geosci., vol. 10, no. 2–3, pp. 191–203,
1984.

[11] T. Zhang, R. Ramakrishnan, and M. Livny, “BIRCH: An Efficient Data
Clustering Method for Very Large Databases,” ACM SIGMOD Rec., vol.
25, no. 2, pp. 103–114, 1996.

[12] S. Guha, R. Rastogi, and K. Shim, “CURE: An efficient clustering

algorithm for large databases,” Inf. Syst., vol. 26, no. 1, pp. 35–58, 2001.

[13] G. Karypis, Eui-Hong Han, and V. Kumar, “Chameleon: hierarchical

clustering using dynamic modeling,” Computer (Long. Beach. Calif).,
vol. 32, no. 8, pp. 68–75, 1999.

[14] M. Ester, H. P. Kriegel, J. Sander, and X. Xu, “A Density-Based
Algorithm for Discovering Clusters in Large Spatial Databases with
Noise,” in International Conference on Knowledge Discovery and Data
Mining, 1996, pp. 226–231.

[15] M. Ankerst, M. M. Breunig, H. Kriegel, and J. Sander, “OPTICS:
Ordering Points To Identify the Clustering Structure,” ACM SIGMOD
Rec., vol. 28, no. 2, pp. 49–60, 1999.

[16] R. Agrawal, J. Gehrke, D. Gunopulos, and P. Raghavan, “Automatic
subspace clustering of high dimensional data for data mining
applications,” ACM SIGMOD Rec., vol. 27, no. 2, pp. 94–105, 1998.

[17] W. Wang, J. Yang, and R. Muntz, “STING: A statistical information grid

approach to spatial data mining,” in International Conference on Very
Large Data, 1997, pp. 1–18.

[18] C. Fraley and A. E. Raftery, “MCLUST: Software for Model-Based
Cluster Analysis,” J. Classif., vol. 16, no. 2, pp. 297–306, 1999.

[19] A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum Likelihood
from Incomplete Data via the EM Algorithm,” J. R. Stat. Soc. Ser. B, vol.
39, no. 1, pp. 1–38, 1977.

[20] C.-T. Chu et al., “Map-reduce for machine learning on multicore,” in

Advances in neural information processing systems, 2007, pp. 281–288.

[21] W. Zhao, H. Ma, and Q. He, “Parallel k-means clustering based on
mapreduce,” in IEEE International Conference on Cloud Computing,
2009, pp. 674–679.

[22] S. Datta, C. Giannella, and H. Kargupta, “Approximate distributed k-
means clustering over a peer-to-peer network,” IEEE Trans. Knowl. Data
Eng., vol. 21, no. 10, pp. 1372–1388, 2009.

[23] B. Hong-tao, H. Li-li, O. Dan-tong, L. Zhan-shan, and L. He, “K-Means
on Commodity GPUs with CUDA,” in 2009 WRI World Congress on
Computer Science and Information Engineering, 2009, pp. 651–655.

[24] M. Zechner and M. Granitzer, “Accelerating k-means on the graphics
processor via CUDA,” in Proceedings of the 1st International Conference
on Intensive Applications and Services, INTENSIVE 2009, 2009, pp. 7–

15.

[25] A. Zelenyuk, D. Imre, Y. Cai, K. Mueller, Y. Han, and P. Imrich,
“SpectraMiner, an interactive data mining and visualization software for
single particle mass spectroscopy: A laboratory test case,” Int. J. Mass
Spectrom., vol. 258, no. 1–3, pp. 58–73, 2006.

[26] A. Zelenyuk, D. Imre, E. J. Nam, Y. Han, and K. Mueller,
“ClusterSculptor: Software for expert-steered classification of single
particle mass spectra,” Int. J. Mass Spectrom., vol. 275, no. 1–3, pp. 1–

10, 2008.

[27] Z. Zhang, K. T. Mcdonnell, E. Zadok, and K. Mueller, “Visual
Correlation Analysis of Numerical and Categorical Data on the
Correlation Map,” IEEE Trans. Vis. Comput. Graph., vol. 21, no. 2, pp.
289–303, 2015.

[28] A. Zelenyuk, J. Yang, E. Choi, and D. Imre, “SPLAT II: An Aircraft

Compatible, Ultra-Sensitive, High Precision Instrument for In-Situ
Characterization of the Size and Composition of Fine and Ultrafine
Particles,” Aerosol Sci. Technol., vol. 43, no. 5, pp. 411–424, 2009.

[29] R. A. Zaveri et al., “Overview of the 2010 Carbonaceous Aerosols and
Radiative Effects Study (CARES),” Atmospheric Chemistry and Physics,
vol. 12, no. 16. pp. 7647–7687, 2012.

[30] S. Ingram, T. Munzner, and M. Olano, “Glimmer: Multilevel MDS on the
GPU,” IEEE Trans. Vis. Comput. Graph., vol. 15, no. 2, pp. 249–261,
2009.

[31] M. Harris, “Optimizing parallel reduction in CUDA,” NVIDIA CUDA
SDK 2. 2008.

[32] D. L. Davies and D. W. Bouldin, “A Cluster Separation Measure,” IEEE
Trans. Pattern Anal. Mach. Intell., vol. PAMI-1, no. 2, pp. 224–227,
1979.

