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ARTICLE INFO ABSTRACT

X-ray images obtained from synchrotron beamlines are large-scale, high-resolution and high-
dynamic-range grayscale data encoding multiple complex properties of the measured materials.
They are typically associated with a variety of metadata which increases their inherent complex-
ity. There is a wealth of information embedded in these data but so far scientists lack modern
exploration tools to unlock these hidden treasures. To bridge this gap, we propose MultiSciView,
a multivariate scientific x-ray image visualization and exploration system for beamline-generated
x-ray scattering data. Our system is composed of three complementary and coordinated inter-
active visualizations to enable a coordinated exploration across the images and their associated
attribute and feature spaces. The first visualization features a multi-level scatterplot visualization
dedicated for image exploration in attribute, image, and pixel scales. The second visualization
is a histogram-based attribute cross filter by which users can extract desired subset patterns from
data. The third one is an attribute projection visualization designed for capturing global attribute
correlations. We demonstrate our framework by ways of a case study involving a real-world ma-
terial scattering dataset. We show that our system can efficiently explore large-scale x-ray images,
accurately identify preferred image patterns, anomalous images and erroneous experimental set-
tings, and effectively advance the comprehension of material nanostructure properties.
© 2018 Published by Elsevier B.V. on behalf of Zhejiang University and Zhejiang University Press.
This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0y).
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1. Introduction kinds of images, which provide various information about the

structure of a probed material. These x-ray images are distinct

X-rays are used modernly to probe the characteristics of
materials. These experiments are frequently conducted at
‘synchrotrons’—circular electron accelerators used to generate
bright and collimated x-ray beams. The different experimen-
tal types and associated measurement modalities yield different
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from natural (visible-light) images since they do not directly
describe the physical appearances, but instead capture far-field
attenuation, diffraction, or scattering patterns of the materials.
Such images can appear quite similar upon casual inspection,
even for materials whose structures are very different. Subtle
differences in these images can be hard to observe since they
are high-dynamic-range grayscale data whose features are only
recognizable to trained experts. Therefore, conventional im-
age browsing tools—typically targeted towards photographs—
provide only a very rudimentary view of the dataset.

Another challenge in working with these images is rooted
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in their heterogeneous nature. For instance, each x-ray image
can also be associated with multiple attributes, including its
chemical or physical properties, analysis parameters, and ex-
perimental metadata. In scientific experiments, these attributes
usually depend on each other and thus are multivariate. The ac-
quired data can be a mixture of nominal, numerical, categorical,
and spatiotemporal data. Beyond that, modern scientific exper-
iments are generating data at an increasingly rapid pace. Alto-
gether, it challenges the visualization and exploration of large
scientific datasets by the domain expert to achieve complete un-
derstanding of the full dataset scope, and apply the analysis ap-
propriately. Currently, there is no visualization work focusing
on this type of analysis and data challenge. The practitioners
can only visualize these data separately by collecting a set of
meaningful plots manually and applying association tediously.
The deficiency of modern exploration tool greatly hinders the
understanding of scientific x-ray data toward new findings.

To bridge this gap, in this work, we propose MultiSciView, a
multivariate scientific x-ray image visualization system to rem-
edy this missing capability. In general, a set of visualization
and exploration methods is devised to allow scientists to easily
interact with both raw data (hereafter image space) and anal-
ysis results (hereafter attribute space) in a single context, and
thereby validate and understand important conclusions. To be
specific, we propose a two-step methodology for the explo-
ration of experiment image datasets. Firstly, multi-level image
exploration and attribute relation projection are enabled for effi-
cient large-scale image space and attribute space understanding
respectively. Then, the image and attribute spaces are unified
using collaborative filtering for coordinated exploration of ex-
periment dataset.

In order to evaluate our method, we adopt x-ray measurement
scenario: x-ray scattering, a popular and powerful technique for
measuring the physical structure of materials at the molecular
and nano-scale, as case studies. However, our methodology is
not limited in the scope of x-ray scattering. In fact, for most
multivariate scientific x-ray images—x-ray medical images, x-
ray diffraction images and electron energy-loss images [3]—
where image exploration plays an essential role for understand-
ing, our method is also applicable. As far as we know, there
is no other visualization work optimized towards exploring and
understanding large x-ray scattering datasets. On the whole, our
paper offers the following contributions:

e We propose a multi-level scatterplot, providing the visu-
alization of images in overview, image and pixel levels as
three different scales through zooming.

e We utilize a Pearson correlation based attribute similarity
visualization for high level material comparison and un-
derstanding.

e Using cross filters, we unify image and attribute spaces,
and obtain the opportunity of coordinated exploration
across data spaces.

e Through performing real world case study with domain
scientists, we demonstrate that our system could efficiently

explore the experiments, find erroneous and anomalous
data, and advance material understanding.

The remainder of the paper is structured as follows: Section
2 reviews the background and related works. The scattering
image dataset and the general framework of our method are de-
scribed in Section 3 and Section 4 respectively. Section 5
and 6 propose the major visualizations of image and attribute
spaces for scattering image understanding. A real-world case
study is examined in Section 7. Finally, the paper is concluded
in Section 8§ with a brief discussion of limitations and future
directions.

2. Background

In the past decade, visualization has made profound advance-
ments, especially for high-dimensional data, where a variety of
works have been introduced covering all three stages of the vi-
sualization pipeline—from data transformation, to visual map-
ping and view transformation, to integrating interactivity [19].
Similarly, for scientific data, visualization also has demon-
strated its effectiveness to explore, analyze and gain insights
into such data [11]. The state-of-the-art visualization methods
dealing with single facets of scientific data, are well-established
[16].

When the scientific experiments get more complicated, the
categories of scientific data are more completely summarized
to “multifaceted” data and model scenarios for modern exper-
iments [16]. There are five major categories: 1) spatiotempo-
ral data, 2) multivariate data consisting of different attributes,
3) multimodal data stemming from different sources, 4) multi-
run data from multiple simulation runs, and 5) multimodal data
from multiphysics simulations of interacting phenomena. How-
ever, in spite of the existing works, increasing experimental and
data complexities still challenge current tools, necessitating the
development of new advanced approaches. In the following
subsections, we will review related works and also discuss the
background of the x-ray scattering scenario.

2.1. Multi-attribute data exploration

There are a number of methods supporting multi-attribute
data exploration, such as exploring large faceted collections.
Early systems FOCUS [27] and InfoZoom [26] support dy-
namic queries in the format of a large table with pivoting, ex-
panding and other operations on the attributes. Later, [31] in-
troduced an image searching tool based on progressive queries
by filtering metadata. However, these techniques have fixed
table-wise layout and rely on linear exploration process that
requires users step by step refinement with increasing specifi-
cations.

Another group is based on scatterplot layout—the most com-
monly used visual tool for multi-attribute data, since it is
straightforward to understand, and familiarized by the major-
ity of communities. It has been used as a standard 2D display
approach [17] where users can easily alter the attribute combi-
nation. An improved approach called Flow-based Scatterplots
aims to augment scatterplots by using sensitivity coefficients to
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highlight local variation of one variable with respect to another
[5]. Therefore, the flow variations resemble the variation corre-
lations between two variables. Nevertheless, the visualization
is limited to only pairwise comparison. Scatterplot matrix [6]
is the extension of scatterplot where a full map of bivariate scat-
terplots are organized in a matrix. Consequently, the pairwise
attribute correlation can be observed simultaneously among all
the attributes. But when the dimension increases, it becomes
more difficult to explore. In order to provide a clear structure to
the visual exploration process, Rolling the Dice was introduced
as an interactive navigation in the scatterplot matrix space [10].
The transitions among selected scatterplots can be seamlessly
integrated; thus both comparison and correlation can be con-
veniently conducted. However, the major downside of these
approaches is that the visualization resides only in the attribute
space and does not suite to explore cross-data space exploration
that fuses other data spaces into a single context.

2.2. Coordinated multiple views

As reviewed in [24], coordinated multiple views have been
steadily developing and shown to be effective in exploratory vi-
sualization. Different perspectives of the dataset are visualized,
explored and analyzed in multiple linked views to compare si-
multaneously. These views usually support interactive feature
specification via brushing for multivariate data exploration.

XmdvTool [29] is comprised of a set of baseline visualiza-
tion tools such as scatterplots, parallel coordinates, hierarchical
techniques, and so on, to visualize multivariate data with linked
N-dimensional brushing. Similarly, GGobi [28] supports link-
ing of views and various types of visualization and interaction,
with additional methods extended from Grand Tour [1]. For
scientific data as summarized in [16], SimVis [9], WEAVE
[14] and PointCloudXplore [25] are three representative vi-
sual analysis systems. They link attribute views with physical
views of volumetric data so that the attribute can be connected
with spatial context. Similarly, [2] presented a linked physical
and feature space views for multi-field medical data. However,
these works lack of multiple levels of details during exploration,
which is an important characteristic in examining large-scale
heterogeneous datasets.

2.3. Visual comparison at the image level

Visual comparison of complex objects is an important com-
ponent involved in data analysis. A survey of work in infor-
mation visualization related to comparison was presented by
Gleicher et al [12] [13]. As indicated in their papers, although
there is a great diversity of systems and approaches, all designs
are assembled from the building blocks of juxtaposition, super-
position, and explicit encodings. Each of them has its superior-
ities and tradeoffs. Bearing in mind these basic forms of visual
design with both factors would lead to transfer designs to appli-
cations, and develop novel visual depictions.

For the side-by-side image comparison, a number of works
for scientific analysis fall into the aforementioned building
blocks. For instance, [15] arranges the visual comparison of
volume rendering results from different view positions or trans-
fer function settings in a spreadsheet layout. But this fixed

layout is limited to connect to other attributes. In contrast, a
multi-image view visualization [21] is designed to support the
comparison of series of scans from the same specimen simul-
taneously in a hexagon tile pattern. This visualization is useful
to reveal detail differences of the scans while still keeping the
sample space unchanged. However, the pieces of scan images
are stitched together to form a complete picture, thus a full im-
age comparison is not possible.

2.4. X-ray scattering image

In the x-ray scattering experiment, a narrow and collimated
beam of x-rays is directed through a sample of interest, and
one records the far-field pattern of scattered x-rays on a two-
dimensional detector. This far-field pattern arises from the in-
terference of the innumerable microscopic scattering events oc-
curring within the material. The detector image thus encodes
the materials physical structure; e.g. with bright spots appear-
ing when atoms/molecules form regular arrays (diffraction from
a crystal lattice).

Like other x-ray images, each scattering images from beam-
line experiments have a large amount of associated metadata,
which we can classify into three main types: (1) a definition
of the material being studied, both in terms of its composition
(chemical makeup, fabrication history), and the conditions un-
der which it was measured (temperature, pressure, etc.); (2)
the experimental parameters used for the measurement (beam
energy, exposure time, etc.); (3) results of data analysis on
the image (statistical metrics, peak fitting, etc.), which can be
converted into physical insights about the material (molecular
packing motif, crystal size, etc.).

Due to the data complexity, a key challenge is to provide the
experimenter with the flexibility to control the data layout. Dif-
ferent materials and experiments will involve remarkably dif-
ferent sets of both materials parameters and data analysis met-
rics; moreover, oftentimes the most relevant parameters are not
known before the experiment is conducted, and must instead be
identified by exploring the dataset. Experimenters must have
both high-level summaries of the trends from data analysis, as
well as easy access to the corresponding raw data, in order to
confirm the results and tweak data analysis as necessary. How-
ever, to the best of our knowledge, there is no visualization
method optimized for the exploration of this kind of datasets.

3. X-ray Scattering Image Dataset

In this work, we focus on visualization of x-ray scattering
experimental data, which is a series of images collected with
numerical attributes and metadata [22]. There are 79 different
samples, categorized as C67 and L74 [23], two kinds of poly-
mer materials. These samples were organized into well-defined
nanostructures [4, 7], exposed to heat (‘annealing’) [20] and
held at a specific temperature. Then they were scanned by x-
ray beam and a time sequence of scattering images were col-
lected in the far field. They are the raw data for the analysis of
material nanostructures. The presented experiments focused on
studying the annealing nanostructure order; that is, the gradual
improvement of the order in the samples as they are heated [20].
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In particular, the effects of annealing temperature and time, ma-
terial thickness, and the blended polymers (two kinds of poly-
mers: S3M3 and S6M6) were investigated with respect to how
they influence the ordering behavior [30] and the ordering rate
[8] of the materials.

Fig. 1(a) shows one example x-ray scattering image, where
two bright spots (‘scattering peaks’) appearing on either side
in yellow rectangles arise due to the well-ordered nanostruc-
ture. For the other peaks or structures, such as horizontal or
vertical bands, they are caused by the occlusion of beamline
equipment and hence not considered. By contrast, the blurred
scattering image in Fig. 1(b) displays two blunt spots because
of bad nanostructure. Associated with one image, there is a set
of quantitatively analyzed (not all the images are analyzed) at-
tributes, shown in Fig. 1(c). Among these attributes, the peak
width o, as a key metric, is highly related to the quality of the
image. In general, a sharp peak (small o), as a well-ordered
nanostructure, is preferred. Whereas a broad peak (large o)
shows poor nanostructure orders. Therefore, highly-ordered
materials (which exhibit clear, sharp and bright peaks Fig. 1(a))
are desirable and vice versa (Fig. 1(b)).

4. System Overview

In this work, we closely collaborate with the domain scien-
tists, and design our system based on their requirements and
suggestions. The two material scientists (also co-authors) are
professional material scientists especially for nano-structures
and structural characterization areas for more than 10 years.
They mainly adopt beamlines experiments to refine or design
new materials with better nanostructures.

By considering the domain scientists exploration prefer-
ences, the aforementioned characteristics of the experiments
and the challenges of understanding the scattering images, we
summarize users’ major requirements as follows:

¢ (R1): Compare material comparison through effective ar-
rangements of all the scattering images.

e (R2): Understand high level understanding of various at-
tribute relations for different materials.

e (R3): Identify anomalies, including operation errors and
experimental settings, for better data quality.

¢ (R4): Explore images in different scales, including check-
ing detail pixel intensity.

Therefore, we devise a system, MultiSciView, shown in Fig.
2, to efficiently visualize the scattering images by integrating
image and attribute spaces together in a multiple level-of-detail
mechanism, as well as linking with other coordinated views.
There are three major visualizations: 2.b multi-level scatterplot,
2.a cross filters and 2.c attribute projection. Specifically, the
main visualization multi-level scatterplot (b) is the image space
visualization adopting scatterplot layout (R1) with three levels
of details (R4), which enables the user to obtain general un-
derstanding of the whole experimental space. Since each point
in the scatterplot represents a single image, when visualizing

images instead of scatterplot points (R2), the pairwise attribute
comparison is integrated with the image space. Then a side-by-
side visualization can be realized naturally (R3). As auxiliary
visualizations, the exploration of attribute space consists of a
histogram based cross filter (2.a) visualization and an attribute
projection (2.c) visualization. Linked to the multi-level scatter-
plot, these two components play as collaborative visualizations,
revealing potential relations among attributes with regards to
different materials (R2) and identifying anomalies (R3). Based
on the above overall description of the system, we plan to elab-
orate our image and attribute space visualizations in the follow-
ing two sections.

5. Image Space Visualization

The image space visualization is comprised of a multi-level
scatterplot and an auxiliary image detail visualization as shown
in Fig. 2(b). It is indeed an integrated visualization of image
space and the attribute space. During our discussion with the
domain scientists, we proposed many other visualization pro-
totypes, such as stream graph and glyph-based line charts. We
found out a more simplified and user familiar layout is more de-
sirable to enable the exploration of large-scale scattering images
by domain scientists. Therefore, the design with a traditional
scatterplot layout with additional three levels of details is more
convincing. In specific, the major visualization is a standard
scatterplot where the user could select any two attributes for
pairwise attribute comparison. In addition, we encode a third
attribute into this layout by color coding each scatterplot point.
As shown in Fig. 3(a), x and y axes are annealing_time, sam-
ple_name, and z axis encodes o using inferno colormap. We
tried many other color schemes. However, inferno colormap
color range is the most clear and distinctive and is preferred by
users (Fig. 3). This layout provides the overview level of de-
tails. In this example, the scientist can check the experiments
listed along sample names in the y axis. Due to the large amount
of scattering images and the limited analysis ability, not all of
the images are analyzed before exploration. The unanalyzed
samples thus have only metadata attributes. To label these data,
since we allow users to choose any color that is exclusive from
inferno color scheme, for these samples, green color is chosen
by users to distinguish from analyzed images.

When the scientist would like to zoom in for the details of the
scattering images distribution, Fig. 3(b) would be shown firstly
to visualize image evolution with respect to the changes of ex-
perimental settings for detail comparison. In this case, each
row represents a series of images for a sample. Continuing to
delve into details, Fig. 3(c) would be displayed as the second
level, where each point evolves into the corresponding scatter-
ing image. To enable a close look of the image detail without
losing the context, we attach an auxiliary visualization to show
the single image (Fig. 3(d)). This visualization can be further
zoomed in to check more details until it reaches the final level
as in Fig. 3(e), where interested pixel values are superimposed
for quantitative analysis.
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Attribute

Description

| Annealing temperature

The temperature the sample was heated to.

Annealing time

The amount of time the sample was held at high-

temperature.

fit_peaks_prefactor (prefactor)

The intensity of the measured scattering peak.

(Higher intensity indicates more ordered material.)

.| fit-peaks.dy (dy)

The size-scale of nanostructures within the material

(computed based on the scattering peak position).

¥ fit_peaks_ay (o1)

The width of the measured scattering peak. A large
width (broad peak) indicates poor order, while a

small width (sharp peak) indicates good order.

—t3

* fit_peaks_m (m) and fit_peaks_b (b)

Fit for the amount of background scattering (linear

model), which is a measured of the amount of disor-

der (e.g. roughness) in the sample.

Fig. 1. (a) An example of ‘good’ x-ray scattering image. The two sharp and bright peaks in yellow rectangles, arise due to distinct nanostructures, which is
preferred. (b) An example of ‘bad’ x-ray scattering image with blurred background and blunt peaks, which is not preferred. The color legends are in the
front of these two images. (c) Table enumerating some attributes relevant to the experiments discussed in this work.

( Cross Filters: Delve into | Multi-level Scatterplot: Explore | attribute Projection: Understand
interested attributes. images in different scales. attribute relations
i; ®

fititpeetssmd ¢, geaks chi_squared

T S it

.fﬁeﬁks 5 centert ( )

fit_peaks d C

. (A

\. (@) ) B 4

Fig. 2. MultiView overview includes (b) image space visualization by a scatterplot for multi-level image exploration; (a) and (c) attribute space visualization

for collaborative exploration and understanding.

6. Attribute Space Visualization

To understand attribute relations, the attribute space visual-
ization is composed of two visualizations: attribute correlation
projection and histogram based cross filter, where the former
focuses on the general understanding of relations among at-
tributes, while the latter allows the interactions between the im-
age space and the attribute space.

6.1. Attribute Projection

Since the relations of attributes reveal materials physical
properties, the user would like to explore the correlations of
these attributes in order to better understand materials proper-
ties. Beyond the scatterplot exploration in the image space vi-
sualization that reveals pairwise correlations, a global relation-
ship among attributes is important as well. Therefore, we con-
struct an attribute representation based on the attribute values
of scattering image, and project them into a 2D space to show
the potential relations. For the distance metric, after trying and
comparing many popular distances such as Euclidean distance

and Cosine distance, Pearson correlation is employed as user
preferred metric. For these attributes, the expert would like to
fully understand their relations to verify experiments. Pearson
correlation captures pair-wise linear positive or negative rela-
tions and helps the user understand the attribute relation pair by
pair. Specifically, we provide the metric as: 1 — |Pearson(x,y)|.
Since the correlation range is between -1 and +1, this metric
would capture both positive and negative correlated relations.
Inspiring by [32], we employ a color coded multidimensional
scaling (MDS) 2D embedding method to display attribute rela-
tions. As shown in Fig. 4, 4.A and 4.B visualized the attribute
relations of both materials C67 and L74 respectively. To be spe-
cific, green and red lines are used to denote positive and nega-
tive relations respectively. Besides, we adopt stroke opacity to
encode the correlation weight. In this way, the user could easily
obtain correlation information. We will demonstrate its use in
the case study section.
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6.2. Attribute Cross Filters

In many cases, the user exploration starts with a single at-
tribute because of more familiarity, so the interaction between
attribute and image spaces is an effective way to find further
relations among different samples. In order to enhance such ex-
ploration, a group of histogram based cross filters are provided.
The interface not only provides the histogram of each attribute,
but also allows the user to apply the knowledge achieved along
any filter to merely visualize the attributes and the correspond-
ing scattering images of interest in the multi-level scatterplot
visualization. The histogram could be visualized as bar chart
or stacked bar chart based on user’s preferences. For instance,
as shown in Fig. 5(A), there are four salient peaks in the his-
togram of values for dy; the user can brush to interact with this
data and select a particular peak in the distribution, consulting
the image visualization to understand the origin of this part of
the distribution. We will also evaluate its use in the case study
part.

7. Case Study

We perform a case study with two material scientists, who
derive the design requirements, to evaluate our methodology.
Their feedback is used to show whether our system could ef-
fectively help them identify the potential properties of materi-
als, and steer subsequent experiments. Based on the preferred
image scattering patterns and important metrics introduced in
Section 3, we describe our case study in the following subsec-
tions.

7.1. Material General Understanding

Since multi-level scatterplot is the key part of our system, we
first present several use cases for dataset general comprehen-
sion using this visualization. Before introducing the details, we
first list some important visualization patterns that are useful for
users’ justifications: 1). Since smaller o} usually indicates bet-
ter nanostructure, so darker colors in scatter plot are preferred.
2). Material nanostructure is usually stable, so with the increase
of annealing temperature, the changes should be continuous. In
this way, the colors in scatter plot should change smoothly with-
out color jumping. 3). As mentioned in Sec. 3, patterns that are
diagnostic of “good” samples should be focused. The following
tasks will be finished based on these patterns.

7.1.1. Material Exploration and Comparison

For a general understanding of the scattering images, the user
first adopted the multi-level scatterplot to explore the whole
set of images. Since the principal aim of the experiment was
to monitor scattering images ordering over time, the user se-
lected to visualize with annealing_time along the x-axis, and
sample_name along the y-axis, with the z-axis (color of scatter-
plot points) used to denote the value of o;. As shown in Fig.
6(A), an inferno color scheme is used to denote the z-value,
and a green color denotes unanalyzed samples. As shown in
the blue rectangles, there are three main categories of materi-
als: 6.a: L74, 6.e C67 and 6.1 MB, where the former two are
analyzed in detail.

Considering o as a useful metric, the user targeted on L74
samples 6.b (names 18 — 22) and C67 samples 6.f (names
42 — 58) images with small o values (darker colors). How-
ever, he noticed that the z-axis colors of 6.f samples did not
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exhibit a smooth trend, meaning that the o-; values fluctuated
substantially over time. This could be the indicative of instable
nanostructures, or poor data-fitting (leading to spurious analysis
results). To further check the samples detailed nanostructures,
he zoomed into the corresponding next level raw images 6.k and
found the images were blurred (weak low signal-to-noise) and
exhibited spurious features, such as blunt peaks or single streak
near the origin, instead of a clear scattering peak. Thus, the user
was able to rapidly identify that this sequence of experiments
was unsuccessful (likely due to a misalignment of those partic-
ular samples during measurement), and that this set of analysis
results should not be pursued. This set of experiments was thus
scheduled for being rerun.

Subsequently, the user investigated 6.b samples, which ex-
hibit a smooth changing trend of o;. The user immediately
zoomed-in to the raw image series 6.j to check whether these
samples were well-aligned during measurement. Except for
several anomalous images showing blurred backgrounds, most
of them displayed well-ordered nanostructure. He also toggled
to pixel display mode for the examination of detailed pixel val-
ues and confirmed the peak values were very large. These sam-
ples were thus identified as valuable for further study.

(A) Shows both C67 and L74 materials. (B) Only shows C67 material.

7.1.2. Blending Polymer Influence Investigation

Using the zoomed-out scatterplot view, the user was then able
to investigate one of the fundamental hypotheses of this scien-
tific experiment: whether blending polymers into materials in-
fluences the nanostructure orders. The user first compared L74
pure sample (names 40) with S3M3 and S6M6 blended sam-
ples 6.c, immediately recognizing that blended lead to a dra-
matic and consistent decrease in o-; (continuous darker colors).
This indicates that blending greatly improves nanostructure or-
der quality. The trend was confirmed by selecting represen-
tative samples, and zooming-in in order to compare their raw
scattering images side-by-side, where the difference in peak
width was immediately confirmed in the raw data. The peak
intensities were also compared by zooming into the pixel-level
for these representative samples, where it was found that the
highly-ordered samples (L74 with blending) had high peak in-
tensities (with pixel values as large as several thousand). Over-
all, this exploration exercise allows the user to rapidly test and
confirm one of the important scientific hypotheses.

After this discovery, the user returned to the C67 material.
The user browsed the remain analyzed data 6.h, finding the
quality to be marginal, explaining the color fluctuations ob-
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time), while samples 48-52 (part of (b)) are ‘even better’ in the sense that the achieve better order (smaller ultimate value of ;). (B) The corresponding

image series when zooming in.

served in the trend. The user then investigated a set of unan-
alyzed samples 6.g, finding this data 6.1 to be clear and highly
robust. This observation agreed with previous conclusion that
C67 experiments were unsuccessful and thus were identified as
high-priority for the next round of data analysis.

7.1.3. Anomalous Image Detection

During the exploration process, the user also identified some
anomalous experiment results. For example, as shown in Fig. 7,
the patterns for first four 7.b samples were abnormal. The color
jumped from light yellow to blue two times, which was physi-
cally impossible, since physical properties of materials tend to
change gradually in time. The user zoomed-in to investigate
the raw images 7.c, and discovered that the first and third im-
ages did not have strong peaks, while the second and fourth
had strong and sharp peaks. This was consistent with the colors
of scatterplot points 7.b. Suspecting an experimental error, the
user changed the x-axis to the sequence_ID attribute (shown in
7.d), which is opposite in that it increments with every exper-
iment performed, and thus provides an unambiguous ordering

of the experimental data collection 7.f. In this view, the trend of
data was smooth and sensible. By comparing the ordering of the
images in the annealing _time and sequence_ID views, the user
was able to identify that the metadata labels of annealing_time
were erroneous for a small set of images (owing to human error
while collecting the data). Having identified the error, the labels
could be fixed, and the dataset can be used for further analysis.
Similarly, the user was able to identify gaps in the data collec-
tion 7.e, which are prime candidates for follow-up experiments
in order to improve the overall data quality and the robustness
of the measured nanostructure order trends.

7.1.4. Exploration of Experimental Plans

Besides the annealing_time < sample_name scatterplot,
the user also explored other scatterplots, such as anneal-
ing_temperature < annealing_time. As shown in Fig. 8, visu-
alization 8.A immediately summarized the experimental plans
for the entire experimental run. One can identify a few experi-
mental design patterns. Some samples were measured at room
temperature (cluster of green data-points in (a)). However, most
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led to mis-labeling of some of the images.

experiments involved increasing annealing temperature. Many
annealing runs were performed by sharply increasing the tem-
perature to 200 °C 8.b or 220 °C 8.c. In a more complex experi-
ment, the user increased temperature to 200 °C 8.b, then 220 °C
8.d, and finally 240 °C 8.e. This could help check whether well-
ordered materials could be further ordered at higher tempera-
ture. By zooming into raw images 8.f, 8.g, 8.h and 8.1, the user
could confirm that increased temperature led to improved order-
ing in the materials, however, after 220 °C, the quality became
worse. The user found this data-view to be a useful summary of
the experimental execution, allowing one to recall what kinds
of experiments had been performed.

7.2. Attribute Projection Analysis

After exploration of the multi-level scatterplot, the user ex-
ploited the attribute relation projection to look for high-level
trends in the data. As shown in Fig. 4, 4.A and 4.B are the at-
tribute correlation projection of C67 and L74 materials respec-
tively. The user found that the differences between these two
projections mainly lied in the correlations of m and b attribute
pair, and prefactor] and y? attribute pair. After observing this
unexpected trend, he firstly switched back to the scatterplot in
order to investigate the strong negative relation (red line) be-
tween m and b attributes in Fig. 9. It is obvious that the scat-
terplot of C67 contains a large number of anomalous images
9.c with extremely large o; values, whereas 9.b fits better to
linear relations. The data quality for C67 images was found
to be low. In other words, because many of the C67 experi-
ments were unsuccessful, with poor sample alignment leading
to noisy images, the correlation between m and b was weaker
than it would be for high-quality data (such as for L74). This
confirmed the previously-noted conclusion (that some C67 ex-
periments would need to be repeated), while also established
that m and b are strongly correlated.

By investigating further correlations in this manner, the user
was able to uncover several unexpected trends. For instance, the
background scattering (quantified through m and b) was found
to be positively correlated with the intensity of the scattering
peak (prefactorl). Conversely, dy and o-; are not strongly corre-
lated, suggesting that the quality of order is not strongly depen-

dent on the precise size-scale of the nanoscale ordering. Each
of these trends can be investigated in turn using the scatterplot.

7.3. Attribute Collaborative Filtering

After exploring the attribute relations, the user would like to
deeply delve into specific attribute. The dj attribute (peak posi-
tion) encodes information about the size-scale of the nanostruc-
ture. As shown in Fig. 5, there are four peaks in 5.A histogram
of dj values. The user surprisingly noticed that 5.a composes of
C67 and C6753M3; 5.b composes of L74 and L74S3M3; 5.c and
5.d compose of L74S6M6. S3M3 and S6M6 denote additional
small and large molecule polymer materials blended into these
samples respectively. He then zoomed into 5.a to check the
detail distributions of C67 material (5.e), where C67 (orange
color) and C67S3M3 (green color) were still blended together,
forming one pattern. Since the experimental conditions for
studying C67 and L74 were very similar, the user was curious
about why L74 exhibits several well-defined d, value groups,
while C67 only forms one value group. To answer this question,
after brushing these patterns, he observed 5.c corresponds to
L74S6M6hp50, and 5.d corresponds to L74S6M6hp70 (hpXX
denotes the volume percentage of the blending). For 5.b, with
the decrease of S3M3 blending percentage, d shifted rightward,
mixing with pure L74. This is highly due to the fact that S3M3
molecule mass is smaller than L74. From this exploration of
the histogram, the user deduced some surprising conclusions:
the C67 material does not swell (change size) when blending
occurs, whereas the L74 material swells under certain condi-
tions (especially when the amount of blending is large). This
unexpected difference in materials response was interesting to
the user, and was selected as an avenue for future experimental
investigation.

In addition to exploring the trends in dy, the user also ex-
plored the samples with largest grain_size attribute (where a
large grain size indicates good order). As shown in Fig. 10,
they first brushed 10.a samples and found that many sample pat-
terns were similar to 10.c. These few samples with very large
grain size were suspicious since they did not exhibit a smooth
trend in the scatterplot color view. Further zooming revealed
that the raw images were very noisy 10.e with no scattering
peaks. These spurious results could thus be ignored. They then
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brushed second largest set of grain sizes in the distribution 10.b
and noticed a smooth and continuous color transition in the
scatterplot 10.d. These were thus identified as highly-ordered
samples. Further zooming confirmed that these sample images
10.f are robust, exhibiting bright and sharp scattering peaks. By
using the cross filter and the scatterplot view, the user was thus
able to identify the experimental conditions that gave rise to the
best sample ordering. Overall, the cross filter enables free ex-
ploration of the dataset, in order to identify possibly interesting
trends in the data, and to subsequently test scientific hypothe-
ses.

7.4. User Feedback

In general, the users (domain scientists) like our Multi-
SciView system and regard it as a breakthrough since there is no
existing visualization approach optimized for the x-ray scatter-
ing experiment images. Before the utilization of our proposed
system, domain experts reported to take much more efforts, but
can only understand parts of material properties. For exam-
ple, starting from an overview scatterplot, they could not con-
veniently zoom into details of a local image scattering pattern
and zoom out later to check other locations, without multi-level

scatterplot. To make comparisons of interesting samples, they
rely on collecting images manually onto a dashboard. How-
ever, with the fast growing of scattering images, this process is
very time consuming, and becomes more and more inefficient
and unmanageable. Because of the ineffective visualizations,
domain experts consider the exploration as validation processes
of their hypotheses rather than new discovery. In addition, pre-
viously, the users were not able to identify attribute relations or
find sample patterns directly.

Considering the tremendous visualization advancements of
the MultiSciView system, the users enjoy using it a lot. One
user spoke highly of multi-level scatterplot and attribute cross
filters. He mentioned “multi-level scatterplot provides me a
very easy way to explore the images. Previously, I need to put
them in separate folders and manually open them to check one
sample after another. When comparing pixel intensities, I need
to open each tiff file one by one. This is very time consuming.”
For the cross filter, the user described it as “powerful interac-
tions” since it enables focus on a set of samples behavior. He
was really surprised when finding the unexpected observation
that “the larger the size of the blended material, the larger d
is”, using cross filters. He thought this is an important future re-
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search direction for synthesizing better quality materials. Due
to the similarity of x-ray experiments, the users also recom-
mend a potential application to other x-ray imaging modalities.
This confirms the generalization of our system.

Besides the advantages, the users commented some limita-
tions as well. The first one is attribute projection. He thought
this visualization would be an effective way to understand all
the attribute relations together. However, when observing the
projection, he could only spot different attribute clusters but
fail to interpret the inter-relations of these clusters. Currently,
it can be rectified by comparing attributes from two clusters in
the scatterplot visualization. But a more direct indication in the
attribute project would be preferred. The second one is pixel
value visualization. He conceded that it was great to zoom in
for intensity checking. But he wondered whether the identifi-
cation of peaks and largest intensity could be automatic. These
two limitations will be our future improvement directions.

8. Conclusion

In this paper, we present MultiSciView a multivariate scien-
tific image visualization and exploration system for x-ray scat-
tering datasets. We devise three major visualizations to enable
coordinated exploration across the image and attribute spaces.
First, a scatterplot layout of the images exploration is presented
which includes three levels of details: overview attribute level,

image level, and pixel level. The attribute variation can thus
be converted to a side-by-side image comparison, together with
an auxiliary image detail visualization to provide further image
evolution toward its actual pixel values. Cross filter visualiza-
tion showing the attribute histograms and an attribute projection
visualization are provided to accomplish the attribute space vi-
sualization and the coordinated exploration. Our case study
demonstrates the benefits of our method in practical material
science experiments.

As future works, we plan to further enhance our system based
on user feedback. In details, we think proposing better and
more interpretable distance metric and projection method for
the attribute projection. Currently, we use the most common
MDS embedding method, leading to neighbor distortion prob-
lem [18]. Then, peak fitting algorithm could be considered to
automate peak recognition. Thus, the largest intensity within
the peak region can then be encoded into the visualization.
Moreover, we plan to refine the side-by-side image visualiza-
tion to avoid image occlusion and further enhance the interac-
tion among coordinated visualizations. Finally, we will extend
the use cases to other x-ray scenarios to evaluate the generaliza-
tion.
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