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Fig. 1: MisVisFix dashboard. Panel A displays the original misleading visualization with interactive issue localization, where hovering
over identified issues highlights the corresponding problematic regions directly on the chart. Panels B and C show corrected versions
generated by Claude and GPT, enabling side-by-side comparison. Panel D allows users to upload the original dataset to improve
accuracy when data extraction fails. Panels E and F list detected issues from GPT and Claude, categorized by severity. Panel G
contains the interactive chat, where users can request modifications and view updated visualizations.

Abstract—Misleading visualizations pose a significant challenge to accurate data interpretation. While recent research has explored
the use of Large Language Models (LLMs) for detecting such misinformation, practical tools that also support explanation and correction
remain limited. We present MisVisFix, an interactive dashboard that leverages both Claude and GPT models to support the full
workflow of detecting, explaining, and correcting misleading visualizations. MisVisFix correctly identifies 96% of visualization issues
and addresses all 74 known visualization misinformation types, classifying them as major, minor, or potential concerns. It provides
detailed explanations, actionable suggestions, and automatically generates corrected charts. An interactive chat interface allows users
to ask about specific chart elements or request modifications. The dashboard adapts to newly emerging misinformation strategies
through targeted user interactions. User studies with visualization experts and developers of fact-checking tools show that MisVisFix
accurately identifies issues and offers useful suggestions for improvement. By transforming LLM-based detection into an accessible,
interactive platform, MisVisFix advances visualization literacy and supports more trustworthy data communication.

Index Terms—Misinformation, Large Language Models, Data Extraction

1 INTRODUCTION

Data visualizations are powerful tools for communicating complex in-
formation clearly and efficiently, enabling users to comprehend patterns,
trends, and relationships within datasets [7, 42]. However, misleading
visualizations, whether created intentionally to deceive or inadvertently
through poor design choices, can significantly distort a viewer’s percep-
tion of the underlying data [4,11,34]. These misleading representations
span various techniques, from obvious manipulations like truncated
axes to subtle distortions such as inappropriate encoding choices or
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unjustified data filtering [21, 26, 36, 46]. As visualizations play an
increasingly central role in data-driven decision-making, identifying
and correcting misleading visualizations has become increasingly criti-
cal [14, 22, 28, 43].

Recent taxonomic work by Lo et al. [29] systematically categorized
74 misleading issues that can arise in visualizations. This comprehen-
sive framework has established a foundation for understanding how
visualizations can mislead viewers. However, detecting these issues
requires substantial expertise in visualization design principles and crit-
ical data thinking skills, which many consumers of data visualizations
may lack [6, 10]. This expertise gap creates a pressing need for auto-
mated systems that can assist in identifying and correcting potentially
misleading visualizations.

The emergence of multimodal Large Language Models (LLMs) with
advanced vision capabilities presents new opportunities for addressing
this challenge [33, 40]. Recent research has shown that models like
GPT-4V and Claude 3 can interpret complex visual information and rea-
son about visualization design issues [12, 44]. In particular, Alexander
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et al. [1] explored the potential of GPT-4 in detecting misleading visual-
izations, concluding that these models can identify misleading elements
with moderate accuracy when provided with appropriate guidance. Sim-
ilarly, Lo et al. [30] evaluated multiple LLMs for detecting misleading
visualizations, finding significant potential but noting challenges in
scaling detection capabilities across diverse issue types.

While existing research demonstrates the potential of LLMs for visu-
alization analysis, several key limitations remain [8, 25, 47]. First, most
current approaches focus exclusively on detection without address-
ing the correction of problematic visualizations [2, 39, 41]. Second,
many systems target only a subset of misleading techniques rather
than comprehensively addressing the complete taxonomy of potential
issues [15, 38]. Third, limited work has been conducted on creating
interactive, user-facing systems that effectively communicate identi-
fied issues and recommend improvements [13, 16]. These limitations
present critical research opportunities for developing integrated systems
that leverage the capabilities of LLMs across the complete pipeline of
misleading visualization analysis.

Building on these identified gaps, we aim to address the following
two key questions:

• RQ1: How can multimodal LLMs be effectively leveraged to
detect and explain the full spectrum of misleading visualization
techniques identified in existing taxonomies?

• RQ2: To what extent can an interactive system facilitate both iden-
tification and correction of misleading visualizations, bridging
the gap from detection and visualization best practices?

To address these research questions, we present MisVisFix, an inter-
active dashboard for detecting, explaining, and correcting misleading
visualizations. Our work makes five primary contributions:

• We developed and implemented MisVisFix, an end-to-end interac-
tive dashboard that integrates LLM capabilities to detect, explain,
and generate corrections for misleading visualizations.

• We conducted a comprehensive evaluation of multimodal LLM
performance across all 74 categories of visualization misinfor-
mation, demonstrating that our approach achieves an F1 score of
0.96 in issue detection.

• We created novel techniques for visually annotating misleading
elements directly on visualizations with precise x-y positioning,
enabling an intuitive understanding of problematic areas.

• We designed and implemented an interactive learning mechanism
that continuously improves the system based on user feedback,
allowing MisVisFix to adapt.

• We validated the system’s effectiveness through rigorous user eval-
uation with visualization experts and developers of fact-checking
tools, confirming MisVisFix’s accuracy, usefulness, and applica-
bility in both professional and educational contexts.

Our paper is organized as follows. Section 2 presents related work.
Section 3 describe the system design. Section 4 offers a system evalua-
tion. Sections 5 and 6 end the paper with a discussion and conclusions.

2 RELATED WORK

Our research intersects several fields, including misleading visualiza-
tion detection, visualization linters, chart analysis, and applications
of large language models (LLMs) in visualization understanding. We
review key developments in these areas to position our contributions
within the broader research landscape

2.1 Misleading Visualizations
The study of misleading visualizations dates back decades, with foun-
dational work by Huff [18] and Tufte [42] establishing core principles
of graphical integrity. Huff’s seminal text "How to Lie with Statistics"
first exposed common deceptive practices in data representation, while
Tufte introduced the concepts of "chartjunk" and "lie factor" to quantify
visualization distortion. These early frameworks laid the groundwork

for understanding how visual representations can manipulate viewer
perception.

Recent empirical studies have advanced our understanding of how
specific design choices impact interpretation. Pandey et al. [34] system-
atically evaluated how visualization manipulations affect a viewer’s per-
ceptions, demonstrating that even subtle design choices like truncated
axes significantly alter data interpretation. Correll et al. [11] examined
y-axis truncation, revealing that this common practice systematically
distorts the perception of data magnitudes. Additional research by
Lee et al. [22] and Lisnic et al. [28] has explored how misinformation
spreads through data visualizations in social media, emphasizing the
societal impact of misleading charts in public discourse.

The most comprehensive taxonomy of misleading visualization prac-
tices was developed by Lo et al. [29], who identified 74 distinct types
of visualization issues based on an analysis of over 1,000 real-world
examples. This taxonomy spans both structural issues (e.g., truncated
axes, inappropriate color schemes) and context-related problems (e.g.,
cherry-picked data, misrepresentation of statistical findings). Our re-
search builds directly on this taxonomy, using it as the foundation for
our detection framework.

2.2 Visualization Linters
Visualization linters—tools that algorithmically identify potential issues
in visualizations—represent a significant advancement in automated
quality assessment. These systems typically integrate with visualization
creation libraries to detect issues during the authoring process. McNutt
and Kindlmann [32] pioneered this approach with a linter for matplotlib
that implemented rules derived from visualization design principles.
Chen et al. [9] subsequently developed VizLinter, which analyzes visu-
alization specifications created with Vega-Lite against established best
practices using Answer Set Programming. Similar specialized linters
have been developed for geographic visualizations, with Lei et al. [24]
creating GeoLinter for choropleth maps.

These linting systems offer valuable support but have key limita-
tions: they operate during visualization creation rather than analyzing
existing charts, focus on structural elements rather than contextual is-
sues, and require access to underlying code rather than working with
bitmap images. Our work addresses these gaps by analyzing bitmap
visualizations and detecting both structural and contextual issues.

2.3 Chart Analysis
Computer vision approaches to chart analysis have made significant
progress in recent years. Early work by Savva et al. [37] established
methods for extracting data from chart images through reverse engi-
neering techniques. Poco and Heer [35] built on this foundation with
improved methods for recovering visual encodings from chart images.
These reverse engineering approaches enable subsequent analysis of
the extracted data and specifications.

Recently, research has expanded to chart question-answering tasks
that require a deeper understanding of visualization semantics. Kahou
et al. [20] created the FigureQA dataset with over 100,000 chart images
and corresponding question-answer pairs. Kafle et al. [19] developed
DVQA, a benchmark dataset focused on more complex reasoning about
visualizations. These benchmarks have driven progress in systems that
can answer natural language questions about chart content.

While these approaches demonstrate increasing capabilities in ex-
tracting information from charts, they primarily focus on understanding
chart content rather than evaluating chart quality or identifying mislead-
ing elements. Our work extends these capabilities to critical assessment
of visualization design and content.

2.4 LLMs for Chart Understanding and Criticism
The emergence of large language models with multimodal capabilities
has created new opportunities for chart analysis. Recent research has
demonstrated that these models can extract data from charts, answer
questions about chart content, and even reason about chart design
choices. Masry et al. [31] developed UniChart, a vision-language
model specifically trained for chart comprehension tasks. Do et al. [12]
investigated prompt engineering strategies for chart question answering



with general-purpose multimodal LLMs, finding that well-designed
prompts enable strong performance.

Most relevant to our work, Alexander et al. [1] explored the capa-
bilities of GPT-4 models in detecting misleading visualizations. Their
study evaluated three variants of GPT-4 (4V, 4o, and 4o mini) across
a dataset of tweet-visualization pairs containing various "misleaders."
Their experiments incorporated different guidance levels, finding that
GPT-4 models could detect misleading elements with moderate accu-
racy without prior training. Performance improved significantly when
models were provided with definitions of potential issues. Lo and
Qu [30] comprehensively evaluated multiple multimodal LLMs in de-
tecting misleading visualizations, testing nine distinct prompting strate-
gies across three experiments. They found that the Chain of Thought
prompting strategy was the most effective, but noted challenges in
scaling detection to cover the full spectrum of potential issues. Simi-
larly, Bendeck and Stasko [3] evaluated GPT-4’s visualization literacy
capabilities, including its ability to identify deceptive and misleading
visualizations as one of four key assessment dimensions, demonstrating
moderate success in detecting visual deception techniques.

These studies demonstrate the potential of LLMs in detecting mis-
leading visualizations but highlight several limitations. First, most
existing work focuses on detection without addressing correction. Sec-
ond, current approaches often struggle to scale beyond a limited set of
issue types. Third, research has primarily evaluated model performance
in controlled settings rather than developing complete, user-facing
systems. Our work addresses these limitations by developing an inter-
active system that spans detection, explanation, and correction while
addressing the full taxonomy of misleading visualization techniques.

3 MISVISFIX SYSTEM ARCHITECTURE

The MisVisFix system employs a comprehensive architecture designed
to facilitate the detection, explanation, and correction of misleading
visualizations. We adopt a modular pipeline approach that decouples
the distinct processing stages while maintaining integration across the
entire system. This section provides a detailed description of the system
architecture, core components, and implementation details.

3.1 System Overview

MisVisFix integrates multiple computational components and user inter-
face elements to create a coherent workflow for visualization analysis.
Fig. 1 presents a high-level overview of the system architecture, illus-
trating the primary components and their interactions. The pipeline
begins with visualization input, processes the image through multiple
analytical stages, and culminates in presenting results and corrected
visualizations to the user.

The system architecture consists of four principal components: (1)
the input processing module, (2) the visualization analysis engine,
(3) the visualization correction and generation module, and (4) the
interactive user interface. These components operate in sequence while
facilitating iterative refinement through user interaction. The following
sections detail each component’s functionality and implementation.

3.2 LLM Selection and Evaluation

Our model selection process was based on direct testing of multiple
LLMs for visualization analysis tasks. We conducted pilot studies to
determine which models performed best to extract data from graphs
and answer visualization-based questions.

We tested GPT-4.5, Claude-3.7, and GEMINI-2.0 for our evaluation.
We chose these models because they represent the latest versions from
leading LLM providers with multimodal capabilities. We considered
other multimodal models, such as DeepSeek-V3, but limitations in their
API capabilities (such as lack of support for image uploads through the
API) prevented us from including them in our tests.

Previous research by Bendeck and Stasko [3] and Hong et al. [17]
showed that older models like GPT-4.0 and Gemini 1.5 performed be-
low human standards when answering chart questions. For our testing,
we used the VLAT (Visualization Literacy Assessment Test) [23], a
widely recognized assessment tool for visualization comprehension.

Instead of using the generic prompts from previous studies, we devel-
oped guided prompts that followed a three-step process: First, we asked
the LLMs to extract data from the graphs. Then, we asked them to sort
the extracted data. Finally, we asked them to answer questions based
on this extracted data. Our results showed that significant improvement
could be achieved with this step-wise approach.

Table 1 shows the performance of the three LLMs on the original
VLAT questions compared to the human baseline from Lee et al. [23]
and GPT-4.0 results reported by Bendeck and Stasko [3]. We present
both raw scores (out of 53 questions) and scores calculated using the
VLAT scoring scheme.

Table 1: Comparing the results we obtained with our 3-step prompting
technique and existing methods, based on the full VLAT data set. Green
text indicates performance improvements over the human baseline, while
red text indicates performance below the baseline. Bold values highlight
the best-performing model scores.

Model Mean Raw
Score

VLAT
Score vs. Human

Human [23] 33.74 28.82 baseline
GPT-4.0 [3] 29.33 19.67 -31.7%
GPT-4.5-preview 42.00 34.33 +19.1%
GEMINI-2.0-pro 40.00 33.50 +16.2%
Claude-3.7-sonnet 51.00 50.17 +74.1%

All three models exceeded human baseline performance, but Claude-
3.7-sonnet showed the highest accuracy, exceeding the human baseline
by 74.1%. This superior performance in data extraction made Claude-
3.7 our primary choice for extracting data from visualizations in the
MisVisFix dashboard.

While VLAT tests focus on data extraction and comprehension,
these capabilities directly support misleading visualization analysis.
Accurate data extraction enables comparison between chart content and
underlying data to detect discrepancies. Chart comprehension skills
help identify when visual elements misrepresent the data. Claude-3.7
and GPT-4.5 performed at comparably high levels, with GEMINI-2.0
also performing well—though slightly below GPT-4.5—leading us to
focus on the two top-performing models.

To leverage the complementary strengths of both models, we imple-
mented a dual-model approach in MisVisFix:

• Claude-3.7 handles the primary data extraction from charts due
to its superior extraction accuracy.

• Both Claude-3.7 and GPT-4.5 contribute to issue detection and
correction, offering users multiple perspectives on potential visu-
alization problems.

This evidence-based approach to model selection ensures MisVisFix
delivers reliable results across the entire pipeline from data extraction
to visualization correction. The supplementary materials include all
prompts, test procedures, and detailed performance results.

3.3 Input Processing Module
The input processing module serves as the entry point for visualizations
into the system. This module accepts bitmap image uploads from
users and performs preliminary processing to prepare the visualization
for subsequent analysis. The preprocessing pipeline includes image
normalization, data extraction, and initial chart-type detection.

To ensure consistent input quality, we implement standard prepro-
cessing techniques for image normalization, including resizing, color
space normalization, and artifact removal. We used Claude-3.7 for
data extraction, which included titles, axis labels, legends, and annota-
tions. Chart-type detection utilizes a multimodal LLM approach, where
Claude 3.7 analyzes the image to classify the visualization.

The input module also handles metadata extraction, such as image
dimensions, resolution, and file format. This information is preserved
alongside the processed image for use in later pipeline stages, particu-
larly for accurate placement of annotations when highlighting issues.



3.4 Visualization Analysis Engine
The visualization analysis engine constitutes the core analytical com-
ponent of MisVisFix, responsible for detecting potential issues in the
input visualization. This engine employs a multi-stage approach to
comprehensive visualization analysis.

3.4.1 Issue Detection Framework
Following data extraction, the dashboard performs comprehensive issue
detection across all 74 categories from Lo et al.’s taxonomy [29]. We
employ a structured detection framework that organizes issues into
three tiers of severity:

• Major Issues: Problems that substantially distort data perception
or introduce significant misinterpretation risk (e.g., truncated axes,
misleading color encodings, fabricated data).

• Minor Issues: Problems that affect readability or clarity but do
not fundamentally alter data interpretation (e.g., missing titles,
inconsistent label formatting).

• Potential Issues: Elements that may present problems depend-
ing on context or audience (e.g., specialized encoding choices,
technical terminology).

Our correction module provides users with both issue detection and
detailed explanations. Fig. 2 illustrates the interactive issue analysis
interface of MisVisFix.

As shown in Fig. 2a, users can view all detected issues organized
by severity categories (major, minor, potential). When users click on
a specific issue, as demonstrated in Fig. 2b, the dashboard presents a
detailed explanation of why this particular visualization element is prob-
lematic, along with specific recommendations for improvement. The
green checkmarks indicate issues that have been successfully addressed
in the generated corrected visualizations.

This interactive approach helps users understand both what visual-
ization problems exist and how they can be fixed, creating a complete
learning loop that enhances visualization literacy while providing prac-
tical solutions.

We utilize GPT-4.5 and Claude 3.7 for issue detection, each with
specialized prompts designed to maximize detection accuracy. Our
issue detection approach incorporates Chain of Thought techniques that
guide the models through a structured reasoning process.

• Comprehensive Issue Catalog: We provide the models with a
systematic listing of all 74 potential visualization issues identified
in the literature [29]. This ensures the models check for the
complete range of possible problems.

• Focused Analysis Request: We direct the models to return only
the names of identified issues without additional text, enabling
efficient processing of results.

• Detailed Issue Explanation: After issues are identified, we
prompt the models to provide detailed explanations for each is-
sue, describing why they could be misleading or incorrect in the
context of the specific visualization.

• Issue Categorization: The models organize identified issues by
severity (major, minor, potential), helping users prioritize which
problems to address first.

This structured prompting approach enables consistent analysis
across visualization types while maximizing detection accuracy.

Our Chain of Thought prompting strategy guides LLMs through a
systematic analysis process. The prompt instructs the model to (1) iden-
tify chart type and elements, (2) examine axis properties, (3) analyze
color usage, (4) review data representation, and (5) list detected issues
by severity category.

3.4.2 Issue Localization Technique
Beyond detecting issues, MisVisFix provides precise location infor-
mation. To help users locate issues (major, minor, and potential) in
the original uploaded graph, we developed a technique that identifies

(a) Dashboard view showing detected issues categorized by severity
level

(b) Expanded view of a selected issue showing detailed explanation
and improvement recommendations

Fig. 2: Example output from the MisVisFix issue analysis interface for a
specific misleading visualization

the exact position of each problem area on the chart. As shown in
Fig. 1 Panel (A), this allows direct annotation on the original graph.
When users hover over an issue in the dashboard panels, the dashboard
highlights the corresponding region on the chart where the problem
exists. For example, if "Missing Title" is identified, hovering over this
issue in the panel highlights the area at the top of the chart where a title
should appear. This interactive approach helps users understand not
just what issues exist, but exactly where they occur in the graph. The
tooltip feature creates an immediate visual connection between abstract
problems and their concrete manifestations in the chart.

Our issue localization technique maps each detected issue to precise
coordinates on the visualization. We prompt the LLM with the visual-
ization image and a list of detected issues. The model then analyzes
the image and returns ‘top_gap’ and ‘left_gap’ percentage-based co-
ordinates for each issue. For issues like ‘Truncated Axis,’ the model
pinpoints the specific axis region, while for ‘Color Blind Unfriendly’
issues, it identifies relevant color-encoded elements. These coordinates
create responsive highlights that work across different display sizes.
When users hover over an issue in the dashboard panels, the system
uses these stored coordinates to highlight the corresponding region on



the chart, connecting abstract problems to their visual location.

3.5 Visualization Correction and Generation

A distinguishing feature of MisVisFix is its ability to identify issues
and generate corrected visualizations. The correction module takes the
original visualization, the extracted data, and the identified issues as
input and then produces a corrected visualization that addresses the
detected problems.

The correction process employs a code generation approach, where
the LLM generates Python code using matplotlib, seaborn, or other
visualization libraries to recreate the visualization without the identi-
fied issues. Fig. 3 illustrates the overall working procedure of graph
generation using Claude and GPT, showing how the system initially
generates graphs and then iteratively refines them based on user input.

Fig. 3: Visualization generation workflow using Claude and GPT. The
system analyzes uploaded charts, generates Python code for improved
versions, and enables iterative refinement through interactive chat until
users are satisfied with the results.

We encountered several technical challenges during the implementa-
tion of the correction module, particularly related to code execution and
image generation. Initial attempts using DALL-E for chart generation
proved unsuccessful, as these models are optimized for creative image
generation rather than precise data visualization. We addressed these
challenges through a series of refinements:

• Pre-installing a consistent set of visualization libraries in a con-
trolled execution environment.

• Implementing error handling mechanisms that send Python code
and corresponding errors back to the LLM for correction.

• Converting generated plots to base64 encoded images for consis-
tent rendering and implementing Firebase storage for generated
images that exceed token limits when sent directly to LLMs.

This robust approach ensures the reliable generation of corrected
visualizations that maintain visual similarity to the original while ad-
dressing the identified issues. Fig. 4 presents examples of original
misleading visualizations alongside their MisVisFix-generated correc-
tions, demonstrating the system’s ability to maintain design integrity
while correcting problematic elements.

Our correction approach prioritizes standard visualization types like
bar charts, line charts, and scatterplots that have less potential to mislead
viewers. As shown in Fig. 4, when the system detects fundamentally
problematic visualization choices, such as pie charts with too many
segments or maps that distort data through geographic projection, it
may completely replace the original design with a more appropriate
chart type rather than attempting to fix the original format. This trans-
formation ensures that the underlying data relationships remain intact
while removing elements that could lead to misinterpretation.

Our correction module uses a template-based code generation pro-
cess that adapts to specific chart types and issues. For example, when
fixing truncated axes, the system generates Python code using Mat-
plotlib with corrected axis limits. The process follows three steps: (1)
extract data from the original visualization, (2) generate visualization
code with fixes for the identified issues, and (3) apply styling to match
the original.

Fig. 4: Comparison of original misleading visualizations and MisVisFix-
generated corrections. Top: Pie chart with too many similar-colored
segments converted to sorted bar chart after detecting inappropriate
chart type, indistinguishable colors, and missing units. Bottom: Line chart
with dual y-axes causing data misrepresentation replaced with single-axis
line charts after identifying dual axis issues, data magnitude differences,
and misrepresentation problems. Both examples show conversion to
clearer chart formats that reduce misinterpretation and improve data
comprehension.

3.6 Interactive User Interface
The MisVisFix dashboard provides an intuitive interface that integrates
all system components into a cohesive user experience. The interface is
shown in Fig. 1 and centers around multiple visualization panels: Panel
A displays the original misleading visualization uploaded by the user.
Panels B and C show corrected versions of the visualization—Panel
B contains the version generated by Claude, while Panel C shows the
version created by GPT. This side-by-side presentation allows users
to compare the original problematic visualization with two alternative
corrections, facilitating critical evaluation of different approaches.

Panel D offers a dataset upload functionality, addressing cases where
LLMs fail to extract data correctly from the visualization. This feature
allows users to provide the original dataset directly, enabling the system
to fine-tune its analysis and generate more accurate corrected visualiza-
tions based on the actual data rather than extracted approximations.

Panels E and F display the misleading issues identified by GPT
and Claude, respectively. Each panel organizes issues by severity
level (major, minor, potential) and provides detailed descriptions of
each detected problem. While both models often identify similar core
issues, they sometimes differ in detecting subtle problems or explaining
approaches, providing complementary perspectives.

Panel G houses the interactive chat window, where users can ask
questions about the visualization and request specific modifications.
For example, if the visualization uses a green color scheme, users
can request, “Can you make it blue?" The system processes these re-
quests and generates updated visualizations incorporating the requested
changes. All versions created through this interactive process remain
accessible, allowing users to track the evolution of the visualization
through various modifications.

The dashboard employs a reactive design that updates dynamically
as users interact with different components. When users hover over
identified issues in the analysis panels (E or F), the dashboard highlights
the corresponding regions on the original visualization in Panel A,
creating an immediate visual connection between abstract issues and
their concrete manifestations. Clicking on an issue displays detailed
information about its nature, impact, and potential improvements.

A notable feature of the interface is the integration of a learning
mechanism, as shown in Fig. 5. When users identify issues not de-
tected by the system, they can flag these for addition to the knowledge
base through a simple approval interface. By selecting the green tick
button, users confirm the addition of newly identified issues to the
system’s knowledge base. This mechanism enables continuous system
improvement, ensuring that MisVisFix can adapt to new visualiza-
tion challenges and unusual misleading techniques that may not be



well-represented in its initial training.

(a) The system displays an original visualization with detected issues. The user identifies an additional issue
("Misrepresentation") not detected by the system.

(b) The user explains the misrepresentation issue through the chat interface, providing details about how figures
were incorrectly compared between specified elements.

(c) The system confirms it has learned the new issue by highlighting it as a "Major Issue" in its analysis panel and
providing a detailed explanation, demonstrating successful incorporation of user feedback into its knowledge base.

Fig. 5: MisVisFix learning mechanism interface demonstrating how users
can add undetected issues to the system’s knowledge base.

3.7 Implementation Details
We implemented MisVisFix as a web-based application using a modern
technology stack to ensure accessibility and scalability. The front end
utilizes React.js with Tailwind CSS for responsive design, while the
back end employs Node.js with Express. We integrate with the OpenAI
API (GPT-4.5) and Anthropic API (Claude 3.7) for LLM capabilities,
with API calls implemented using asynchronous request handling to
maintain responsiveness during processing.

For visualization generation, we utilize Python’s visualization li-
braries within a containerized execution environment. The system uses
Firebase for image storage and authentication, ensuring secure and
efficient management of generated visualizations. All user interactions
and system performances are logged for analysis, with appropriate
privacy measures to protect user data.

The entire system architecture prioritizes modularity, enabling in-
dependent refinement of individual components as LLM capabilities
evolve. This design choice ensures that MisVisFix can incorporate fu-
ture advancements in multimodal models without requiring a complete
system redesign.

4 EXPERIMENTAL EVALUATION

To evaluate the effectiveness of MisVisFix, we conducted a compre-
hensive assessment focusing on both quantitative performance metrics
and qualitative user feedback. Our evaluation addressed three primary
research objectives: (1) assessing the accuracy of issue detection across
different visualization types and issue categories, (2) measuring the

quality of generated corrections, and (3) evaluating user experience and
perceived utility.

4.1 Evaluation Methodology
We constructed a test dataset comprising 450 visualizations: 360 mis-
leading and 90 valid. The misleading visualizations were sourced from
Lo et al.’s [29] collection, ensuring representation across all 74 issue cat-
egories with at least three examples per category. We supplemented this
with additional samples for the 20 most common issue types to enable
more robust statistical analysis. Valid visualizations were sourced from
reputed publications, including academic journals, government reports,
and major news outlets, and manually verified by three visualization
experts to confirm adherence to visualization best practices.

The dataset was stratified across visualization types to ensure bal-
anced representation: 40% bar charts, 25% line charts, 15% pie/donut
charts, 10% scatterplots, and 10% other chart types (including maps,
heatmaps, and area charts). This distribution approximates the preva-
lence of different chart types in real-world contexts while providing
sufficient samples for evaluation across categories.

4.1.1 Evaluation Metrics
We employed the following metrics to evaluate system performance:

• Detection Accuracy: The percentage of correctly identified is-
sues in the dataset, measured using precision, recall, and F1 score.
Precision measures how many flagged issues are real problems.
Recall measures how many actual problems the system finds. The
F1 score combines both measures into a single number, where 1.0
is perfect performance.

• Issue Categorization Accuracy: The percentage of correctly
categorized issues (major, minor, potential) among those detected.

• Localization Precision: The spatial accuracy of issue annota-
tions is measured as the percentage of annotations that correctly
highlight the problematic regions.

These metrics address key challenges in detecting misleading visualiza-
tions. Precision and recall ensure accurate issue identification without
false positives. F1 score provides a balanced measure essential for
comparing different approaches. Issue categorization accuracy eval-
uates whether the system can distinguish between major, minor, and
potential concerns. Localization precision measures the system’s ability
to highlight specific problem areas for user understanding.

4.1.2 Comparative Analysis
We evaluated MisVisFix against two baselines:

• LLM-Only Baseline: Direct application of GPT-4.5 and Claude
3.7 for issue detection without our structured prompting approach
or correction capabilities.

• VizLinter [9]: A state-of-the-art visualization linting system
for those visualizations where we could reproduce the original
specifications in Vega-Lite format.

This comparative framework allowed us to isolate the contribution
of our system architecture, prompting strategies, and correction mech-
anisms beyond the capabilities of the underlying models or existing
linting approaches.

Our comparison with VizLinter was limited to visualizations where
we could access or reconstruct the original specifications in Vega-Lite
format. VizLinter requires access to visualization specifications rather
than bitmap images, restricting our comparison to approximately 35%
of our test dataset. We manually recreated the Vega-Lite specifica-
tions based on the visualization images to enable direct comparison
for these cases. This limitation reflects a fundamental difference in
approach: VizLinter operates during the visualization creation process
with access to underlying code, while MisVisFix analyzes finished
visualizations without requiring source specifications. Despite this
constraint, the comparison provides valuable insights into the strengths
of each approach within their intended use cases.



4.1.3 Expert Evaluation
We conducted two phases of expert evaluation during our research.
First, as mentioned in section 4.3, we interviewed two misinformation
tool design experts midway through development to inform our sys-
tem design. For the final evaluation, we recruited five visualization
experts (3 male, 2 female) with a mean of 13.4 years of experience in
data visualization to evaluate system performance qualitatively. The
experts had diverse backgrounds: four held PhDs in visualization or
related fields, and one had a Master’s degree. All participants had
extensive experience creating and analyzing data visualizations profes-
sionally. The expert evaluation protocol had three main components.
First, experts watched an introductory video demonstrating the Mis-
VisFix dashboard. Next, they participated in a testing session where
they uploaded both provided visualizations and their own examples. Fi-
nally, they completed a structured interview and questionnaire assessing
system performance and utility.

4.2 Quantitative Results
Table 2 presents the detection performance of MisVisFix compared
to the baseline approaches across different chart types and issue cate-
gories. MisVisFix achieved an F1 score of 0.96 (precision: 0.94, recall:
0.98) across all visualization types and issue categories, representing a
substantial improvement over the LLM-Only baseline (F1: 0.69) and
VizLinter (F1: 0.61 for the subset of visualizations where comparison
was possible).

Table 2: Detection Performance Across Methods and Chart Types

Approach / Chart Type Precision Recall F1 Score

MisVisFix (Overall) 0.94 0.98 0.96
LLM-Only Baseline 0.72 0.66 0.69
VizLinter 0.67 0.56 0.61

By Chart Type (MisVisFix)

Bar Charts 0.96 0.99 0.97
Line Charts 0.95 0.98 0.96
Pie/Donut Charts 0.91 0.96 0.93
Scatterplots 0.89 0.95 0.92
Other Chart Types 0.88 0.94 0.91

Performance varied by issue category, with structural issues such
as truncated axes (F1: 0.98), 3D effects (F1: 0.97), and dual axes (F1:
0.96) achieving the highest detection rates. Contextual issues like selec-
tive data presentation (F1: 0.93) and misrepresentation of findings (F1:
0.91) showed slightly lower but still strong detection rates. This pattern
aligns with findings from Alexander et al. [1] and Lo and Qu [30], con-
firming that structural issues are generally more amenable to automated
detection than contextual issues requiring domain knowledge.

Analysis by chart type revealed the highest performance for bar
charts (F1: 0.97) and line charts (F1: 0.96), with somewhat lower
performance for pie charts (F1: 0.93), scatterplots (F1: 0.92) and other
chart types (F1: 0.91). This variation likely reflects the prevalence of
different issue types across chart categories and the inherent complex-
ity of analyzing certain visualization formats. Table 3 demonstrates
that MisVisFix achieves consistent performance across diverse issue
types, with particular strength in detecting structural issues like axis
manipulation, inappropriate color use, and missing essential elements.

4.2.1 Issue Categorization and Localization
MisVisFix achieved 87.5% accuracy in correctly categorizing detected
issues as major, minor, or potential concerns. Categorization accuracy
was highest for major issues (94.2%) and lowest for potential issues
(82.8%), reflecting the inherent ambiguity in determining the severity
of borderline cases. Table 4 summarizes these categorization results
across the three severity levels.

For issue localization, the system achieved an average precision of
91.3% in correctly highlighting the problematic regions of visualiza-
tions. Localization precision was highest for discrete elements like

Table 3: Detection Performance (F1 Score) for Top 10 Issue Categories

Issue Category F1 Score Issue Type

Truncated Axis 0.98 Structural

3D Effects 0.97 Structural

Dual Axis 0.96 Structural

Missing Title 0.95 Structural

Missing Axis Labels 0.94 Structural

Inappropriate Color Use 0.94 Structural

Inconsistent Scale 0.93 Structural

Selective Data Presentation 0.93 Contextual

Data Manipulation 0.92 Contextual

Misrepresentation of Findings 0.91 Contextual

axes (96.4%) and textual components (94.8%) and somewhat lower for
distributed elements like color schemes (85.2%) and data point encod-
ings (88.9%). These results demonstrate the system’s ability to detect
issues and precisely communicate their location to users, facilitating
understanding and correction.

Table 4: Issue Categorization Performance by Severity Level

Issue Severity Categorization Accuracy

Major Issues 94.2%

Minor Issues 85.6%

Potential Issues 82.8%

Overall 87.5%

4.2.2 Model Comparison
Comparative analysis of GPT-4.5 and Claude 3.7 revealed complemen-
tary strengths across different aspects of visualization analysis. Table 5
presents the performance comparison of these models across key met-
rics. Claude 3.7 demonstrated superior performance in contextual issue
detection (94.2% vs. 89.5% F1 score). Conversely, GPT-4.5 showed
advantages in structural issue detection (97.8% vs. 95.6% F1 score) and
code generation for visualization correction. These findings motivated
our dual-model approach, which leverages each model’s strengths for
different pipeline components.

Table 5: Performance Comparison Between GPT-4.5 and Claude 3.7

Task GPT-4.5 Claude 3.7

Structural Issue Detection (F1) 97.8% 95.6%
Contextual Issue Detection (F1) 89.5% 94.2%
Code Generation Success Rate 94.3% 88.7%

Average Performance 93.9% 92.8%

The complementary strengths of these models highlight the value
of our multi-model architecture, which selectively employs different
LLMs based on the specific requirements of each pipeline stage. This
approach allows MisVisFix to achieve higher overall performance than
any single model could provide independently.

4.3 Midway Expert Study
In addition to our final evaluation, we conducted interviews with two
misinformation tool design experts midway through the development
of MisVisFix. These experts had extensive experience creating fact-
checking tools and visualization literacy platforms, providing valuable
insights that shaped several key aspects of our system.



The interviews followed a semi-structured format, where we demon-
strated an early prototype of MisVisFix and gathered feedback on its
functionality, potential applications, and limitations. This formative
evaluation yielded several crucial insights that directly influenced our
design decisions:

• The experts highlighted the need for a learning mechanism to
adapt to emerging misinformation techniques. This feedback
directly inspired the development of our user-feedback system
(Fig. 5) that allows MisVisFix to incorporate newly identified
issues into its knowledge base.

• Both experts emphasized the importance of providing explana-
tions alongside issue detection, leading us to enhance the detailed
explanation component for each identified problem.

• The experts recommended implementing an interactive chat inter-
face for making design changes to generated visualizations. This
insight led to the implementation of our conversational feature
(Panel G in Fig. 1) that allows users to request specific modifica-
tions (e.g., "Please change the red color to blue") and see updated
visualizations in real-time.

These insights significantly improved MisVisFix’s functionality and
user experience, transforming it from a simple detection tool into a
comprehensive system supporting the entire pipeline from identification
to correction of misleading visualizations.

4.4 Expert Evaluation Results
The expert evaluation provided valuable insights into the practical utility
and limitations of MisVisFix. The quantitative results from expert
ratings showed strong performance across key dimensions: Detection
Accuracy (8.5/10), Usefulness of Suggested Improvements (8.0/10),
and Likelihood to Use in Professional Work (8.0/10). These ratings
confirm the system’s effectiveness in real-world application contexts.

Qualitative feedback revealed several notable strengths of the system.
Experts consistently praised the comprehensive coverage of visualiza-
tion issues, with multiple participants noting that MisVisFix detected
problems they would have identified through manual analysis. One
expert described the system as “Useful and straightforward, saving me
time to investigate issues carefully on my own, like an AI teammate.”
Another expert commented, “The system caught issues I might have
overlooked in my initial review.” This feedback suggests that MisVis-
Fix succeeds in its core objective of providing expert-level analysis in
an accessible format.

The educational potential of MisVisFix emerged as a recurring theme
in expert feedback. Participants highlighted the detailed explanations
of problematic practices as valuable for teaching visualization literacy.
One expert stated, “I can see this being incredibly valuable in my
data visualization courses—it provides immediate, specific feedback
that helps students understand why certain practices are problematic
rather than just telling them to avoid them.” The system’s ability to
identify issues and explain their impact on viewer perception creates
opportunities for use in educational settings ranging from university
courses to professional training programs.

The interactive refinement capabilities received a positive assess-
ment from all experts. One expert remarked, “The dialogue feature
transforms this from a static analysis tool into something much more
useful.” Another commented, “Being able to ask follow-up questions
about specific issues helped me understand exactly what needed to
be fixed and why.” Experts appreciated the flexibility to explore alter-
native visualization approaches through the chat interface, with one
noting that this feature “transforms the system from an analysis tool
to a collaborative design assistant.”

Despite these strengths, experts identified several limitations that
suggest directions for future improvement. The system occasionally
flagged issues that were acceptable in specific domain contexts. One
expert pointed out, “In financial visualizations, we sometimes inten-
tionally use non-zero baselines for certain types of analysis—the
system needs to recognize these domain-specific conventions.” An-
other expert mentioned, “Some specialized scientific visualizations

follow field-specific standards that might appear misleading to those
outside the discipline.” This limitation indicates the need for domain-
specific customization options that adjust detection thresholds based on
visualization context and intended audience. Visual style preservation
presented another challenge noted by experts. One expert commented,

“There’s a trade-off between fixing misleading elements and maintain-
ing the aesthetic identity of a visualization.” Experts suggested that
improved preservation of aesthetic qualities while addressing structural
problems would enhance the system’s utility for professional users who
value accuracy and visual appeal.

When asked about potential applications, experts identified several
promising use cases for MisVisFix. One expert stated, “I would use this
primarily as a quality control tool before publishing visualizations
to ensure they communicate data accurately.” Another saw value
in “helping journalists identify misleading elements in charts they
encounter while researching stories.” These responses suggest broad
utility across professional contexts, from journalism to data science to
business intelligence.

Overall, expert evaluation confirmed that MisVisFix successfully
bridges the gap between theoretical understanding of misleading visu-
alization practices and practical tools for addressing these issues. The
positive assessment from experts with significant domain experience
validates the system architecture and implementation approach while
highlighting specific areas for refinement in future iterations.

5 DISCUSSION

Our experimental evaluation reveals several important findings regard-
ing the potential of LLM-powered systems for addressing misleading
visualizations. First, the results demonstrate that carefully structured
prompting strategies significantly enhance the capability of multimodal
LLMs to detect and categorize visualization issues. The improvement
in F1 score between our structured approach and the LLM-Only base-
line highlights the critical importance of prompt engineering in this
domain.

Second, our results indicate a clear distinction in performance be-
tween structural and contextual issues, with structural issues achiev-
ing consistently higher detection rates. This finding aligns with
prior research [1, 30] and suggests that hybrid approaches combin-
ing visualization-specific heuristics with LLM capabilities may be
particularly effective for addressing the full spectrum of misleading
visualization practices.

Third, the successful implementation of the correction module
demonstrates the feasibility of automating visualization improvement
beyond mere issue detection. While perfect recreation of design ele-
ments remains challenging, the high technical correctness scores indi-
cate that LLM-generated visualizations can effectively address identi-
fied issues while maintaining core design intentions.

Finally, the positive expert assessment validates the practical utility
of MisVisFix in real-world contexts. The system’s potential for both ed-
ucational and professional applications suggests multiple pathways for
impact in enhancing visualization literacy and reducing the prevalence
of misleading visualizations.

5.1 Addressing Research Questions
Returning to our initial research questions, we can now evaluate how
our findings address these:

• RQ1: How can multimodal LLMs be effectively leveraged to
detect and explain the full spectrum of misleading visualiza-
tion techniques identified in existing taxonomies? Our results
demonstrate that multimodal LLMs can effectively detect and
explain a broad spectrum of misleading visualization techniques
when guided by structured prompting strategies that break down
the analysis process into discrete steps. The step-wise prompt-
ing approach yielded the strongest performance, enabling the
models to reason through different aspects of the visualization
systematically. Our dual-model approach leverages the comple-
mentary strengths of different LLMs, with Claude 3.7 excelling at
data extraction and contextual understanding, while GPT-4.5 has



advantages in structural analysis and code generation. The perfor-
mance gap between structural and contextual issues indicates that
detection capabilities are not uniform across the issue taxonomy.
This suggests that comprehensive detection requires specialized
prompting strategies tailored to different issue categories. Our
approach of categorizing issues by severity (major, minor, poten-
tial) further enhances the practical utility of detection results by
helping users prioritize the most critical problems.

• RQ2: To what extent can an interactive system facilitate
both identification and correction of misleading visualizations,
bridging the gap between detection and implementation of
visualization best practices?
MisVisFix demonstrates that an interactive system can success-
fully bridge the gap between detection and correction, with 82.5%
of identified issues successfully addressed in generated correc-
tions. The interactive features—particularly the ability to high-
light specific regions, provide detailed explanations, and engage
in dialogue about potential improvements—proved especially
valuable according to expert evaluation. The experts’ high rat-
ings for usefulness and likelihood to use professionally confirm
that the system effectively bridges theoretical knowledge about
visualization best practices and practical implementation.

The learning mechanism that allows users to flag undetected is-
sues for addition to the knowledge base represents a particularly
promising approach to continuous improvement. This feature ad-
dresses the inherent limitations of current LLMs by incorporating
human expertise into the system over time. The integration of
user feedback creates a virtuous cycle where system performance
improves with use, gradually expanding coverage across the full
taxonomy of misleading practices. However, the performance
degradation observed for visualizations with multiple interact-
ing issues highlights the challenges of comprehensive correction.
This suggests that while the current system effectively bridges
the detection-correction gap for many common cases, addressing
complex visualization problems remains challenging and may
require more sophisticated correction strategies.

5.2 Potential Social Media Integration
MisVisFix could be integrated into social media platforms through a
"Truthify" feature that lets users toggle between original and corrected
visualizations (Fig. 6). This approach balances preserving engaging
design elements while exposing misleading aspects. When integrated
into platforms like Facebook or Linkedin, this feature could display
a warning label on potentially misleading charts. Users could tap to
compare both versions and see highlighted issues that explain specific
problems. This implementation helps correct viral misinformation
[5, 27, 45, 48, 49] while developing users’ critical thinking skills about
data visualizations they encounter daily.

Fig. 6: Proposed ‘Truthify’ toggle feature for social media integration.
Users can switch between the original misleading visualization and the
corrected version directly in their social feed, with highlighted issues
explaining specific problems.

5.3 Limitations and Challenges
Despite MisVisFix’s strong performance, several limitations warrant
discussion. First, the system’s detection capabilities remain constrained
by the inherent limitations of current multimodal LLMs. Performance
degradation occurs for highly specialized visualizations, particularly
those employing domain-specific encoding conventions or requiring

specialized knowledge for interpretation. For instance, the system
demonstrated lower detection rates for visualization issues in scien-
tific publications containing specialized chart types such as genomic
visualizations or statistical plots with domain-specific conventions.

Second, the system remains sensitive to image quality. Perfor-
mance metrics decreased by approximately 12% when evaluating low-
resolution images. This sensitivity presents practical challenges for
analyzing visualizations captured from diverse media sources or shared
on social platforms where image compression is common.

Third, processing latency represents a significant limitation, with
analysis taking 2-3 minutes due to sequential LLM calls and compre-
hensive issue detection across both models.

Finally, while our evaluation dataset encompasses a broad range
of visualization types and issues, it cannot exhaustively represent the
infinite variations of misleading visualizations encountered in prac-
tice. We observed that performance varies across demographic and
cultural contexts, suggesting potential biases in detection capabilities
that require further investigation.

5.4 Future Work

Several promising directions emerge for extending MisVisFix’s capa-
bilities. First, incorporating domain-specific knowledge through fine-
tuning or augmented prompting could enhance performance for spe-
cialized visualization contexts. Domain-specific enhancements would
enable more nuanced detection of issues that may present differently
across fields like economics, healthcare, or scientific research.

Second, optimization of computational performance represents a
critical area for improvement. Techniques such as model distillation,
or hybrid approaches combining heuristic rules with LLM analysis
could reduce computational demands while maintaining detection ac-
curacy. Preliminary experiments with model compression techniques
showed promising results, with a 32% reduction in processing time
accompanied by only a 5% reduction in F1 score.

Third, our current evaluation does not measure the effectiveness of
the continued learning mechanism over time. While users can flag
undetected issues for addition to the knowledge base, we have not yet
evaluated how this feedback improves detection accuracy or coverage.
Future work should establish metrics for measuring learning effective-
ness and conduct longitudinal studies to assess system improvement
through user interactions.

Fourth, our evaluation focused on expert users, but the system’s
beneficiaries include both novices and expert users. Future work should
conduct comprehensive studies with novice users to assess the system’s
effectiveness for non-expert audiences.

Finally, adapting MisVisFix for specific application contexts—such
as journalism, education, or scientific review—could enhance its practi-
cal impact. Each domain presents unique requirements and opportuni-
ties, from real-time analysis of news graphics to educational tools for
developing visualization literacy. Domain-specific adaptations could
include customized detection thresholds, specialized issue categories,
and tailored explanation formats suited to different user populations.

6 CONCLUSION

MisVisFix addresses the challenge of misleading visualizations through
a comprehensive system that leverages multimodal LLMs for detec-
tion, explanation, and correction. Our evaluation demonstrates that
structured prompting strategies and a dual-model approach achieve
strong detection performance across diverse visualization types and
issue categories, outperforming both direct LLM applications and ex-
isting visualization liters. The system successfully generates corrected
visualizations that maintain design integrity while addressing identified
issues, with expert evaluation confirming its practical utility in both
professional and educational contexts. While limitations persist for
complex visualizations with multiple interacting issues, MisVisFix rep-
resents a significant advancement in automated support for identifying
and addressing visualization misinformation, contributing to improved
data communication integrity across domains.



SUPPLEMENTAL MATERIALS

To support reproducibility and future research, we provide comprehen-
sive supplementary materials, including all codes, stimuli, and results
evaluated in this study. These materials are available as a .zip file
through the PCS Submission System and are also publicly accessible at
https://github.com/vhcailab/MisVisFix. The description and location of
all supplemental materials are provided as a separate document named
"Supplemental Materials Details.pdf" inside the zipped folder.
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