
Creating optimal code for GPU-accelerated CT reconstruction
using ant colony optimization

Eric Papenhausen,a) Ziyi Zheng,b) and Klaus Muellerc)

Visual Analytics and Imaging Lab, Center of Visual Computing, Computer Science Department,
Stony Brook University, Stony Brook, New York 11794-4400

(Received 1 August 2012; revised 5 December 2012; accepted for publication 7 December 2012;
published 28 February 2013)

Purpose: CT reconstruction algorithms implemented on the GPU are highly sensitive to their imple-
mentation details and the hardware they run on. Fine-tuning an implementation for optimal perfor-
mance can be a time consuming task and require many updates when the hardware changes. There
are some techniques that do automatic fine-tuning of GPU code. These techniques, however, are
relatively narrow in their fine-tuning and are often based on heuristics which can be inaccurate. The
goal of this paper is to present a framework that will automate the process of code optimization with
maximum flexibility and produce a final result that is efficient and readable to the user.
Methods: The authors propose a method that is able to tune high level implementation details by
using the ant colony optimization algorithm to find the optimal implementation in a relatively short
amount of time. Our framework does this by taking as input, a file that describes a graph, such
that a path through this graph represents a potential implementation. They then use the ant colony
optimization algorithm to find the optimal path through this graph based on the execution time and
the quality of the image.
Results: Two experimental studies are carried out. Using the presented framework, they optimize the
performance of a GPU accelerated FDK backprojection implementation and a GPU accelerated sep-
arable footprint backprojection implementation. The authors demonstrate that the resulting optimal
implementation can be different depending on the hardware specifications. They then compare the
results of the framework produced with the results produced by manual optimization.
Conclusions: The framework they present is a useful tool for increasing programmer productivity and
reducing the overhead of leveraging hardware specific resources. By performing an intelligent search,
our framework produces a more efficient image reconstruction implementation in a shorter amount of
time. © 2013 American Association of Physicists in Medicine. [http://dx.doi.org/10.1118/1.4773045]

Key words: CT reconstruction, GPU, ant colony optimization, filtered backprojection, separable
footprint

I. INTRODUCTION

Any CT reconstruction algorithm can be identified as a mul-
tiobjective optimization problem. The optimal result will pro-
vide the highest quality reconstruction in the shortest time.
Many algorithms have been developed and extended, and
good parameter settings have been identified to solve this
problem under specific conditions.1–3 However, if the bound-
ary conditions change (i.e., noisier projections, different num-
bers of projections, stricter time constraint, GPU hardware,
anatomy and pathology, etc.), the existing implementation is
rendered suboptimal, and in some cases, useless.

In this paper, we use swarm optimization to determine
an optimal CT reconstruction implementation for any given
set of parameters. More specifically, we use the ant colony
optimization algorithm to find an optimal implementation
of a GPU accelerated FDK backprojection, described in
Ref. 2 and a GPU accelerated separable footprint backpro-
jection implementation.4

In this paper, we begin in Sec. II by discussing related
work. Section III gives a brief description of the problem we
are solving and the ant colony system optimization algorithm.
Section IV gives a brief description of the graphics hard-

ware used in our experiments and the structure of a CUDA
program. Section V presents the details of our framework.
Section VI presents the results of our experiments and
Sec. VII concludes the paper.

II. RELATED WORK

Recent work has focused on finding good algorithmic pa-
rameters for iterative CT reconstruction.5 Parameter tuning
is critical in finding a good balance between image quality
and reconstruction speed. The use of GPUs in accelerating
CT reconstruction has also become very popular in decreas-
ing reconstruction time.6–8 However, not all GPUs are created
equally; and there are many parameters to consider when cre-
ating a GPU accelerated program.

Fine-tuning GPU code can be a time consuming task. This
typically requires making small changes to the program and
observing the effect on performance. A number of tools have
been developed to automate this tuning process.9, 10 These
tools focus on finding a set of system parameters (e.g., mem-
ory layout, loop slicing, granularity, etc.) to achieve good per-
formance. As a program becomes more and more complex,

031110-1 Med. Phys. 40 (3), March 2013 © 2013 Am. Assoc. Phys. Med. 031110-10094-2405/2013/40(3)/031110/7/$30.00

http://dx.doi.org/10.1118/1.4773045
http://dx.doi.org/10.1118/1.4773045
http://dx.doi.org/10.1118/1.4773045
http://crossmark.crossref.org/dialog/?doi=10.1118/1.4773045&domain=pdf&date_stamp=2013-02-28

031110-2 Papenhausen, Zheng, and Mueller: Creating optimal code for GPU-accelerated CT reconstruction 031110-2

however, it becomes increasingly difficult for these tools to
capture the full space of potential parameter settings.

Whereas Xu and Mueller5 focused on tuning algorithmic
parameters and Klockner et al.9 and Rudy et al.10 focus on
system level parameters, we set out to create a framework to
allow the user maximum flexibility in exploring the full pa-
rameter space. By tuning system level parameters as well as
high level algorithmic details, we increase the probability of
finding the optimal solution for a given problem. Since this
framework compiles and executes code to determine perfor-
mance, the optimal implementation may change across dif-
ferent machines and this framework will be able to produce
a machine dependent optimal implementation without direct
programmer intervention.

III. ANT COLONY SYSTEM

To ease the reading of this paper, we provide a list of the
symbols we use and their description in Table I.

The problem of finding an optimal implementation can be
seen as a discrete optimization problem. We want to search
through the space of all implementations that produce a spe-
cific output, to find the program with the smallest execution
time. The cost function for this optimization problem can be
seen in Eq. (1)

x∗ = argmin E(x)

x ∈ Q. (1)

Here, x∗ is the optimal implementation. Q is the set of all
implementations that produce a specific, desired output. The
function E returns the execution time for implementation x.

Unfortunately, for a given problem, we do not know all
the implementations that produce the desired output; so we
rely on the user to provide an approximation to Q. The mini-
mization function we attempt to solve in this paper is shown

TABLE I. Table showing the symbols that are used throughout the paper.

Symbol Description

x* The optimal implementation.
X A candidate implementation.
Q Set of all implementations that produce a specific output.
Q′ User provided subset of Q.
ϕ Pheromone decay coefficient.
ρ Evaporation rate.
pk

ij Probability that the edge from node i to node j is selected in
the kth iteration.

τ ij Pheromone quantity on the edge from node i to node j.

�τ best
ij Inverse of the length of the edge from node i to node j if

that edge is selected by the fastest ant.
τα
ij Pheromone quantity on the edge from node i to node j;

weighted by the constant, α.

η
β
ij Predetermined desirability of the edge from node i to node

j; weighted by the constant, β.

in Eq. (2)

x∗ = argmin E(x)

x ∈ Q′. (2)

Here, Q′ is the user provided approximation and is a subset
of Q. It is described through a graphical representation in our
framework. The degrees of freedom of Q′ are determined by
the user, depending on what optimizations he describes and
the problem he is trying to solve. Since we are only searching
through a subset of the space of all possible solutions, the
quality of the final solution is dependent on the user provided
approximation. There is a chance that the globally optimal
implementation lays outside of Q′ and so the success of this
framework is largely dependent on the user’s ability to narrow
the search space in an effective way.

There are a number of optimization algorithms we consid-
ered before settling on ant colony optimization. Gradient de-
scent is a popular method for solving optimization problems.
Since the candidate solutions are non-numerical, however, it
is unclear how one could calculate the gradient. Another opti-
mization method we considered was genetic algorithms. This
method of optimization, however, is susceptible to code bloat
(i.e., large sections of code that do not contribute to the fi-
nal output). It is also difficult to control the output of the
candidate implementation with this approach. Candidate so-
lutions can vary wildly, especially at the early stages of this
approach, and there was the practical consideration that one
solution could cause the computer to crash, at which point we
would have to start the process over from the beginning. Ulti-
mately, we decided that the ant colony optimization algorithm
allowed us to have enough control over the candidate imple-
mentations to enforce the invariant that each candidate was
correct in its outcome, while providing the flexibility for the
framework to explore multiple solutions.

The ant colony system optimization algorithm is a part of
the family of swarm optimization algorithms. It is a modi-
fication of the ant system algorithm, which was designed to
mimic the way ants find the shortest path from the ant nest
to a food source. Initially ants will choose paths randomly.
Once an ant finds food, it will travel back to the nest and emit
pheromones so other ants can follow that path to the food
source. As other ants follow the pheromone trail, they emit
pheromones as well, which reinforces the trail. After some
time, however, the pheromone trail will evaporate. Given mul-
tiple paths to a food source, the pheromones on the shortest
path will have the least amount of time to evaporate before
being reinforced by another ant. Over time, the ants will con-
verge to the shortest path.

The ant colony system was presented by Dorigo and
Gambardella11 and was applied to the traveling salesman
problem. It modifies the ant system algorithm12 in several
ways to lead to a faster convergence rate. After an ant crosses
an edge, the pheromone value of that edge is decayed accord-
ing to Eq. (3)

τij = (1 − ϕ) · τij + ϕ · τ0. (3)

Here, τ ij denotes the pheromone quantity on the edge from
state i to state j. The pheromone decay coefficient, ϕ,

Medical Physics, Vol. 40, No. 3, March 2013

031110-3 Papenhausen, Zheng, and Mueller: Creating optimal code for GPU-accelerated CT reconstruction 031110-3

determines how much pheromone is decayed after an ant
chooses the edge from i to j. The initial pheromone value, τ 0,

is the value every edge has at the beginning of the program.
Equation (3) reduces the probability of multiple ants choosing
the same path.

After all ants have chosen a path, the pheromone of each
edge is updated as follows:

τij = (1 − ρ) · τij + ρ · �τ best
ij . (4)

The variable τ ij has the same meaning as Eq. (3). The vari-
able �τ ij

best evaluates to the inverse of the length of the best
path if the edge from node i to node j was taken by the ant
with the best path; otherwise it evaluates to zero. The variable
ρ represents the evaporation rate. This leads to a pheromone
increase on the edges taken by the ant that produced the best
solution; while decaying the pheromones on all other edges.
Equation (4) reinforces a path with pheromones proportional
to the length of the path (i.e., execution time for our frame-
work). This is particularly useful in our framework because
certain optimizations are more effective than others, and this
method of updating is able to capture that behavior. When
transitioning from one state to another, the edge is selected
probabilistically according to the following probability:

pk
ij =

(
τα
ij

)(
η

β

ij

)

∑(
τα
ij

)(
η

β

ij

) . (5)

Here, τ ij determines the amount of pheromone on the edge
from i to j, and ηij defines some predetermined desirability of
that edge (e.g., the inverse of the edge weight). The variables
α and β are weighting factors for τ ij and ηij, respectively. The
variable pij

k is the probability that an ant will select an edge
that goes from state i to state j during the kth iteration.

IV. GRAPHICS HARDWARE

Modern GPUs follow a “single instruction multiple
thread” (SIMT) model of parallel execution. In this model
of execution, every thread executes the same instruction, but
over different data. Since there will typically be more threads
than processors on the GPU, threads must share GPU re-
sources. With NVIDIA hardware, a group of 32 threads is
organized into a warp. A group of warps is organized into
a thread block, and a group of thread blocks are organized
into a grid. This determines how many threads will be uti-
lized during a Compute Unified Device Architecture (CUDA)
kernel execution. Each thread in a warp executes simultane-
ously. Warps are scheduled onto the hardware in an efficient
way. When one warp reaches a memory access or finishes ex-
ecuting, another warp is swapped in to take advantage of the
vacant streaming multiprocessor. The implementation we at-
tempt to optimize in our experiments use a C-like API called
CUDA to program NVIDIA GPUs.

The GPU used in our experiments was the NVIDIA
GeForce GTX 480. This graphics card contains 15 streaming
multiprocessors. Each streaming multiprocessor contains 32
cores. Theoretical computing power of this graphics card
is 1.3 TFLOPS. Like all NVIDIA graphics cards, this card
has both on-chip and off-chip memory. Off-chip memory

includes global, texture, and constant memory and typically
incurs a latency of 400–600 clock cycles. On-chip memory
includes shared memory as well as cache for texture and
constant memory and is much faster than off-chip memory.
The GTX 480 has a peak memory bandwidth of 177.4 GB/s
for its 1.5 GB DDR5 device memory.

GPU accelerated applications have a large number of pa-
rameters that can be tuned for optimal performance. Occu-
pancy (i.e., the ability to hide memory latency), the amount of
work per thread, and memory bandwidth are all examples of
the types of parameters that can have a large impact on per-
formance. Tuning one parameter too much can often lead to
a sudden decrease in performance in some other aspect of the
application. This is what is known as a performance cliff.

V. IMPLEMENTATION

We use the ant colony system described in Sec. III to find
and create an optimal implementation for a specific set of con-
straints. In order to do so, we define the structure of a pro-
gram as a directed graph with a single source, at which every
ant will start, and a single sink, where every ant will finish.
The nodes of the graph correspond to source code snippets.
A path from source to sink corresponds to a candidate im-
plementation that can be compiled and executed. The output
of the candidate implementation can then be measured and
ranked among the other candidate implementations to find the
ant with the shortest path for that iteration. The shortest path
can be defined as a function of image quality and reconstruc-
tion time. By defining a graph in this manner, we have the
added effect of introducing new implementations that were
not previously defined.

The graph is constructed by creating a super source file.
This super source file contains annotated sections of code.
These annotations specify node id and incoming edges.
Figures 1(a) and 1(b) show the graph and its corresponding
super source file. Figures 1(c) and 1(d) show a potential path
through the graph, and the corresponding candidate imple-
mentation. This super source file is then submitted as input
to our program, which converts it to its graph representation
and runs the ant colony system algorithm to produce an opti-
mal implementation.

One aspect of our program differs from the traditional ant
colony system algorithm. There is no predetermined desir-
ability, η. There is no way of determining edge weight be-
fore running the algorithm. We can still apply the ant colony
system algorithm by only considering the pheromone value,
τ , when looking at an edge. This is equivalent to setting η to
one, for all edges. Equation (6) shows how edges are selected
by ants. Our experiments indicate that this still converges to
an optimal solution

pk
ij

(
τα
ij

)

∑(
τα
ij

) . (6)

Since graphics hardware plays such a prominent role in
CT reconstruction, our framework provides the option of
expanding the graph provided in the super source file to

Medical Physics, Vol. 40, No. 3, March 2013

031110-4 Papenhausen, Zheng, and Mueller: Creating optimal code for GPU-accelerated CT reconstruction 031110-4

(b)

(d)

/*#{id=1, path=0}*/
 If(A==B)
/*#{end 1}*/
/*#{id=2, path=0}*/
 If(A!=B)
/*#{end 2}*/
/*#{id=3, path=1:2}*/
 A+=B;
/*#{end 3}
/*#{id=4, path=2}*/
 A*=B;
/*#{end 4}
/*#{id=5, path=3:4, sink)*/
 return A;
/*#{end 5}*/

 If(A!=B)
 A+=B;

 return A;

(a) (c)

FIG. 1. An illustration of the framework presented in this paper. (a) A graph representing all possible implementations of a program. (b) The super source file
represented by the graph in (a). (c) A path is selected through the graph. (d) Source code corresponding to the path selected in (c).

account for different grid and thread block sizes. This is done
by copying the code snippets that contain the threads unique
ID and offsetting the ID by the grid dimension. This al-
lows the framework to implicitly increase the workload for
each thread. Figure 2 shows an example of this. The grid
and thread block dimensions determine the granularity of
each thread. The smaller the grid and block size, the more
work each thread will perform. In this specific example, a
thread in Fig. 2(b) computes two final results and stores them
into the respective target locations in memory, whereas, a
thread in Fig. 2(a) only computes one result.

int tid = blockIdx.x * blockDim.x + threadIdx.x;
.

<code>
.

F_L[tid] = result;

int tid = blockIdx.x * blockDim.x + threadIdx.x;
.

<code>
.

F_L[tid] = result;
.

<code>
.

F_L[(blockIdx.x + 8) * blockDim.x + threadIdx.x] = result;

FIG. 2. Sample code demonstrating how thread granularity can be increased
implicitly. (a) Source code representing a thread granularity of one (e.g., grid
= 16, thread block = 16). (b) Source code representing a thread granularity
of two (e.g., grid = 8, thread block = 16).

VI. EXPERIMENT AND RESULTS

We used the framework presented in this paper to create an
optimal GPU accelerated implementation of the FDK back-
projection algorithm described in Ref. 2. This backprojection
implementation is then tested with the help of the RabbitCT
framework.13 We also used this framework to create an op-
timal GPU accelerated implementation of the separable foot-
print backprojector.4 Our implementation contains variations
of the work of Wu and Fessler14 and we demonstrate that
this framework can produce different variations of this imple-
mentation for different hardware without direct programmer
intervention.

VI.A. FDK backprojection

We chose to compose the graph out of the three major
implementations presented in Ref. 6. An ant’s path from the
source to the sink represents either the first, second, or third
configuration presented in Ref. 6 or some combination of the
three. In this graph, we also added a fourth configuration in
which two projections are loaded per kernel call. Certain paths
can lead to implementations that produce bad images (i.e., im-
ages of low quality). Therefore, computation speed is not the
only criteria for evaluating performance. If the reconstructed
image has an error that is too high, the corresponding ant is
given a bad score; thus reducing the probability of other ants
selecting that path in future iterations. The error is measured
using the mean squared error with a suitable reference image.
For more information about the structure of this graph, see the
supplementary material.17

We ran our framework with 30 ants for 5 iterations. Our
super source file described a graph that contained 25 nodes.

Medical Physics, Vol. 40, No. 3, March 2013

031110-5 Papenhausen, Zheng, and Mueller: Creating optimal code for GPU-accelerated CT reconstruction 031110-5

TABLE II. Runtimes of ant optimized and hand optimized implementations.

Configuration Volume Time (s)

Ant optimized 2563 2.54
Hand optimized (Ref. 6) 2563 2.71
Ant optimized 5123 6.07
Hand optimized (Ref. 6) 5123 6.07

This graph, however, is replicated for 16 different grid and
thread block dimensions; creating a graph that contains 400
nodes. Table II shows a comparison of the timings of the FDK
implementations that were produced through our framework
with the results presented in Ref. 6, which were obtained by
manually optimizing the code. For the 2563 implementation,
we found a faster implementation. This configuration loads
two projections per kernel invocation and has a thread granu-
larity of two in the x direction. For the 5123 implementation,
our framework produced the same code as in Ref. 6 but deter-
mined this without the need for lengthy manual tuning. Figure
3 shows a slice of the reconstructed volume. The quality of
the reconstruction for the implementations produced by this
framework was the same as the quality produced in Ref. 6.

The runtime of our framework is dependent on the scale of
the application it is trying to produce. For each ant, source
code is generated, compiled, and executed. For the experi-
ments that we ran, it took approximately 2 h for all 30 ants to
complete 5 iterations. Although the increase in performance is
very little, a lot of time was spent during the manual optimiza-
tion. We spent approximately 2 days (i.e., 8–10 h each day) to
reach this optimization through hand tuning. This shows that
this framework is a powerful tool in increasing programmer
productivity.

To reduce the runtime for the framework, this graph could
have been pruned by eliminating nodes that correlate to con-
figurations that we know have bad performance. In our ex-
periments, we included the naïve configuration explained in
Ref. 6 as a possible implementation. By pruning the graph of
bad implementations, we could reduce the number of ants;
thus, greatly reducing the amount of time required by our
framework. We note that although it takes some time to find
the right optimization parameters, the code produced in this
manner can be reused for any new CT reconstruction task
with the same boundary conditions. Therefore, the optimiza-
tion overhead is well amortized.

FIG. 3. Slice of the FDK reconstructed image.

VI.B. Separable footprint implementation

Separable footprint is a technique developed in Ref. 4
for forward and backprojecting. It is similar to splatting and
builds off of Ref. 15 by separating the transaxial and axial
footprint in order to increase performance. The authors Long
and Fessler of Ref. 4 have shown that the separable footprint
technique is more accurate than the popular distance driven
method.16

Similar to the FDK backprojection implementation, we
have developed multiple solutions for the GPU accelerated
separable footprint implementation. Though there are mul-
tiple solutions, the differences between them are relatively
small and are mostly low level optimization details. In this
section, we will describe the general idea behind the GPU
implementation of the separable footprint backprojector de-
scribed in Ref. 14.

The separable footprint backprojector involves calculating
the axial, t, footprint and the transaxial, s, footprint for each
voxel. This essentially determines how much each detector
cell contributes to the voxel. This is more accurate than the
FDK approach because there is no interpolation. Since the
footprint of each voxel is independent from other voxels, we
can parallelize this process.

In Ref. 14, the authors leverage CUDA and GPU hardware
to accelerate the separable footprint backprojector. They sep-
arate the backprojector into multiple kernel calls. First, they
calculate the transaxial footprint on the GPU. The next ker-
nel then parallelizes over x, y, and t and computes the sum
of the product of the transaxial footprint and the projection
value for each s value. The final kernel call accumulates the
product of the previous kernel with the axial footprint for
each x, y, and z value. This process is then repeated for each
projection.

VI.C. Separable footprint experiment

Our graph structure contains multiple variations of the
same basic implementation that we described in Sec. VI.B.
The differences are mainly in the types of memory used (i.e.,
texture, surface, global, etc.), and the thread granularity. This
experiment differs from the FDK experiment in that we at-
tempt to optimize multiple kernels simultaneously. The graph
for this experiment contains over 20 000 possible implemen-
tations. An exhaustive search would take approximately two
weeks to find the optimal solution; and so clearly this is im-
practical. A large cluster of GPUs would be required to per-
form an exhaustive search in a reasonable amount of time.
Since the number of possible implementations grows expo-
nentially with the number of kernels, however, the search
space can quickly become too large for clusters of GPUs to
search in a reasonable amount of time. This multikernel opti-
mization is especially useful in determining the optimal usage
of surface memory. Surface memory will often be written to
in one kernel, and then read from in a different kernel. Since
surface memory cannot reliably be written to and read from
in the same kernel, using surface memory can restrict other
implementation choices.

Medical Physics, Vol. 40, No. 3, March 2013

031110-6 Papenhausen, Zheng, and Mueller: Creating optimal code for GPU-accelerated CT reconstruction 031110-6

TABLE III. Runtimes of framework produced separable footprint implemen-
tations. The timings show how long it takes to backproject 364 projections
that contain 1014 × 374 detector cells.

Hardware Volume Time (s)

GT 335 m 2563 137.38
GTX 480 2563 15.95
GT 335 m 5123 N/A
GTX 480 5123 72.19

Since surface memory is not supported on all graphics
cards, some options may be closed off depending on the hard-
ware. If it is not supported, ants that choose a path that at-
tempts to use surface memory will create an implementation
that cannot be compiled. Our framework, however, is robust
to implementations that are not necessarily supported by the
current hardware. Ants that choose this path will simply be
assigned a bad score and the framework will converge to an-
other solution.

In addition to the GTX 480, we also performed experi-
ments on the NVIDIA GeForce GT 335 m GPU. This hard-
ware has a compute capability of 1.2 and contains 78 CUDA
Cores and 20 GB/s global memory bandwidth. By perform-
ing experiments on multiple GPUs, we show how the optimal
implementation changes depending on the hardware.

We used this framework to optimize the separable footprint
backprojector for a 2563 volume and a 5123 volume. On both
the GT 335 m and the GTX 480, we found that the optimal
implementation stores the projection data in texture memory
and parallelizes in x, y, and z during the final kernel call. Since
surface memory is not supported on the GT 335 m graphics
card, there were some major differences in what each GPU
found as the optimal implementation. On the GTX 480, our
framework chose to use surface memory whenever it was an
option. This was actually somewhat surprising. We expected
that the overuse of surface memory would have led to a lower
cache hit rate, especially during the final kernel, and would
negatively impact performance. The results of this experiment
can be seen in Table III. Timings for the 5123 volume could
not be obtained for the GT 335 m because the memory re-
quirement was too large. For the GTX 480, the implemen-

FIG. 4. Slice of the separable footprint reconstructed image.

tations our framework produced were the same for both the
2563 and 5123 volume. A slice from the backprojected im-
age can be seen in Fig. 4. See the supplementary material for
more information on the separable footprint backprojection
experiment.17

VII. CONCLUSIONS

In this paper, we presented a novel framework for produc-
ing an optimal code structure using an ant colony optimization
algorithm. Through our experiments in applying our frame-
work to the RabbitCT platform,13 we have discovered a bet-
ter implementation for the 2563 volume reconstruction, while
producing the same results as Ref. 6 for the 5123 implemen-
tation. We have also shown that the optimal implementation
can be quite different depending on the hardware. Although
it takes some time to find the right optimization parameters,
we wish to add that the code produced by the ant colony op-
timization can be reused for any new CT reconstruction task
with the same boundary conditions. Therefore, the optimiza-
tion overhead is well amortized.

In practice, we have found that producing the super source
file takes approximately 30–45 min. We often know what op-
timizations we want to include. Then it is simply a matter
of coming up with a graph structure and annotating the code
snippets. Determining what optimizations should be included,
however, can be time consuming if the user is not completely
familiar with the problem he is trying to optimize or the
CUDA programming language. Our future work is therefore
directed toward automating the process of generating the su-
per source file. We are also interested in exploring alternative
algorithms that could be applied to our framework. If we can
find an effective mapping from the non-numerical implemen-
tation to a high dimensional space, we can use numerical op-
timization algorithms like gradient descent to find the optimal
implementation over a larger search space.

ACKNOWLEDGMENTS

This work was funded in part by National Science Founda-
tion (NSF) Grant Nos. IIS-1050477, CNS-0959979, and IIS-
1117132. The authors also thank Medtronic for partial fund-
ing of this work and datasets they used in experiments.

a)Electronic mail: epapenhausen@cs.sunysb.edu
b)Electronic mail: zizhen@cs.sunysb.edu
c)Electronic mail: mueller@cs.sunysb.edu
1A. Andersen and A. Kak, “Simultaneous algebraic reconstruction tech-
nique (SART): A superior implementation of the ART algorithm,” Ultra-
son. Imaging, 6, 81–94 (1984).

2L. Feldkamp, L. Davis, and J. Kress, “Practical cone-beam algorithm,”
J. Opt. Soc. Am. 1(A6), 612–619 (1984).

3L. Shepp and Y. Vardi, “Maximum likelihood reconstruction for emission
tomography,” IEEE Trans. Med. Imaging 1(2), 113–122 (1982).

4Y. Long, J. A. Fessler, and J. M. Balter, “3D forward and backprojection for
X-ray CT using separable footprints,” IEEE Trans. Med. Imaging 29(11),
1839–1850 (2010).

5W. Xu and K. Mueller, “Learning effective parameter settings for iterative
ct reconstruction algorithms,” Proceedings of the International Meeting on

Medical Physics, Vol. 40, No. 3, March 2013

http://dx.doi.org/10.1016/0161-7346(84)90008-7
http://dx.doi.org/10.1016/0161-7346(84)90008-7
http://dx.doi.org/10.1364/JOSAA.1.000612
http://dx.doi.org/10.1109/TMI.1982.4307558
http://dx.doi.org/10.1109/TMI.2010.2050898

031110-7 Papenhausen, Zheng, and Mueller: Creating optimal code for GPU-accelerated CT reconstruction 031110-7

Fully 3D Image Reconstruction in Radiology and Nuclear Medicine, Bei-
jing, China, 2009.

6E. Papenhausen, Z. Zheng, and K. Mueller, “GPU-accelerated back-
projecting revisited: Squeezing performance by careful tuning,” Proceed-
ings of the International Meeting on Fully Three-Dimensional Image
Reconstruction in Radiology and Nuclear Medicine, Potsdam, Germany,
2011.

7H. Scherl, B. Keck, M. Kowarschik, and J. Hornegger, “Fast GPU-based
CT reconstruction using the common unified device architecture (CUDA),”
in Proceedings of the IEEE Medical Imaging Conference, Honolulu, HI
(IEEE, Honolulu, Hawaii, 2007), vol. 6, pp. 4464–4466.

8Z. Zheng and K. Mueller, “Cache-aware GPU memory scheduling scheme
for CT back-projection,” Proceedings of the IEEE Medical Imaging Con-
ference, Knoxville, TN, October 2010.

9A. Klockner, N. Pinto, Y. Lee, B. Catanzaro, P. Ivanov, and A. Fasih,
“Pycuda and pyopencl: A scripting-based approach to GPU run-time code
generation,” Parallel Comput. 38(3), 157–174 (2011).

10G. Rudy, M. Khan, M. Hall, C. Chen, and J. Chame, “A programming lan-
guage interface to describe transformations and code generation,” in Pro-
ceedings of the 23rd International Conference on Languages and Compil-
ers for Parallel Computing (LCPC’10) (Houston, TX, October 7–9, 2010),
pp. 136–150.

11M. Dorigo and L. M. Gambardella, “Ant colony system: A cooperative
learning approach to the traveling salesman problem,” IEEE Trans. Evol.
Comput. 1(1), 53–66 (1997).

12M. Dorigo, V. Maniezzo, and A. Colorni, “Ant system: Optimization by a
colony of cooperating agents,” IEEE Trans. Syst., Man, Cybern., Part B:
Cybern. 26(1), 29–41 (1996).

13C. Rohkohl, B. Keck, H. G. Hofmann, and J. Hornegger, “RabbitCT—
an open platform for benchmarking 3D cone-beam reconstruction algo-
rithms,” Med. Phys. 36, 3940–3944, 2009.

14M. Wu and J. Fessler, “GPU acceleration of 3D forward and backward pro-
jection using separable footprints for x-ray CT image reconstruction,” Pro-
ceedings of the International Meeting on Fully Three-Dimensional Image
Reconstruction in Radiology and Nuclear Medicine, Potsdam, Germany,
2011.

15L. Westover, “Footprint evaluation for volume rendering,” in Proceed-
ings of the International Meeting on International Conference on Com-
puter Graphics Interactive Techniques (Dallas, TX, August 6–10, 1990),
pp. 367–376.

16B. De Man and S. Basu, “Distance-driven projection and backprojection in
three dimensions,” Phys. Med. Biol. 49(11), 2463–2475 (2004).

17See supplementary material at http://dx.doi.org/10.1118/1.4773045 for
Figs. 1 and 2.

Medical Physics, Vol. 40, No. 3, March 2013

http://dx.doi.org/10.1016/j.parco.2011.09.001
http://dx.doi.org/10.1109/4235.585892
http://dx.doi.org/10.1109/4235.585892
http://dx.doi.org/10.1109/3477.484436
http://dx.doi.org/10.1109/3477.484436
http://dx.doi.org/10.1118/1.3180956
http://dx.doi.org/10.1088/0031-9155/49/11/024
http://dx.doi.org/10.1118/1.4773045

