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Abstract: In computed tomography (CT), metal implants increase the inconsistencies between
the measured data and the linear assumption of the Radon transform made by the analytic CT
reconstruction algorithm. The inconsistencies appear in the form of dark and bright bands and
streaks in the reconstructed image, collectively called metal artifacts. The standard method for
metal artifact reduction (MAR) replaces the inconsistent data with interpolated data. However,
sinogram interpolation not only introduces new artifacts but it also suffers from the loss of detail
near the implanted metals. With the help of a prior image that is usually estimated from the metal
artifact-degraded image via computer vision techniques, improvements are feasible but still no
MAR method exists that is widely accepted and utilized. We propose a technique that utilizes a
prior image from a CT scan taken of the patient before implanting the metal objects. Hence, there
is a sufficient amount of structural similarity to cover the loss of detail around the metal implants.
Using the prior scan and a segmentation or model of the metal implant, our method then replaces
sinogram interpolation with ray profile matching and estimation, which yields much more reliable
data estimates for the affected sinogram regions. Experiments with clinical dataset obtained using
surgical imaging CT scanner show very promising results.
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1. Introduction

X-ray computed tomography (CT) is a leading cross-sectional imaging technique lauded for its
high image resolution and rapid speed of acquisition. It is based on the differing photoelectric X-ray
absorption properties of tissue and assumes that the X-rays are attenuated exponentially according to
the Beer–Lambert law:

IE(L) ≈ I0(E) exp
{
−
∫ L

0
µ(s + λ · r; E)dλ

}
. (1)

In this equation, at some energy level E, I0(E) is the number (or intensity) of incident photons
and µ(x; E) is the linear attenuation coefficient at location x. Then, IE(L) is the number (or intensity)
of detected photons along a linear ray described as a line equation, s + λ · r, and its length is L. In this
equation, s is the position of the X-ray source, r is the directional vector of the ray, and λ is a step size.
From this, the Radon transform [1] is derived by taking the logarithm of Equation (1) such that

M(L; E) = − ln
IE(L)
I0(E)

≈
∫ L

0
µ(s + λ · r; E)dλ, (2)

This expression forms the underlying principle of most existing CT reconstruction algorithms.
It assumes that the attenuation responses along a ray are commutative and accumulate in an
additive fashion.
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The approximation as formulated in Equation (2) only holds when the X-ray source is
monochromatic. When it comes to (more widely employed) polychromatic X-ray sources, the
polychromatic projection data can be experimentally calculated [2] as

P(L; E) = − ln

∫
I0(E) exp

{
−
∫ L

0 µ(s + λ · r; E)dλ
}

dE∫
I0(E)dE

(3)

The integration over the X-ray energy spectrum in Equation (3) breaks the linearity between
attenuation and penetration length during the reconstruction procedure assumed in Equation (2).
Furthermore, low-energy photons are attenuated more easily than high-energy ones (see, for example,
[3]), and, as a result, the X-ray beam is hardened as it passes through the material, shifting the energy
spectrum toward higher energy.

This becomes a particular problem when CT scanning is conducted for patients bearing metallic
implants, which have dramatically increased attenuation properties for lower energies. The selective
photon absorption not only increases the amount of dose absorbed by the patient, it also amplifies the
X-ray beam’s hardness. A direct effect is that more photons are detected than expected. A failure to
consider the non-linear behavior of the beam hardening effect in Equation (2) results in dark streaks
along the lines of greatest attenuation [4,5]. The high pass filter used in a Filtered-back projection
(FBP) reconstruction algorithm [6] further exaggerates the differences between adjacent detector
elements where one has received a hardened beam and the other one has not. This unintended contrast
produces bright streaks in other directions. As a consequence, by ways of these adverse mechanisms,
metal artifacts obscure information about anatomical structures, making it difficult for radiologists to
correctly interpret the affected CT images.

There have been extensive efforts in developing metal artifact reduction (MAR) algorithms to
compensate the approximation errors in Equation (2) caused by implanted metals or high density
objects. These efforts can be largely divided into two types of approaches: iterative reconstruction and
sinogram correction.

The iterative reconstruction methods adapt existing X-ray CT systems by incorporating one or
more of the following types of a-priori knowledge: (1) low-level information (such as tissue classified
image or metal region classified sinogram) of the images to be reconstructed [7–10]; (2) the X-ray
spectrum of the source [11]; (3) the attenuation functions of the base materials [12–14]; and (4) the
composition of the metal components [15]. More recently proposed iterative algorithms attempt to
reduce beam hardening effects without the need of any prior knowledge by decomposing the image to
be reconstructed into low and high density components [16,17]. Nevertheless, iterative reconstruction
techniques have the downside that they are computationally demanding and so using them in clinical
practice remains a challenge.

On the other hand, the sinogram correction methods aim to directly correct the metal shadow
regions in the projection data in which the corresponding rays have interacted with metal objects.
One early approach replaces the corrupted data with their neighbors using linear [18] or high-order
interpolation schemes [19–21]. However, the interpolation-based MARs often suffer from loss of detail
around the metal objects, and they also have high propensity to introduce new streak artifacts [22].
To address the lack of structural information, Prell et al. [23] and Meyer et al. [24] attempted to build
prior CT images by roughly segmenting the uncorrected or pre-corrected CT image into soft-tissue, air,
and bone equivalent materials. This has been a promising idea and further efforts have emerged that
seek to produce a better prior image with the help of advanced computer vision techniques [25,26].

In this paper, we present a new MAR method that also uses the general approach of correcting
a contaminated sinogram by substituting corrupted data by cleaner data available in prior images.
The synthesis process we propose is not unlike the one often used in image-guided surgery (IGS) [27].
These methods perform a real-time correlation of the operative field with a preoperative imaging
dataset to show the precise location of a selected surgical instrument in the surrounding anatomic
structures. To realize this, before the surgery, the patient undergoes a series of CT scans that reveal
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the soft tissues and bony structures. In our scenario, these preoperative CT images serve as prior
images to help remove the metal artifacts that appear in intra- or post-surgery CT scans due to the
implanted metal objects. Since such prior images have been acquired from the same patient, they
will likely contain very similar internal structures, especially around metal implants. Furthermore,
as these regions are often at least partially surrounded by bone, it is unlikely that they are markedly
deformed during the surgery. Thus, to find surrogate values to replace unreliable data in the sinogram,
we first search ray paths in the prior images that have very similar density profiles along the ray
passing through the metal objects. Then, the best matched prior ray profiles are used to correct the ray
paths profiles that are corrupted by metal artifacts. Finally, the unreliable data are replaced with the
re-projections of corrected ray profiles. We explored this general idea in [28] but this preliminary work
was limited to 2D fan-beam CT geometry. In this paper, we generalize our method to 3D cone-beam
CT geometry and also present a significantly refined and mature framework.

In the following, Section 2 describes the proposed method and its technical details. Then,
in Section 3, we show metal artifact reduction results. Section 4 concludes the paper with a discussion
on future research directions for the proposed method.

2. Methods

In the following, we use spine surgery as an example but our method applies in any scenario
where a prior patient scan is available. In fact, it even applies in single-scan scenarios when metal is
only present in a restricted region of the object.

Our method requires two CT datasets (or one that has a sufficient portion free of metal). One
dataset is an artifact-free prior CT scan taken before the (spine) surgery. The other is obtained during
the surgery, containing metal artifacts due to the implanted pedicle screws. Although the two CT
scans are taken from the same patient, they might be obtained in different conditions (e.g., patient’s
pose, X-ray dosage amount, field-of-view, etc.). Therefore, it is necessary to register one volume to
the other before applying the proposed ray profile correction method. The volume registration is the
process of aligning two or more volumes of the same scene. This process involves designating one
image as the reference volume, also called the fixed volume, and applying geometric transformations
or local displacements to the other volumes so that they align with the reference. This registration
step is described in Section 2.1. Ray profile correction is also required to know which parts of a ray
path belong to metal objects, and which ones do not. For this, we extract the implanted pedicle screws
from the uncorrected CT volume (the volume suffering from metal artifacts). This metal localization
step is described in Section 2.2. In the following, we call a set of sample points along a ray the ray
profile. A line integral is then computed as the weighted sum of all sample points of a ray profile. In
addition, we define the regions where the corresponding rays pass through metal objects as metal
shadow. The projection values under the metal shadow are unreliable because of beam-hardening,
photon starvation, and so on, and they will result in metal artifacts. Our goal is to compute surrogate
values in the metal shadow regions by correcting the corresponding ray profiles using the aligned
prior CT volume and geometric information of the implanted metal (here the pedicle screws). This
new correction scheme is explained in Section 2.3. Finally, the corrected metal shadow is combined
smoothly with the original CT projection data, as described in Section 2.4. The overall process is
illustrated in Figure 1.
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Figure 1. Overview of the proposed MAR method.

2.1. Rigid Volume Registration

For the ray profile correction, we need to find matched prior profiles from the prior CT volume
generated in the pre-operative CT scan. This prior CT volume is usually significantly misaligned with
the CT volume obtained during or after the surgery. The patient may be in different pose or the CT
scan may cover a different range of the spine region (or have a different field-of-view). All these two
volumes might have in common is the surgical region itself. One naïve approach for finding matched
ray profiles would be to exhaustively search the prior CT volume with the ray profiles extracted from
the uncorrected CT volume. This approach would be computationally very demanding as the search
space is almost infinite.

Instead, we align the two volumes and then find the set of matched prior profiles. The challenge
in aligning two CT volumes taken at different times is that there can be large discrepancies in the soft
internal structures (e.g., tissues). To resolve this problem, we first extract bone structures which are
quite robust to deformation and also less contaminated by metal artifacts, in contrast to soft structures
(see Figure 2 for a visualization). For the bone structure extraction, assuming there are only low and
high density materials, we employ the balanced histogram thresholding (BHT) method [29]. Figure 3
shows two CT volumes obtained before and after surgery along with bone structures extracted using
the BHT method. The prior volume is then rigidly registered to the uncorrected one by solving the
following minimization problem:

θ̂ = argmin
θ

N

∑
i=1

wi · | f unc
i − Tθ( f pri)i|. (4)
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Here, f is the bone-only CT volume and its superscripts unc and pri indicate the uncorrected and
the prior CT volumes, respectively, which consist of N voxels in total. For brevity, f is a flattened 1D
array of a volume in row-major order and i is an index at location (x, y, z) in the volume. The Tθ(·) is a
rigid volume transformation operator with parameter vector, θ, which includes three translations and
three rotations in a 3D Cartesian coordinate system. Using Equation (4), we find the optimal parameter
vector, θ̂, which has a minimum weighted sum of the voxel-wise absolute difference between the two
volumes. The weight term, wi, is there to further penalize the data mismatch term if two voxels came
from different anatomical structures (materials). It is formalized as follows:

wi =

{
1 if f unc

i and Tθ( f pri)i ∈ same material

c if otherwise
(5)

Here, there are two material types, low and high, and they are pre-computed using the BHT
segmentation method. We give more penalty, c(≥ 1), if the two voxels are not in the same material.
This minimizes the contribution of mis-categorized voxels in the uncorrected volume, such as voxels in
the bright band or in implanted metals that are regarded as bone after applying the BHT segmentation.

We use a GPU-accelerated Hybrid-PSO (particle swarm optimization) algorithm to solve the
minimization problem in Equation (4), which avoids a convergence to a local minima [30,31]. More
specifically, in each generation, we randomly choose half of the particles and randomly adjust either a
translation or rotation parameter with uniform probability. In every third generation, we pick half of
the worst particles. The first half of these are replaced with completely new random values. Among
the remainder, three-fifth of the particles are randomized as we do in each generation and the crossover
is applied to the others. These types of randomization strategies have proven effective in finding the
global solution in different optimization tasks [31,32]. A new generation is spawned until either there
are no change in the best solution compared to previous one or it reaches the maximum number of
generations pre-defined. Figure 3 shows an example of the rigid registration result.

Figure 2. Similarity in bone structures between CT scans (a) before and (b) after a spine surgery.
The visualizations are manually adjusted and colored to show the best view (blue for bone and red for
implanted pedicle screws and jaw that have higher density than bone).
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Figure 3. Rigid CT volume registration: (a) uncorrected CT volume; (b) prior CT volume; (c) registered
prior CT volume to (a); (d) extracted bone structures of (a); (e) extracted bone structures of (b),; and
(f) pseudo-colored overlap view of (a,c). Note that the presented CT slices, (a,b), initially show large
discrepancy, even though they are sampled from same z-index before applying the registration.

2.2. Localization of Implanted Metal Objects

Before we can correct the ray profiles (see Section 2.3), we need to know whether a sample point
in a given ray profile originates from metal (or not). For this purpose, we segment the screws from the
uncorrected CT volume in the following two steps. In the first step, we use a simple threshold-based
segmentation approach to get coarsely metal-only segmented result. After that, we apply the DBSCAN
(Density-based spatial clustering of applications with noise) algorithm [33] to the segmented structures.
DBSCAN is a popular clustering algorithm which classifies points that are not well connected to a
cluster as outliers. We found that DBSCAN did very well to remove any remaining noise and obtain
an accurate segmentation of the metal objects (in our case, the screws). The clean segmentation also
allows us to precisely determine how many screws were implanted. Optionally, we might also include
prior geometric knowledge to accelerate the process and to further improve the clustering accuracy.
Figure 4 shows a screw extracted from an uncorrected CT volume. Figure 4c is what we refer to as the
metal-only CT volume.

Figure 4. Metal localization: (a) uncorrected CT volume; (b) extracted high density materials using the
BHT; and (c) final results with DBSCAN.
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2.3. Ray Profile Correction

To compute the profile’s surrogate values (the values subject to replacement), we use the
observation that metal artifacts usually appear around implanted metals and that the degree of
corruption tends to decrease with distance from the metal region. Using this observation, the noisy ray
profiles are corrected by dividing it into two regions: metal and non-metal regions. A metal region
is the part of a profile that traverses a metal-only CT volume. For these regions, since we usually
know the material of the implanted metals and their linear attenuation coefficients, the surrogate
values are replaced with the linearly interpolated values of the two profiles extracted from the prior
and the metal-only CT volume. We use linear interpolation to take into account the partial volume
effect around the metal boundaries. For the non-metal regions, the surrogate values are computed
by linear interpolating between the noisy and prior profiles extracted from the uncorrected and the
prior CT volume, respectively. The interpolation weight is given by the distance from the nearby
metal boundaries along the ray path. It takes into account that, when a point in a ray profile is close
to a metal, it is more likely deteriorated by metal artifacts and thus we put more emphasis on prior
information. Conversely, when a profile point is sufficiently far away from metal, we can safely rely on
its value in the uncorrected volume. As such, our method smoothly blends prior image information
into the currently acquired imagery but only at locations where the current image information is likely
unreliable due to metal artifacts.

Our ray profile correction scheme is formulated as follows:

pnew
i =

{
lerp(ρ, pclean

i , pmetal
i /ρ) if i ∈metal region

lerp(pclean
i , pnoisy

i , k · exp(−pdt
i /h)) if i ∈ non-metal region

(6)

where lerp(α, β, ω) is the linear interpolation operator such that ω · α + (1−ω) · β. In this equation,
pi represents the sampled value of a ray profile at position i while its superscripts new, metal, noisy,
and clean indicate the corrected profile and the profiles extracted from the metal-only, uncorrected,
and aligned prior volumes, respectively. The superscript dt, denotes the distance transform of pmetal

and henceforth, pdt
i is the distance from the position i to the closest metal boundary along the ray

path [34]. The value ρ is the linear attenuation coefficient of the implanted metals while h is a scalar
that controls the smoothness of the weight factor and k is a constant value representing how similar
the aligned prior volume is to the uncorrected one. In our study, k is experimentally determined as
0.7 and it will vary depending on the quality of the volume registration, as discussed in Section 2.1.
Automatic determination of the values, h and k, will be our future research topic.

Figure 5 shows an example of the proposed ray profile correction scheme that is applied along a
ray depicted as a red line in a zoomed-in image at the upper-left corner. In the non-metal region, as the
location along the ray is far from the metal region, the two profiles, pnoisy and pclean, become similar to
each other; on the other hand, as the location is close to the metal region, pnoisy shows much higher
intensities due to the metal artifacts. Thus, pnew in the non-metal region is calculated by relying more
on the pclean as the location is close to the metal region. The weight function in the non-metal region is
shown in Figure 5 (c). The corrected values in the metal region are calculated by interpolating between
ρ and pclean; if a probability of being the implanted metal is high, the corrected values are more biased
on ρ and vice versa. The probability (or weight function) is derived from pmetal and shown in Figure 5
(b). It indicates the degree of confidence that a location is filled with the implanted metal.
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Figure 5. Ray profile correction:(a) ray profiles extracted from noisy, prior, metal-only, and corrected
CT volumes and interpolation weights in (b) metal region and (c) non-metal region.

2.4. Seamless In-Painting

Recall that sample profiles are only computed for rays that traverse the segmented metal in the
metal-only CT volume. We integrate these rays and store them in a corrected sinogram. Figure 6a
shows a portion of an uncorrected sinogram while Figure 6b shows the same region with the corrected
profiles only. The final task is to replace the metal shadow regions of the uncorrected sinogram with
these corrected regions. However, a direct replacement of the data can lead to undesired discontinuities
around the boundary of the metal shadow, resulting in the generation of new artifacts [22]. Therefore,
it is important to seamlessly combine the new data with the existing ones at the boundary while
internally keeping the relative contrast and the details of the data. To achieve such a seamless
in-painting, we solve the following minimization problem [35]:

P̂new = min
Pnew ∑

i∈R

(
∑

j∈Ni∩R
(∇Pnew

j −∇Pcorr
j )2 + ∑

j∈Ni∩∼R
(Pnew

j − Porig
j )2

)
, (7)

where P is projection data and its superscripts new, corr, and orig represent the in-painted, corrected,
and original projection data, respectively. R denotes the metal shadow region and Ni is the
eight-connected neighborhood of a pixel, i. In this equation, the first term aims to preserve the
gradients of the original (uncorrected) projection data in the metal shadow regions while lowering the
intensities to non-metal values. Preserving the original gradients ensures that the detail and contrast in
the projection data are maintained for the subsequent reconstruction. The second term in the equation
affects the metal shadow region’s boundary only and ensures a smooth transition to the outside regions.
Figure 6c shows a result of this seamless in-painting process using the same region as in panel Figure
6a,b with Gauss–Seidel iteration and successive over-relaxation.

Figure 6. An example of seamless in-painting: (a) original; (b) corrected; and (c) in-painted
projection data.

3. Results and Discussion

To test the proposed MAR framework, we used clinical CT projection data obtained during an
image-guided surgery procedure on a cervical spine region using a Medtronic O-Arm surgical imaging
CT scanner. The scanner has a source to axis distance of 647.7 mm and a source to detector distance
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of 1147.7 mm. It is equipped with a flat X-ray detector with 1024× 384 bins and an active area of
393.432× 290.224 mm2. During the scan, 360 projections were collected uniformly distributed over 360◦.
The 3D reconstruction used a filtered back-projection algorithm [1] and produced a 512× 512× 192
volume with a voxel size of 0.415× 0.415× 0.83 mm3.

Figures 7 and 8 show some results we obtained using our metal artifact reduction algorithm.
The spine has two pedicle screws implanted. Figure 7 shows one of them in transverse, sagittal, and
coronal views. Note that the sagittal and coronal views are horizontal and vertical cut slices passing
through the screws, respectively. Figure 8 shows the other implanted screws in the same manner.
Overall, the proposed method effectively removes the metal artifacts (dark/bright bands and streaks)
and reveals clear outlines of the implanted pedicle screws, which are suitable for evaluating their
placements after the surgery. For example, in Figure 7 ( top and bottom rows), the yellow arrow
indicates a pedicle screw where only the corrected image (Column b) can reveal that is has been
correctly inserted into the bone without extending into the tissue. Likewise, the yellow arrow in the
middle row in Figure 7 shows a volume feature that was previously hidden by the beam hardening
artifacts (Column a) but is now readily visible.

Figure 7. Case Study I. From top to bottom, transverse, coronal, and sagittal views.(a) uncorrected
images, (b) corrected images, (c) uncorrected - corrected (a) - (b)

One side effect of the proposed method is the tendency of blurring the anatomical structures near
metal objects. The difference images (Column c) between the uncorrected and corrected images show:
(1) the removed artifacts; (2) a bright version of the metal pieces (as mentioned, our method lowers
their projection values in the sinogram); and (3) some incorrectly removed details. The latter causes
the blurring effects (annotated by the red arrow in Figures 7 and 8). We think this is primarily because
of the distance-based artifact region prediction model in Equation (6) where the model estimates the
artifact regions based on the distance (pdt

i ) from a point to the nearest metal boundary along a ray path
regardless of whether the point is corrupted by metal artifacts or not. One way to mitigate the blurring
effect is by adding an additional stage at the end of our MAR framework to exploit the information
hidden in low- and high-pass filtered sinogram [36] or images [37].
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Figure 8. Case Study II. From top to bottom, transverse, coronal, and sagittal views. (a) uncorrected
images, (b) corrected images, (c) uncorrected - corrected (a) - (b)

4. Conclusions

We present a new method for metal artifact reduction (MAR). It assumes that a prior CT scan
taken before implanting the metal objects into the patient is available. Using this prior scan and
a segmentation or a model of the metal implant, we utilize a novel ray profile correction scheme
that computes an accurate estimate of the rays traversing the projection regions affected by the
metal artifacts. Our experiments with clinical CT data indicate that the proposed method can clearly
reveal the placements of implanted pedicle screws that were ambiguous before due to the significant
metal artifacts.

Future research will extend this work along three directions. Firstly, we will further investigate the
behavior of the phenomenon of beam hardening for better metal artifact region prediction. Secondly,
using a CAD model available for commercial pedicle screws in Figure 9, we believe a better localization
of the implanted metal can be accomplished, leading to a better ray profile correction. Lastly, we
also believe that utilizing existing algorithms that can reveal features hidden by metal artifacts in
conjunction with a MAR method will be able to help resolve the occasional blurring effects around
metals. Finally, we also plan to conduct more clinical case studies which will contain a wide selection
of different implanted metals and different amounts of metal artifacts as well as through comparison
studies with other existing methods in terms of restoration quality and time performance.
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Figure 9. Pedicle screw CAD model: (a) head; (b) tail; and (c) articulated model with 3-DOF.
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