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Purpose: Acquiring data for CT at low radiation doses has become a pressing goal. Unfortunately, the
reduced data quality adversely affects the quality of the reconstructions, impeding their readability. In
previous work, the authors showed how a prior regular-dose scan of the same patient can efficiently
be used to mitigate low-dose artifacts. However, since a prior is not always available, the authors now
extend the authors’ method to use a database of images of other patients.
Methods: The authors’ framework first matches the low-dose (target) scan with the images in the
database and then selects a set of images that contain anatomical content similar to the target. These
“priors” are then registered to the target and form the set of regular-dose priors for restoration via an
extended nonlocal means (NLM) filtering framework. To accommodate the larger spatial variability
of the patient scans, the authors subdivide the image area into blocks and perform the filtering locally.
The database itself is first preprocessed to map each image from its 2D image space to a corresponding
high-D image feature space. From this encoding a visual vocabulary is learned that assists in the query
of the database.
Results: The authors demonstrate the authors’ framework via a lung scan example, for both streak
artifacts (resulting from smaller projection sets) as well as noise artifacts (resulting from lower mA
settings). The authors find that in the authors’ particular example case three priors were sufficient
to restore all features faithfully. The authors also observe that the authors’ method is quite robust
in that it generates good results even when the noise conditions significantly worsen (here by 20%).
Finally, the authors find that the restoration quality is significantly better than with conventional NLM
filtering.
Conclusions: The authors image restoration algorithm successfully restores images to high quality
when the registration is well performed and also when the priors match the target well. When the
priors do not contain sufficient information, the affected image regions can only be restored to the
quality achieved with conventional regularization. Hence, a sufficiently rich database is a key for
successful artifact mitigation with this approach. Finally, the blockwise scheme demonstrates the
potential of using small patches of images to form the database. © 2013 American Association of
Physicists in Medicine. [http://dx.doi.org/10.1118/1.4790693]
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I. INTRODUCTION

Motivated by the need to minimize the radiation exposed to
patients, a growing number of research efforts have been dedi-
cated to the topic of low-dose CT. Lowering the radiation dose
can be achieved either by reducing the number of x rays, their
energy, or both. However, a direct effect of these dose reduc-
tion efforts is CT images with strong noise artifacts, streaks,
and reduced feature detail—all of which impede image read-
ability in diagnostic tasks. To overcome these problems one
can either apply iterative reconstruction schemes with the goal
of optimizing the reconstruction given the limited data1–3 or
one can try to reduce the artifacts in the image domain via a
suitable image restoration method.4

For the latter option, neighborhood filters, in particular, the
nonlocal means (NLM) filter,5 have shown great promise for
the restoration of degraded low-dose CT imagery.4, 6 Origi-
nally devised for general image denoising tasks, NLM is es-
sentially an extended Gaussian filter. It updates a given pixel

by looking for pixels with statistically similar local neighbor-
hoods in the image and then Gaussian-weighs their contribu-
tions by the degree of similarity. The extent of the search is
specified by a search window, while the size of the neigh-
borhood used for similarity matching is called a neighbor-
hood patch. A more recent trend in CT reconstruction has
been to extend the search window beyond the image subject
to restoration. Schemes have been devised that utilize a prior
scan7–9 of the same patient to search for high-quality updates.
Other work has successfully constrained a reconstruction by
images of the same dynamic scan.1 While all this produces
excellent results, such a prior scan or dynamic scan of the
same patient may not always be available.

To meet this inherent shortcoming we propose the idea of
extending the search window even further, namely, to a col-
lection of images of different patients. This approach, in fact,
is quite alike the psychophysical processes that occur in med-
ical professionals when viewing degraded imagery. They also
borrow from their extensive medical training and experiences
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FIG. 1. Illustration of our framework by ways of a (small) lung database example.

to see the “true patterns behind the noise.” These recognition
tasks, however, take valuable time and can also lead to frustra-
tion, and it is for this and other reasons that artifact reduction
by image processing and algorithmic means is an important
mission.

Using collections of clean images to reduce noise or blur
in degraded images is not a new idea, at least not in general.
There are in fact two rather disjoint schools of thought, and
both aim to cope with the extremely large space of possible
image detail. The first approach first constructs a large-scale
database of possible detail at some level and then uses a so-
phisticated matching strategy to retrieve the detail of interest
from this database.10 The other approach is based on sparse
coding. It first constructs a dictionary of representative base
patterns which must then be optimally combined for repro-
ducing the desired detail of interest.11 While the first approach
is a top-down search, the second is bottom-up. Both strategies
can be justified by theories on how humans perform visual
search, which likely is a conjunction of both.12

Our paper expands on two workshop papers13, 14 where we
have presented preliminary thoughts as well as encouraging
experimental results using the first—the database—approach
for low-dose artifact mitigation. Parallel to our work, another
team of researchers15, 16 has pursued with similar success the
alternative—the sparse coding—approach for the same pur-
pose. Since the vote is still out, on an even grander scale,
about which of the two strategies is better or more likely, we
refrain from making such claims here. Our sole purpose is
rather to formalize the framework we conceived, expose re-
sults on what is currently possible when using it for low-dose
CT, and point out current shortcomings that warrant future
work.

Figure 1 illustrates our framework by ways of an exam-
ple: the restoration of a low-dose lung (target) scan using a
database of regular-dose lung images. First, we match the tar-
get scan with the images in the database and select a set of im-
ages (marked with stars) containing similar anatomical con-
tent as the target. We then register these images to the target

to form the set of artifact-free priors. Finally, using these pri-
ors we apply the extended NLM-filter scheme to denoise the
target via a blockwise update strategy.

Our paper is organized as follows. Section II describes both
methodology and technical detail, Sec. III presents results,
and Sec. IV ends with conclusions and future work.

II. METHODS AND MATERIALS

The workflow of our method consists of three major stages:
offline database construction, online prior-search, and online
denoising (the latter two stages are illustrated in Fig. 2). In
the offline database construction stage, we create a global im-
age feature descriptor G to represent each image in the given
image database. This forms the global feature database. A vi-
sual vocabulary V summarizing the local image features is
also learned in this stage. Then in the online prior-search, we
generate G(I) with V for the target image I. Following, we use
G(I) to query the global feature database to find the M nearest
neighbors as regular-dose priors. These priors have (artifact-
free) anatomical content that is most similar to the (degraded)
anatomical content of the target. Next, in the online denois-
ing, we first align the regular-dose priors to the target in a
blockwise manner. These images form the set of clean reg-
istered prior (CRP) blocks. Using these blocks, we run what
we call Reference-based NLM (R-NLM),8 where we use the
prior blocks for NLM matching and look up the pixel values
in the corresponding CRP block. We now describe each of
these components in closer detail.

II.A. Local image feature descriptor

Image matching is a fundamental operation in computer
vision and image processing and it is often used for scene
and object recognition. Typically, the image is expressed as
a high-dimensional feature vector and the matching occurs
in this high-D feature space. Since we wish to match im-
age features in the presence of significant noise and streaks
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FIG. 2. Blockwise registration and R-NLM denoising workflow.

artifacts, we require a feature descriptor that is insensitive
to these degradations. The scale-invariant feature transform
(SIFT) (Ref. 17) is such a feature descriptor. It captures the
histogram of edges in a local neighborhood at multiple lev-
els of scale, characterizes salient local and transform-invariant
image structures, and encodes contextual information. A SIFT
feature descriptor is usually a 128-D vector encoding 8-
orientation histograms of edges over 4 × 4 blocks with each
block of size 4 × 4, serving as a local descriptor of the image.
In its original definition, only keypoint locations are selected.
However, it was shown that dense SIFT vectors (dSIFT) on a
regular spaced grid could provide more correspondence and
reveal more details also in flat texture areas and are thus more
robust.18, 19

We found that a grid spacing of 8 pixels works well for
dense SIFT in our application. Thus, for an image of size 2562

we get 32 × 32 SIFT vectors, while for size 5122 we get 64
× 64 SIFT vectors. We use these local image features to com-
pute the visual vocabulary, as shown next.

II.B. Global image feature formation

To form a global image feature descriptor from local ones,
traditional dense SIFT algorithms follow the bag-of-feature
method.20 We use the following algorithm to accomplish
this:

(1) Extract the local feature descriptors: generate a set of
SIFT local feature descriptors {S0, S1, . . . , SN−1} to
represent each image.

(2) Build the visual vocabulary: randomly select the local
feature descriptors of all images in the database and
perform k-means clustering to learn K cluster centers
as visual words {V0, V1, . . . , VK−1}. This forms the
visual vocabulary V of the database.

(3) Label the local features to the visual words: for each
image, assign the index of the closest visual word to
each local feature vector.

(4) Perform vector quantization to generate a global fea-
ture descriptor: compute the histogram of visual words
in each image {H0, H1, . . . , HK−1} and concatenate the

weighted histogram series into a long vector to form
the global feature descriptor.

One drawback of this method is that the feature’s location
information in the original 2D image space is discarded. To
make use of this spatial information and keep track of it in
multiresolution, we exploit a spatial pyramid scheme18 to im-
plement a “stronger” feature description. The multiresolution
layers are formed by recursively subdividing the image into
b × b blocks. In a layer L, for each block, only the feature
vector extracted from that block is aggregated into the his-
togram of its specific visual word. In this way, the clustering
is still performed in feature space while the histogram pyra-
mid is built in 2D image space. The weight for each histogram
is inversely proportional to its block width. We call the result-
ing histogram sets the spatial pyramid-based histograms.

There are four parameters associated with this part: the
number of visual words K, the number of layers L, and the
block size b. We used 60 visual words of the local feature
descriptors, and each image was represented with a spatial
pyramid-based histogram composed of one layer and 5 × 5
blocks. These settings showed the best query precision in the
online prior search stage. Sec. II.C provides further detail.

II.C. Online prior search

In this stage, the global feature vector of the target scan is
generated online following the same steps as outlined for the
offline stage. This long feature vector is then used to search
for similar priors in the database. These priors anatomically
characterize the same content as the target scan but may con-
tain small variations in scale, rotation, and deformation. We
found that histogram intersection performs better than the Eu-
clidean distance for gauging the similarity for matching. The
histogram intersection operates within a spatial pyramid, i.e.,
the intersection is counted both blockwise and visual word-
wise and is then summed up to form a single value.18 To en-
sure that the priors contain a wide variety of diverse anatomi-
cal features, we perform the searching process patient by pa-
tient. We then construct a ranked-list by selecting and sorting
only the top ranked priors in each patient. Finally, additional
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search within the top-ranked priors in the list further expands
and refines the list.21

II.D. Registration

Once the regular-dose prior (or reference) scans are found,
the online denoising process can be executed. The first step
is to register the priors with the target scan. Different from
our initial work13 we perform both the registration and the
denoising in a blockwise fashion. This provides for better lo-
cal control which is needed since the database priors have
less correspondence to the target than priors coming from
the same patient. More specifically, we create a small block
of size 129 × 129 and shift that block with a step size of
64 in raster-scan order. Figure 2 illustrates this process. For
each block, we perform the registration by aligning that block
with the corresponding blocks in the prior scans (red boxes in
Fig. 2). This local registration relaxes the strict requirements
of a global image registration and allows for priors to only
partially match the target, which is likely since they come
from different patients.

We used the SIFT-flow registration algorithm19 for the reg-
istration. SIFT-flow is a state-of-the-art registration method
that originates from the optical-flow algorithm and produces
dense, pixel-to-pixel correspondences between two images. It
extends optical-flow matching from raw pixels to SIFT fea-
tures, which significantly improves robustness when register-
ing artifact-rich with artifact-free images. In order to further
improve the quality of the registration we predenoise the tar-
get scan via Gaussian filtering.

II.E. R-NLM denoising

R-NLM (Ref. 13) follows the standard NLM filtering
scheme but uses the artifact-free registered prior images, CRP,
instead of the target itself. Thus, the pixel weights are com-
puted by comparing patches in the target with patches in the
prior images. More formally,

p′
x =

∑
y∈Wx

exp

(
− ∑

t∈P

∣∣px+t − pCRP
y+t

∣∣2
/h2

)
· pCRP

y

∑
y∈Wx

exp

(
− ∑

t∈P

∣∣px+t − pCRP
y+t

∣∣2
/h2

) . (1)

Here, x is the location of the target pixel and y are the locations
of the candidate pixels with values py. Wx is the search win-
dow around x and P is the patch size of each pixel. The patch
similarity is measured by the L2 distance between two patch
vectors with t representing the index within a patch. The factor
h controls the overall smoothness of the filtering. In our case
h is larger than typically used for standard NLM to accommo-
date higher noise level. The superscript CRP indicates that the
pixels originate from the artifact-free registered priors CRP.

Equation (1) differs from the one used in Ref. 8 in that we
removed the Gaussian weighting in the patch similarity mea-
surement. We found in experiments that this leads to better
matches since a greater patch neighborhood influences it. The
direct consequence of better matches is an increased sharp-
ness at edges, as demonstrated in Ref. 8 for the matched ar-

tifact MR-NLM scheme. We could not use MR-NLM in the
work presented here since it proofed difficult to simulate real-
istic streak artifacts in a block. Noise would have been easier
but we strived for a scheme that applies to both types of arti-
facts unilaterally. Eliminating the Gaussian kernel and replac-
ing it by a wide box filter seems to better “see through” the
noise and capture the true pattern underneath more faithfully.

For pixels for which no similar patch can be found within
the search window we perform standard NLM with a smaller
h. The pixels are detected by comparing their denominators
in Eq. (1), which represents the summation of contributions
from pixels in the search window, with a preset threshold—we
used 0.3. For these pixels the denoising falls back to standard
NLM. This conservative approach ensures that no false ill-
fitting features are introduced.

We perform the R-NLM in a blockwise, raster-scan fash-
ion, as shown in Fig. 2. For each block, when the R-NLM has
finished, the pixels in the overlapping regions are feathered in
the raster-scan order. Feathering retains the edges but adjusts
the grey levels such that newly added regions blend well with
existing ones.22 It allows one to not only retain local contrast
among neighbor but also to remove remaining noise at some
loss of sharpness.

III. EXPERIMENTAL RESULTS

We constructed a human lung database of 30 patients
(41 138 5122 images) from an online human lung database
(http://www.giveascan.org). The images were not prealigned.
To match the quality of the CT scans, all scans were regener-
ated from 720 projections over 360◦ with a fan-beam geom-
etry (fan angle = 20◦). The 720 projections were the point at
which there was no more quality improvement, as gauged by
RMSE with the original scan. We used these scans as the gold
standard in all experiments. We then picked subsets of these
projections to generate the low-dose scans with streak arti-
facts. To simulate the noise artifacts, we added various levels
of noise [dB, signal-to-noise ratio (SNR)] to the sinogram of
the gold standard images. To create a new scan different from
any scan in the database (even if they were already from dif-
ferent patients), the selected scan was first deformed or rotated
(to mimic a real clinical situation), forward projected, and
then reconstructed with the low-dose condition under study.

In Secs. III.A and III.B, we report on two experiments to
evaluate and validate the proposed algorithm. In all experi-
ments, we used a patch size of 7 × 7 with a 13 × 13 search
window for the NLM filter. Then, both the overall smoothness
parameter, h, and the threshold parameter which decides be-
tween standard NLM and R-NLM were experimentally cho-
sen by inspecting the quality of the restored image for each
streak and noise reduction task.

III.A. Priors quality and diversity

We performed experiments at which the database-assisted
restoration occurred at three levels of difficulty, gauged as
a function of closeness of the available priors to the target
anatomy. In these experiments the database contained, among
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 Gold standard Target NLM R-NLM1 R-NLM2 R-NLM3 

(a) 

(b) 

(c) 

FIG. 3. Restoration results for (a) streaks (86 projections) and (b) noise (30 SNR dB) using (c) different sets of priors. R-NLM1 is a prior image from the
same patient—this image prior is from scan of the same slice and thus very similar to the target. R-NLM2 are two different image priors also from the same
patient but from different slices and so less similar to the target. R-NLM3 are three priors from three different patients located automatically in our database.
The corresponding restorations are shown in rows (a) and (b) along with results obtained with the standard NLM approach.

other scans: (1) one almost identical CT scan of the same pa-
tient; (2) two somewhat similar CT scans of the same patient;
and (3) only CT scans of other patients. Target images were
generated at the following two low dose conditions: (1) re-
duced data (only 86 projection—this is about 11% of the gold
standard data and represents a dose reduction of 88%) and (2)

low mA imaging (30 dB SNR Gaussian noise was added to
the sinogram). Figure 3 shows the restoration results for these
two conditions using the different types of priors described
above, and compares them with results obtained with the stan-
dard NLM method. We observe that the prior-based scheme
significantly improves image quality even with “foreign”

 
(a)               (b) (c)                                               (d)

FIG. 4. Multiple priors: effect and benefits. By increasing the number of priors used for scan restoration (here, streak reduction), we gain a much wider range of
anatomical features. This prevents the borrowing of pixel values from wrong structures or the failure of finding structures at all, during the restoration process.
(a) Target block subject to denoising. [(b)–(d)] Restoration using: (b) only prior P1, (c) prior P1 and P2, and (d) priors P1, P2, and P3. In each subfigure, the
prior is shown with the matched block marked by a red-dotted outline. The two inserted (zoomed) images are: (bottom left) the original block and (top right) the
block aligned to (a). The two stacked images to the immediate right are (top) the restoration result and (bottom) the same block with the pixels colored by the
prior from which they originate. The (blue, green, yellow) pixels come from prior (P1, P2, P3). We observe that only when using all three priors the structure
pointed to by the arrow gets restored in the most plausible way, according to its noisy counterpart in (a).
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(a) (b) 

FIG. 5. Robustness of (a) streak and (b) noise reduction: The restorations use the three priors introduced in Fig. 3 (denoted R-NLM3). The target images are
generated with 20% less projections (70) (a, left) or 20% more noise (25 SNR dB) (b, left) than in the study of Fig. 3. The restored images for each (a) and (b)
are shown on the target’s right.

priors from different patients. The edges are sharper and detail
is better preserved.

Figure 4 shows that having a more diverse set of priors can
improve the outcome tremendously. In the example given, we
needed at least three priors to successfully restore the struc-
ture pointed to by the arrow. This is not unlike the case in
which a more experienced radiologist “reads” a noisy image.
And indeed, the need for a massive database has been con-
firmed in research that aimed to remove unwanted structures
in photographs.10 Constructing such a large database is our
current goal, with a need for “big data” management.

III.B. Data quality

To test robustness, we lowered the quality of the data by
approximately 20% and observed the restoration outcome ob-
tained with a database that only contained scans from other
patients (case 3 above). In one experiment we reduced the
number of projections from 86 to 70, which is a further dose
reduction of about 20%. In the other experiment we increased
the level of sinogram noise further, from 30 to 25 dB SNR.
To calculate the decrease in dose we can use the relationship
SNR = N/σ = N/

√
N = √

N , where σ is the level of quantum
noise and N is the number of x-ray photons. Since the dose is
directly and linearly related to N we achieve a further reduc-
tion in dose by 30%. Our experimental results are shown in
Fig. 5. We observe that the outcome is still acceptable—all
major features are still well preserved. This is especially true
for the noise case, while the streak case would probably ben-
efit from an alternate iterative CT reconstruction scheme such
as SART (as opposed to the current FDK).

IV. CONCLUSIONS

We proposed a general framework for high quality restora-
tion of low-dose CT scans with the help of a general CT im-
age database. We believe our approach is attractive because
once the database has been established the online restoration
process is quite fast. The restoration process itself, once the
priors have been selected from the database, is just a minor
extension to standard NLM filtering which is easy to imple-
ment and efficient to run. Additional efficiencies have resulted
from performing the reconstruction and the restoration steps
sequentially. While this is not uncommon (see, e.g., Refs. 2, 7,
and 8), there is a chance that separating these two processes
results in artifacts and loss of detail. In order to study these

effects further we plan to compare our approach with the one
by Xu et al.15 who combine these two steps into one.

Our results point out that a sufficiently elaborate database
is crucial to the success of our method. Since modern PACS
systems now have massive CT data on cheap disks we do
not see this as a major obstacle. Future work will focus on
enriching our database with more data, also of pathologies,
and so create a system that requires our conservative fallback
NLM scheme only in rare cases. In addition, in order to still
maintain a manageable set of priors we are currently work-
ing on transforming our present image-based prior set to a
patch-based set. This will eliminate redundancies and provide
for a more diverse feature set to base the matching on. Also,
we intentionally did not embed our method into an iterative
reconstruction pipeline such as SART or ASD-POCS.3 We
wanted to test how far a single restoration step can take us.
Next, we will iterate the databases-assisted restoration with a
data-driven reconstruction which will likely improve the re-
sults further and also serve for verification.

We close by stating that the foremost purpose of a CT
scan is to gain insight into a patient’s state of health. Low-
dose imaging is also important, but it should not be at the
expense of increasing the likelihood of false positives or neg-
atives. Our approach uses techniques from machine learning
to improve the quality of low-dose CT scans. It grows by the
quality of the examples it is taught with and the sophistication
of its algorithms. Without sounding too futuristic, this is not
too dissimilar from the educational process of a radiologist.
We have clearly a long way to go, and we will likely never be
able to match the tremendous capabilities of the human brain,
but we may achieve a reliable digital doctor’s assistant.
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