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Purpose: Low-dose CT has attracted increasing attention due to growing concerns about radiation
exposure in medical scans. However, the frugal use of x-ray radiation inevitably reduces the qual-
ity of the CT images, introducing artifacts such as noise and streaks which make the reconstructed
images difficult to read in clinical routine. For follow-up CT exams a prior scan is often available.
It typically contains the same anatomical structures, just somewhat deformed and not aligned. This
work describes a two-step technique that utilizes this prior scan to achieve high-quality low-dose CT
imaging, overcoming difficulties arising from noise artifacts and misalignment. We specifically focus
on reducing the dose by lowering the number of projections. This gives rise to severe streak artifacts
which possibly lower the readability of CT images to a larger extent than the fine-grained noise that
results from lowering the mA or kV settings.
Methods: A common approach is to apply image filtering to reduce the noise artifacts. These tech-
niques typically utilize pixel neighborhoods in the degraded image to estimate the true value of a pixel
at the center of this neighborhood. However, this can lead to poor results when the image is severely
contaminated under very low low-dose situations. We propose a method that utilizes the nondegraded,
clean prior to determine higher quality pixel statistics to form the pixel estimates, supported by the
matching scheme of the non-local means filter. To make this matching reliable, a good registration
of prior and low-dose image is required. For this, we employ a state-of-the-art registration method,
called SIFT-flow, which can tolerate the high amount of streak noise. But even for properly regis-
tered images, using an artifact free prior for the matching yields inferior results. We hence describe
a scheme that first constructs a tandem-prior with streak artifacts resembling those in the low-dose
image, and then employs this image for the matching, but uses the corresponding high-quality prior
to determine the pixel estimates.
Results: Two experimental studies are carried out, using a head phantom and a human lung with pro-
jections gathered via simulation. We assess the quality of the processed reconstruction with various
metrics: mathematical and perceptual. We find that the quality that can be obtained with the artifact-
matched prior-based scheme significantly exceeds that of all competing schemes. Even though the
general prior-based approach is able to eliminate the streak artifacts, only the artifact-matched scheme
can restore small detail and feature sharpness.
Conclusions: The reduced-projection low-dose image reconstruction algorithm we present outper-
forms traditional image restoration algorithms when a prior scan is available. Our method is quite
efficient and as such it is well suited for fast-paced clinical applications such as image-assisted inter-
ventions, orthopedic alignment scans, and follow-ups. © 2012 American Association of Physicists in
Medicine. [http://dx.doi.org/10.1118/1.4736528]

Key words: artifact-matched prior, artifact mitigation, low-dose CT, nonlocal means, reference-based

I. INTRODUCTION

Computed x-ray tomography has revolutionized modern
medicine and thanks to the rapid growth in scanner technol-
ogy the gamut of its applications has risen at an enormous
rate. In this process, buoyed by the excitement of possibil-
ities little attention was paid to the radiation dose adminis-
tered to the patient. Scans with ever-improving spatial and
temporal resolutions were conducted on a routine basis and
the associated CT reconstruction algorithms had the luxury
of an abundance of data collected at each exam. It was only
recently that the sobering results of long-term studies on the

adverse radiation effects of CT imaging have dampened these
developments.1, 2 Due to these studies, the harmful effects
of x-ray radiation in CT scans have become publicly heard,
threatening the future of this modality. To counter these con-
cerns, campaigns such as ImageGently (Ref. 29) and Image-
Wisely (Ref. 30) have been initiated that promote the opti-
mization of the radiation dose used in both pediatric and adult
medical imaging.

To reduce the radiation dose subjected to the patient one
can: (1) lower the number of scans, (2) lower the number of
x-ray projections per scan, and (3) lower the energy settings
of the x-ray tube (kV, mA) per projection image. The first
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measure, i.e., reducing the number of scans, is often left at
the discretion of the treating physician. The latter two options
are highly detrimental to image quality, resulting in images
with significant noise artifacts. They greatly challenge the
conventional CT reconstruction algorithms based on analyt-
ical formulations rooted in the inverse radon transform,3 and
these shortcomings have recently invigorated research efforts
towards methods that seek alternatives to these conventional
schemes.

A popular approach to this end has been to enforce data
fidelity and image quality as a joint optimization problem and
solve these two parts in an iterative round-robin fashion. Data
fidelity can be assured by ways of any CT reconstruction al-
gorithm, iterative or analytical, but most use the former. The
reduction of noise artifacts, on the other hand, can be posed
as an image denoising problem. Many approaches use the
method of total variation minimization (TVM) (Ref. 4) for
this task since it is often part of general compressive sens-
ing formulations5 that were originally prescribed to deal with
sparse data. For CT reconstruction, a number of sophisticated
schemes have been developed that adapt the various param-
eters used in the process, such as ASD-POCS (Ref. 6) and
soft-threshold filtering.7

In this work, we have attempted to devise a framework that
executes the data fidelity step and the image quality step each
exactly once. It is hence of lower computational complex-
ity than the present schemes which perform these steps itera-
tively. We achieve this by making creative use of an artifact-
free prior—constituted by an existing regular-dose scan of the
patient. Such a clean prior scan is frequently available. For
example, it may be a regular-dose first scan acquired before
a low-dose follow-up scan or it may be a regular-dose diag-
nostic scan preceding a low-dose setup scan for a surgical
intervention such as orthopedic spine fixation, among other
scenarios.

In the present work, we focus on the second form of low-
dose CT, i.e., reducing the number of x-ray projections per
scan. The first step of our framework uses filtered backprojec-
tion (FBP) to reconstruct an image with significant streak ar-
tifacts which result from this low number of projections. The
use of FBP to provide a quick first estimate is a common strat-
egy. Unlike the first step of an iterative scheme, such as ART
(Ref. 8) and its derivatives,9, 10 FBP typically reconstructs all
image features at good fidelity but the high image noise makes
them difficult to read. Common approaches then follow FBP
by an iterative pipeline for denoising. Our second step, on the
other hand, uses a single prior-based image restoration that
eliminates the noise and so provides the desired viewing ex-
perience. In this step, we first register/align our prior with the
FBP-estimate using an established multiscale feature registra-
tion algorithm, i.e., SIFT flow.11 Following, we simulate the
low-dose streak artifacts of the FBP-estimate in this registered
clean prior. Finally, for each pixel in the target image we use a
neighborhood similarity metric to determine the best matches
in the contaminated prior and then replace it using the corre-
sponding pixels in the clean prior.

Using existing scans to support regularization is not new.
Kelm et al.12 describe an approach that reconstructs volumes

at two different thicknesses, using the same acquired pro-
jection data. They reconstruct the thicker slices from bin-
averaged projections which increases SNR, while the thinner
(and noisier) slices are reconstructed from the original projec-
tion data. Since registration is implicit, it is relatively straight-
forward to use the thicker slices for neighborhood-based de-
noising of the thinner slices. In contrast, our method applies to
settings in which the reference images are not necessarily ac-
quired simultaneously. Yu et al.13 present the method previous
scan-regularized reconstruction (PSRR). It replaces regions
that are unchanged in a low-dose CT reconstruction with their
direct embodiments in a normal-dose CT reconstruction and
uses a nonlinear diffusion approach for denoising in the re-
maining regions. This approach requires an effective strategy
for feature recognition, which the authors accomplish via reg-
istration.

The approach most similar to ours is that of Ma et al.14

They also use a registration algorithm—a combination of
rigid principal component analysis (PCA) and nonrigid mu-
tual information optimization15—for rough alignment. They
then use a neighborhood-mechanism to locate suitable re-
placement candidates in a prior scan of the patient. Our work
differs from theirs in the following important ways. First,
while Ma et al. restore images reconstructed from projections
generated at reduced mA settings, we treat artifacts caused
by the reduction of projections. The resulting streak artifacts
are much more severe and irregular than the random noise-
artifacts caused by low-mA imaging. Second, instead of us-
ing a clean prior for matching we use a prior with simulated
artifacts. We find that this affords much better accuracy, as
we will proof and demonstrate. A preliminary version of the
framework we describe here has been presented in Ref. 16,
which predates the work by Ma et al. slightly.

Our paper is organized as follows. Section II presents the
algorithms we have studied, Sec. III presents results, and
Sec. IV ends with conclusions and points to future work.

II. METHODS AND MATERIALS

To locate good pixel matches in the prior we use the sim-
ilarity measures also employed by nonlocal means (NLM)
filtering.17 NLM filtering can be seen as a generalization of
Gaussian smoothing. It looks for structurally similar pixel
neighborhoods in the smoothing site’s proximity and includes
them into the Gaussian filter statistics. This leads to a more
robust estimate of the true pixel value and consequently to im-
proved image restoration/denoising results. We have recently
informally compared NLM filtering with TVM for low-dose
imaging tasks and our results have been quite encouraging.18

In this current work, we do not employ NLM-filtering in a
conventional way as a nonlocal extension of Gaussian filter-
ing. Rather, we only retain NLM’s mechanism for similarity-
based pixel neighborhood matching in the artifact-matched
prior.

II.A. Standard NLM filtering

The NLM algorithm was proposed by Buades et al.17 for
image denoising. It takes advantage of the high degree of
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FIG. 1. Illustration of conventional NLM for denoising.

redundancy that typically exists in an image. Given a tar-
get pixel subject to denoising, it defines a small Gaussian-
weighted region around it, called a patch. It then searches
the entire image for similar patches and accumulated them
weighted by their degree of similarity. In practice, only a lo-
cal neighborhood around the target pixel is searched, called
search window. This helps performance but it also better tol-
erates nonstationary noise processes. Further, since we first
register the prior to the target image, we do not require large
search windows in any case. More formally, the updated value
p′

x of a target pixel is computed as

p′
x =

∑
y∈Wx

exp

(
− ∑

t∈P

Ga(t)|px+t − py+t |2/h2

)
· py

∑
y∈Wx

exp

(
− ∑

t∈P

Ga(t)|px+t − py+t |2/h2

) . (1)

Here, x is the location of the target pixel and the y are the loca-
tions of the candidate pixels, with values py. Wx is the search
window around x, and P is the patch size of each pixel. The
patch similarity is measured by the Gaussian weighted L2 dis-
tance between two patch vectors with t representing the index
within a patch and Ga being a Gaussian kernel with standard
deviation a. The exponential function converts these distances
to weights, determined by a parameter h which controls the
overall smoothness of the filtering. Larger values of h will re-
sult in more smoothing.

Figure 1 shows an illustration of this process when NLM
is used in a conventional way to denoise a reconstruction with
severe streak artifacts. In this particular case we used FBP to
reconstruct a GE head phantom from 45 fan-beam projections
acquired over 360◦. The illustration shows the search window,
the target pixel in the center and two candidate pixels with
similar neighborhoods as the target pixel. Figure 2(a) shows
the NLM-filtered result, while Fig. 2(b) shows the results ob-
tained with TVM. We can observe that both of these filters
provide some amount of improvement over the original im-
age shown in Fig. 5(a). It is likely (see, for example, Ref. 19)
that repeating the fidelity and denoising steps several times
would do substantially better, but since we have aimed for a
nonrepeating approach—one in which a prior is available to
aid in the denoising—we focus on a single step scheme.

II.B. Registration using the SIFT-flow algorithm

A crucial element in our prior-assisted framework is proper
registration since without it the possibility for mismatches can

(a) NLM-filtered (b) TVM-filtered 

FIG. 2. Filtering results obtained with NLM and TVM.

be high. Nevertheless, our use of the NLM-based matching
mechanism relaxes the need for tight and laborious registra-
tion of the prior image as it performs the fine registration on
the fly via its search mechanism. As such it is less sensitive
to spatial distortions than the PSRR approach. For registra-
tion we have made use of the SIFT-flow algorithm, recently
published by Liu et al.11 This algorithm originates from the
optical-flow algorithm which produces dense, pixel-to-pixel
correspondences between two images. It extends the match-
ing from raw pixels to SIFT feature descriptors.20 A scale-
invariant feature transform (SIFT) feature descriptor captures
the histogram of gradient orientations in a local neighborhood
at a given scale. It is well suited to characterize salient local
and transform-invariant image structures and at the same time
encode contextual information. SIFT-flow has been specifi-
cally designed for scene matching, where objects share sim-
ilar scene characteristics but may have different appearances
and locate at different places. This is the case in the registra-
tion of the prior to the current scan. They are certainly from
the same person, i.e., they share the scene characteristics, but
they will likely have different SNR and undergone distortions
of the features.

The implementation of SIFT-flow has two parts: (i) gen-
erate dense SIFT features where each pixel has a 128-
dimensional SIFT vector, and (ii) find the correspondence of
these SIFT features via discrete optimization on the image lat-
tice to obtain the displacement field for alignment. For the first
part, Fig. 3 shows a typical SIFT feature descriptor summa-
rizing the gradient orientations in a 162 pixel area (as plotted
inside the red square). The gradients (shown as blue arrows)
are Gaussian-smoothed according to their distance to the area
center. This area is partitioned into 42 blocks, each of size 42

pixels (shown as green squares). The gradient orientations are
then accumulated in each block to 8 orientation bins and are
weighted by their gradient magnitudes. There are a total of 16
8-bin orientation histograms (with each red arrow represent-
ing one bin). Thus the dimension of a SIFT vector is 4 × 4
× 8 = 128 over a 16 × 16 = 256 area. For the second part, to
estimate flow, the energy function for SIFT flow is defined as
below

E(f (x, y)) =
∑
(x,y)

min(‖s1(x, y)

− s2(x + fx(x, y), y + fy(x, y))‖1, a)
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FIG. 3. Illustration of SIFT descriptor summarizing edge orientations over
16×16 pixel area.

+
∑
(x,y)

b(|fx(x, y)| + |fy(x, y)|)

+
∑

(x ′,y ′)∈W (x,y)

(min(c|fx(x, y) − fx(x ′, y ′)|, d)

+ min(c|fy(x, y) − fy(x ′, y ′)|, d)), (2)

where (x, y) and (x′, y′) are pixel locations, s1 and s2 are
SIFT descriptors, f is the displacement function with fx in
x-direction and fy in y-direction, W is the pixel neighborhood
and a, b, c, d are four thresholds (with default settings). This
function is designed according to three constraints: (1) the
matched pixel should have similar SIFT descriptors; (2) the
displacement should be as small as possible; and (3) adjacent
pixels should have similar displacements to maintain flow
smoothness. This discrete displacement function can be
estimated by optimizing the energy function with a belief
propagation algorithm.11 Its time complexity is O(h2logh)
where h is the width (height) of the image. Before registration
we smooth the images with a 7 × 7 Gaussian filter (standard
deviation = 3). This yields more stable results. Using the
MATLAB implementation obtained from the author’s
website21 it took less than 1 min for one registration opera-
tion of two 2562 CT scans on a quad-core Dell XPS 2.66 GHz
PC with 8GB of memory. In their paper, Liu et al.11 also point
out that a GPU implementation of their belief propagation
algorithm could yield a further (up to) 50-time speedup which
would bring the time required for the registration down to
seconds.

II.C. Reference-based NLM (R-NLM) filtering

With the NLM-mechanism still being employed for
the matching, we call our approach reference-based NLM
(R-NLM) filtering since it uses the prior image as a reference
to guide the filtering. Figure 4 provides an illustration of this
process, now using a noticeable smaller search window than
in the regular NLM-case. The larger the search window the

Target 
neighborhood Target 
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Candidate 
pixel 2

Candidate 
pixel 1

Candidate 1 
neighborhood 

Search 
window for 
target pixel 

Candidate 2 
neighborhood 

FIG. 4. Illustration of R-NLM with the registered clean prior used for both
matching and retrieval.

more distortion-tolerant the algorithm becomes, but the po-
tential for lost detail and oversmoothing also rises. In experi-
ments we found a size of 7 × 7 pixels for both search window
and patches to represent a good compromise.

Our R-NLM algorithm first uses SIFT-flow to align the
prior with the current scan, call it target scan. Following, it
visits every pixel in the target scan, places the search window
in the same location in the prior scan, and uses the NLM-
algorithm to determine the update. Figure 5 presents some
results we have obtained with our R-NLM algorithm, to mo-
tivate a further extension discussed in Sec. II.D. Figure 5(f)
shows a regular-dose reconstruction obtained with 360 pro-
jections, while Fig. 5(a) shows a low-dose FBP reconstruction
obtained from the same data but only 45 projections—about
1/8 of the dose. Figure 5(b) shows the prior. Since this was a
head phantom that could not be warped mechanically, we per-
formed a digital warp—in this case a twirl distortion around
the center of the image. This deformation field is shown in
Fig. 5(h). Figure 5(c) shows the registered prior and Fig. 5(d)
shows the result obtained with R-NLM filtering. It is clearly
better than the NLM and TVM filtered results (see Fig. 2).
This of course is a comparison that is only partially fair be-
cause R-NLM had access to a clean prior, while the others did
not. This procedure changes Eq. (1) into the following:

p′
x =

∑
y∈Wx

exp

(
− ∑

t∈P

Ga(t)
∣∣px+t−p

crp
y+t

∣∣2
/h2

)
· p

crp
y

∑
y∈Wx

exp

(
− ∑

t∈P

Ga(t)
∣∣px+t−p

crp
y+t

∣∣2
/h2

) . (3)

Here, the superscript crp indicates that the pixels originate
from the clean registered prior and not from the target. How-
ever, when comparing this result with that obtained at regular
dose [Fig. 5(f)], we still observe some amount of blurring in
the image. Edges in general appear less defined, and small
features are also weakened or completely suppressed. For the
latter, compare for example the intricate detail in the center of
the image, to the left of the pincushion-shaped dark structure,
which is barely visible in the R-NLM result. In Sec. II.D, we
describe an advanced scheme that overcomes these problems.

Finally, in the event that no reliable update can be found in
the prior for a given target pixel, we fall back to conventional
NLM-filtering using the target image. We identify this situa-
tion by a low sum of weights in Eq. (3). In our experiments,
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(b) prior 

(g) registered prior (c) with 
simulated artifacts of (a)  

(h) deformation field, acting on (f), 
to determine prior (b)

(a) low-dose FBP reconstruction (c) prior registered to (a)

(d) R-NLM filtering of (a) (e) MR-NLM filtering of (a)

FIG. 5. Results-supported illustration of reference-based NLM (R-NLM) and matched reference-based NLM (MR-NLM).

we have used a threshold of 0.001. We use this criterion both
for R-NLM and for the advanced scheme described next.

II.D. Matched reference-based NLM (MR-NLM) filtering

Since the features are generally weakened at a scale less
than the size of the NLM search window, we cannot blame the
registration algorithm for these shortcomings. Rather, it is the
quality of the NLM-matching that is at the heart of the prob-
lem. Consider the NLM-distance function of Eqs. (1) and (3)
used to determine the quality of a match for a specific candi-
date neighborhood (or patch) P,∑

t∈P

Ga(t)|px+t − py+t |2. (4)

Here, |px+t – py+t| is the Euclidian distance of a correspond-
ing pair of pixels parameterized by patch index t. The sum
of these distances determines the weight that the patch P
plays in determining the value of the target pixel, and thus
it is the patch’s structural similarity that is decisive for the
scaling of its contribution. While Eqs. (1) and (3) also have a

parameter h for scaling, it is a global parameter that scales all
patches at the same weight. The difficulties we encounter with
R-NLM cannot be solved just by adjusting the factor h, as
we will demonstrate in Sec. II.E. Just as the best registration
is achieved when the two scenes are similar in appearance,
the best NLM-match is obtained when target and prior have a
similar appearance. This is not the case when pairing a clean
prior and a low-dose reconstruction with severe streak arti-
facts. Hence, we require a method that transforms the clean
registered prior image into an image that bears similar arti-
facts as the target image. We can achieve this by first sim-
ulating projections from the registered prior and then recon-
structing it under the same conditions as the target image, i.e.,
with a lower number of projections and at the same viewing
geometry as the target. This gives rise to Fig. 5(g)—which as
we observe looks fairly close to the target image subject to
denoising [see Fig. 5(a)].

The MR-NLM reconstruction procedure is illustrated in
form of pseudocode in Fig. 6. After registering the prior with
the low-dose target, a degraded registered prior is created by
simulating the low-dose artifact also present in the target. The
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Input: 
        Low-dose scan L, normal-dose prior scan N, low-dose degradation D;
Preprocessing:

1. Register N to L using SIFT-flow and obtain N
R
: 

N
R

← SIFT_Flow_Registration (N, L);

2. Generate projections P of N
R
 with the same low-dose degradation D as the input: 

P ← Forward_Projection(N
R
, D);

3. Generate the degraded version of N
R
 – N

DR
 – using FBP: 

N
DR

← FBP(P, D);

Filtering:
        Apply MR-NLM filtering to L with <N

R
, N

DR
> and return the denoised filtered result L

F
:

        L
F

← MR-NLM (N
R
, N

DR
, L);

FIG. 6. Pseudocode of the matched reference-based NLM (MR-NLM).

procedure then uses this degraded registered prior for NLM-
matching, but copies the corresponding candidate pixels in
the clean registered prior to the weighted sum. The resulting
equation is, modifying Eq. (3),

p′
x =

∑
y∈Wx

exp

(
− ∑

t∈P

Ga(t)
∣∣px+t−p

drp
y+t

∣∣2
/h2

)
· p

crp
y

∑
y∈Wx

exp

(
− ∑

t∈P

Ga(t)
∣∣px+t−p

drp
y+t

∣∣2
/h2

) . (5)

Here the subscript crp denotes the clean registered prior, as
before, while the subscript drp denotes the degraded regis-
tered prior.

Figure 5(e) shows the result we obtained for our test exam-
ple. We observe that the edges are now overall significantly

sharper, small features are better visible, and we also see that
the intricate detail in the center of the image, to the left of the
pincushion-shaped dark structure is also clearly restored.

II.E. Comparing NLM, R-NLM, and MR-NLM

Figure 7 compares the three different schemes, using a
case study at “microscopic” detail. In Fig. 7(a), we show a
clean registered prior—the reference. For the matter of this
discussion, we shall focus on the 7 × 7 image cutout—
equivalent to a NLM search window—within the black box
in the lower right half of this image. This cutout shows a por-
tion of a bony structure. In Fig. 7(b), we illustrate the data
flow and operations of all three schemes using the cutout as
an example. In this schematic, the cutout labeled “clean ref-
erence” is a copy of the black-boxed region, while the “tar-
get” is the corresponding cutout in the low-dose scan which
is much degraded. As discussed, the MR-NLM procedure first
simulates the low-dose artifacts in the clean reference pro-
ducing the “degraded reference.” It then uses this image for
NLM-matching, but retains the corresponding pixels in the
clean reference to update the target, yielding the cutout la-
beled “MR-NLM.” On the other hand, the R-NLM proce-
dure (dotted lines) uses the clean reference for matching and
updates the target directly, giving rise to the cutout labeled
“R-NLM.” Finally, the conventional NLM procedure uses the
target for both match and update, producing the cutout labeled

FIG. 7. Comparing the NLM, R-NLM, and MR-NLM filtering schemes in terms of their effect on a 7 × 7 image region equivalent to the size of a search
window. (a) Registered clean prior with black box in lower right image region indicating the region studied. (b) The three pipelines illustrated by example.
(c) The map of pixel contributions for this search window. Each pixel is associated with a 7 × 7 patch centered on it.
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“NLM.” The row of result cutouts demonstrates an increasing
growth in quality from left to right. While the NLM cutout
is quite similar to the low-dose target subject to denoising,
the R-NLM cutout has somewhat sharper detail, in particular
in the center. Finally, the MR-NLM cutout has the most pro-
nounced sharpness—not quite as strong as the clean reference
but fairly close.

Further insight can be obtained from visualizing the dis-
tance map for the NLM search window coinciding with the
studied image cutout. Note that this search window will only
resolve the value for the pixel in the center of the cutout. This
distance map is used for the matching—see Eq. (4). Plotted
in Fig. 7(c) are the corresponding maps for the clean refer-
ence used in R-NLM and for the degraded reference used
in MR-NLM, respectively. We can easily see that the dis-
tances in the latter map are much closer than those in the
former which confirms the better correspondence. The third
map, labeled “degraded/clean” shows the ratio of the two
maps. We clearly see that this ratio is not constant across
the patch and thus a simple boosting of the h-parameter
in the NLM equations would not be able to rectify this
situation.

As for the efficiency of the three algorithms, the compu-
tational complexity is O(NWP) where N, W, and P repre-
sent image size, search window size and patch size, respec-
tively. However, in a GPU implementation, due to the high
pixel independence and therefore potential parallelism, the
speed could be greatly increased. As determined in Ref. 22
for the 2D case, it only takes 18 ms to denoise a 5122 image
with a 112 search window and a 72 patch size. MR-NLM (R-
NLM) incurs a small additional overhead for reading from
two (one) other image(s) and for checking if falling back
to conventional NLM-filtering is more appropriate. Over-
all, the entire algorithm, including FBP reconstruction (see
Ref. 23), SIFT-flow registration (see Sec. II.B), and MR-
NLM or R-NLM filtering, would most likely take on the
order of seconds when accelerated on a high-performance
GPU.

II.F. Assessing image quality

To evaluate the quality performance of the various recon-
struction schemes we have employed two groups of metrics.
The first group encompasses the traditional RMS (root mean
square) and CC (correlation coefficient) measures defined as
follows:

RMS =
√∑N

i=1 (pl,i − pr,i)2

N

CC =
∑N

i=1 (pl,i − μl)(pr,i − μr )√∑N
i=1 (pl,i − μl)2

∑N
i=1 (pr,i − μr )2

. (6)

In these metrics, the pl,i are the pixels in the low-dose re-
construction and the pr,i are the pixels in the corresponding
regular-dose reconstruction, in our case constituted by the
originally obtained scan image. (We note that in our exper-

iments the prior is created by nonlinearly distorting the origi-
nal scan, the low-dose image is created in alignment with the
original scan, and the registration brings the prior back into
approximate alignment with the original scan. Thus, the most
appropriate gold standard is the originally obtained scan). The
μl and μr are the averages of the low and regular dose images
l and r, respectively, and N is the total number of pixels.

The advantage of these metrics is that they are easy to com-
pute and have clear physical meanings. However, they reveal
only little about the perceptual impact certain image differ-
ences may have. The RMS metric computes the pointwise
errors and pools them across the entire image—this ignores
any spatial coherence and so cannot gauge the differences in
structure and contrast that may exist in local pixel neighbor-
hoods. On the other hand, while CC does provide a statistical
measure of image differences, it computes it at a global scale
and it also considers only pixel intensities which are far less
perceptually salient than local contrasts and edges.

As an attempt to better account for human perception when
determining image quality, we have employed metrics that
specifically gauge the preservation of perceptually salient in-
formation, which we define as image content to which the
human visual system is most sensitive to.

The first such metric is E-CC, as defined in our earlier
work.24 It is identical to CC but operates on the edge-filtered
images which we obtain using a Sobel mask. E-CC is still a
global operator but it considers more perceptually salient low-
level image features, i.e., edges that define the boundaries of
the reconstructed objects.

Another metric we employ is the structural similarity index
(SSIM) devised by Wang et al.25 The SSIM is an enhance-
ment of the universal image quality index (UQI) (Ref. 26) also
recently used by Bian et al.19 Both UQI and SSIM combine
the differences in mean intensity, contrast, and structure into
a single quality figure. The SSIM is computed for each image
pixel at position xj over a sliding small image window—we
use an 11 × 11 mask—and then combined into a pooled index
SSIMpooled by averaging the individual SSIM measurements

SSIM =
(

2μlμr + c1

μ2
l + μ2

r + c1

)(
2σlσr + c2

σ 2
l + σ 2

r + c2

)(
σlr + c3

σlσr + c3

)

SSIMpooled = 1

N

N∑
j=1

SSIM(xj ). (7)

Here, the subscripts l and r denote the low-dose and regular-
dose images, respectively, and the μl and μr are the means
of the pixels within these corresponding windows, while the
σ l and σ r are their standard deviations and the σ lr is their
covariance. The constants c1, c2, c3 are typically small (see
Ref. 25) and prevent numerical instabilities when a denom-
inator is close to zero—the UQI does not have these con-
stants which can lead to wrong estimates when these adverse
conditions are met. Finally, to avoid blocking artifacts Wang
et al. recommend a Gaussian-weighting of the samples under
a SSIM window. Since SSIM is the generally accepted name
of the metric, we will use it throughout the paper but it is un-
derstood that we use its pooled version.
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The first term in Eq. (7) is quite consistent with the just-
noticeable intensity difference (JND) metric often used in
perceptual quality studies. The second term compares the lo-
cal contrasts that exist in the sliding window. Finally, the third
term evaluates the structural similarity after the differences in
means and contrasts have been accounted for. The SSIM is
quite powerful—studies that ask human observers to rank im-
ages with identical scenes, but corrupted with different arti-
facts, in terms of quality show that these ranking correlate ex-
ceedingly well with the SSIM outcome. Furthermore, it is also
interesting that in these studies all images had the same RMS
error. Finally, large experiments27 have shown that SSIM is
particularly well suited to detect distortions caused by noise.
It also detects spatially correlated noise, which in CT images
could mimic false features.

III. RESULTS

We have run the algorithms described above on two
datasets: a head phantom and a human lung. The head phan-
tom is part of a body phantom scanned with a GE Light-
Speed scanner. The human lung scan was obtained from the
“Give a Scan” dataset collection.31 Specifically we used the
first dataset series 2 of patient p0015 obtained with a GE
LightSpeed16 scanner. For all examples, we used the orig-
inal floating-point reconstructions for three purposes. First,
they served as the basis for a high-quality projection simula-
tion in fan-beam geometry (fan angle = 20◦). We then picked
a subset of these projections and reconstructed the reduced-
projections low-dose imagery studied in this paper. Second,
we also used them to generate the priors. For this, we applied
various nonlinear distortions on them and subsequently regis-
tered them to the low-dose reconstructions. Third, they repre-
sented the gold standard for all numerical quality assessment
via the various metrics described in Sec. II.F.

We begin with the head phantom already examined in
Sec. II to illustrate the outcomes of the various algorithms.
Table I and Fig. 8 compare the results obtained for MR-NLM,
R-NLM, NLM, TVM, and no filtering, as gauged by the RMS,
CC, E-CC, and SSIM error metrics. Table I also gives the set-
tings for the various algorithm parameters which we manually

FIG. 8. Graphical comparison of the results obtained for the head phantom
via various error metrics.

TABLE I. Numerical comparison of the results obtained for the head phan-
tom via various metrics. The percentage figure for a metric measures the im-
provement with respect to the method to its immediate left. To the left of
the % cell, above the scores, we list the optimal parameter setting for each
algorithm which we obtained by manual tuning.

W/O TVM NLM R-NLM MR-NLM

N/A λ = 30 (%) h = 220 (%) h = 200 (%) h = 120 (%)

RMS 165 123 25.4 126 2.4 57 54.8 45 21.0
CC 0.96 0.98 2.1 0.98 0 0.99 1.0 0.99 0
E-CC 0.62 0.73 17.7 0.74 1.4 0.94 27.0 0.96 2.1
SSIM 0.43 0.53 23.2 0.53 0 0.95 79.2 0.97 2.1

tuned for optimal performance. The first observation we make
is that all metrics show similar trends (but we also observe that
CC is much less sensitive to the changes in image quality). In
general, for the CC, E-CC, and SSIM the maximum possi-
ble value is 1.0, while for the RMS error the optimal value
is 0. In this particular experiment, all metrics reach their best
values for the MR-NLM algorithm—around 0.97 for the per-
ceptual metrics—and their worst values when no filtering is
applied. It also appears that NLM and TVM reach quite sim-
ilar scores for each metric, with a slight advantage for NLM.
This can be verified by comparing the images (see Fig. 2)
which look fairly similar. The improvement of R-NLM over
NLM is significant for both RMS (54%) and the perceptual
metrics (27% for E-CC and 79% for SSIM). The improve-
ment for MR-NLM over R-NLM is another 21% for RMS,
and 2% for the two perceptual metrics.

The absolute difference images presented in Fig. 9 show
similar trends. Marked improvements can be observed for
R-NLM over the prior-less schemes, and more moderately
for MR-NLM over R-NLM. The improvement achieved by
R-NLM is mainly in streak removal. MR-NLM, on the other
hand, adds sharpness and detail definition which can be ap-
preciated by the overall much smaller errors, in particular at
edges and sharp corners.

In order to better explore the performance of the various
algorithms at the local detail level we have conducted a ROI-
based analysis (see Fig. 10). Figure 10(a) depicts the locations
of four ROI regions and Fig. 10(b) plots the corresponding
SSIM scores. We observe a 7%–8% improvement for R-NLM
over NLM in all four ROIs and another 7%–8% in ROI 2, 3,
and 4 for MR-NLM over R-NLM. ROI 1 contains a fairly
structured and high-contrast feature which is less in need of

TABLE II. Numerical comparison of the results obtained for the human lung
via various metrics.

W/O TVM NLM R-NLM MR-NLM

N/A λ = 20 (%) h = 260 (%) h = 180 (%) h = 120 (%)

RMS 222 154 30.6 153 0.6 128 16.3 120 6.2
CC 0.92 0.96 4.3 0.96 0 0.97 1.0 0.98 1.0
E-CC 0.6 0.69 15.0 0.71 2.9 0.81 14.1 0.85 4.9
SSIM 0.49 0.61 24.5 0.61 0 0.66 8.2 0.69 4.6
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FIG. 9. Absolute difference images for the head phantom reconstructions. (a) MR-NLM; (b) R-NLM; (c) NLM; (d) TVM; and (e) without filtering.

the added fidelity of the MR-NLM scheme. Lastly, Fig. 11
presents the ROI study visually in form of cutout details,
which best demonstrate the considerable benefits the MR-
NLM restoration method provides. We observe that all ROIs
show significantly more detail for MR-NLM, as opposed to R-
NLM. In fact, the reconstructions are quite close to the ideal
image. On the other hand, the differences of R-NLM vs the
prior-less methods are also significant, but not as marked as
for MR-NLM vs R-NLM.

Next, Fig. 12 show the same sequence of results obtained
with the human lung, reconstructed from 90 projections over
360◦. The distortion applied was a fisheye warp. Figure 13
presents difference images, and Table II lists and Fig. 14

plots overall evaluations with the various metrics. We make
similar observations as for the head phantoms but note that
in this test case the quantitative improvements for R-NLM
and MR-NLM are more balanced and the MR-NLM/R-NLM
gain is about double than that for the head phantom. Finally,
Fig. 15 depicts ROI-definitions and the SSIM-scores for the
studied restoration schemes. Figure 16 shows the cutout de-
tails. Again, we see that MR-NLM significantly improves the
fidelity of small detail and in fact it is even able to restore
some of the original CT image noise texture that was part of
the prior.

Finally, Fig. 17 explores the effect of different search
window sizes, for the human lung. The size needed mainly
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FIG. 10. ROI-based analysis for one slice of the head phantom. (a) ROI locations and (b) SSIM evaluation.
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FIG. 11. Comparing the four ROIs defined in Fig. 9 visually.

(a) prior (b) registered prior (c) degraded registered prior 

(e) TVM-filtered (d) low-dose reconstruction

(g) R-NLM-filtered (h) MR-NLM-filtered (i) ideal phantom

(f) NLM-filtered

FIG. 12. Results obtained for the human lung.
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FIG. 13. Absolute difference images for the human lung. (a) MR-NLM; (b) R-NLM; (c) NLM; (d) TVM; and (e) without filtering.

FIG. 14. Graphical comparison of the results obtained for the human lung
via various metrics.
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FIG. 16. Comparing the two ROIs defined in Fig. 14 visually.
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FIG. 15. ROI-based analysis for one slice of the human lung. (a) ROI locations and (b) SSIM evaluation.
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15×15 11×11 7×7 

FIG. 17. Comparing the results obtained with three search window sizes.

depends on how well the registration performs and how much
the overall structure changes between low-dose and normal-
dose scan. A larger size results in more smoothness and a re-
duction of detail, but it also increases robustness when the reg-
istration is not perfect. As mentioned, we have used a 7 × 7
window for all experiments and as this figure demonstrates
this window size provides a good trade-off on smoothness and
detail preservation.

IV. CONCLUSIONS

We have demonstrated an efficient noniterative framework
for low-dose CT image reconstruction that utilizes an avail-
able prior regular-dose scan to assist in the NLM-based regu-
larization of a filtered backprojection reconstruction plagued
with significant low-dose artifacts. We have specifically ad-
dressed the case when dose reduction is achieved with a lesser
number of projections which typically results in severe streak
artifacts. Therefore, the reduction of the dose is directly re-
lated to the reduction of projections. We find that a crucial el-
ement in this effort is to simulate the same low-dose artifacts
also in the registered prior to facilitate a more accurate struc-
ture matching for subsequent regularization with samples in
the registered clean prior. The overall purpose of this work
is to make the low-dose image faster readable by reducing
the streak artifacts and increase the visibility of the features.
While all of these image features can also be seen in the low-
dose image, recognizing them requires a time-intensive vi-
sual inspection which reduces diagnostic throughput and also
makes clinical reasoning much more difficult.

The main limitation in using our method for reducing the
number of views is the registration of the prior with the de-
graded reconstruction image. We have chosen the SIFT-flow
method which we found to perform better than the Demon
algorithm28 in the presence of noisy data. We suspect that this
might be because SIFT-flow uses a structure-sensitive feature
descriptor at multiple scales and might ignore noise artifacts
better. One item of future work is to test other registration
methods and see if they perform even better and so allow a
further reduction of projections. It would also be interesting
to use the SIFT-flow registration technique for noisy recon-
structions obtained with low mA or kV settings and compare

the outcome with those obtained using the EMP-MI approach
of Ma et al.14

Another topic of study is to see how sensitive the method
is with regards to newly appearing or vastly changing features
in the follow-up low-dose scan. Our NLM-based matching
scheme is designed to fall back to conventional NLM if no
reliable match can be found in the registered neighborhood.
Future work will study this fail-safe design using a wide set
of structures in a rigorous fashion. Further, we also aim to per-
form a detailed study with regular-dose and subsequent low-
dose projection data directly obtained from a scanner, which
we did not have access to for this present work. But neverthe-
less, we believe that our results clearly demonstrate the con-
ceptual merit of our method.

Further, we find that the perceptual image quality metrics
track quite well what can also be visually observed from the
reconstructed images. Specifically, we find that our efficiently
computed E-CC metric shows similar trends as the more com-
putationally involved SSIM metric. It therefore represents a
good alternative when image evaluation must be fast. For fu-
ture work, we plan to involve clinicians in the image assess-
ment to further validate the suitability of E-CC and SSIM for
our purposes.

Current work also focuses on accelerating the R-NLM and
MR-NLM frameworks entirely on the GPU in order to in-
crease appeal to clinical applications, also in conjunction with
our clinician-based validation and fine tuning.
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