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Abstract—In this work, we present an approach that can
synthesize novel CT images across the full Hounsfield range
using a very small annotated dataset of around thirty patients
and a large non-annotated dataset with high resolution medical
images. Our method uses these two datasets in a sequence of steps
involving texture learning via StyleGAN and semi-supervised
learning via CycleGAN to generate a large annotated medical
dataset suitable for use in deep learning algorithms for medical
applications. Using an anatomy exploration interface we can
then generate CT images with anatomies that were non-existent
within either of the datasets, without compromising accuracy and
quality. We show that our approach works for all Hounsfield
windows with minimal depreciation in anatomical plausibility.

Index Terms—medical imaging, GAN, deep learning, style loss

I. INTRODUCTION

Deep learning in medical applications is limited due to
the low availability of large labeled, annotated or segmented
training datasets. The scarcity in such datasets persists not only
because of privacy and ownership concerns but also because
of the high cost of labeling such datasets by human experts.
Likewise, publicly available annotated high resolution image
datasets are also often very small or even non-existent.

We present an approach to reduce or even eliminate the
problem of such small datasets by converting them into large
datasets without the loss of anatomical accuracy. Our approach
goes beyond simple data augmentation techniques like stretch-
ing or flipping existing images and adds new data instances
with anatomies that may not even exist in these datasets. With
this approach we are able to increase not only the size but the
overall diversity of images in datasets significantly.

We use a dataset of segmented CT images from thirty
patients and a large dataset of unsegmented CT images. Our
method builds on our previous work of texture learning [1]
to expand the small annotated dataset with textures present in
the large dataset. Subsequently we extract segmentation maps
from the unsegmented large dataset via a trained U-Net. Next
we train a cycleGAN on both the small segmented data and
large unsegmented data in an alternate fashion to generate new
images with segmentation maps as inputs. This synthesis step
expands on our previous work [3] and explores the PCA space
of segmentation maps in conjunction with the cycleGAN to
create CT images with novel anatomies not present in either
of the datasets.

Fig. 1. Flow starts at the top right corner with two datasets - a small segmented
and a large unsegmented dataset. Three different Deep-Learning networks are
used starting from a StyleGAN followed by a U-NET segmentation network
and 5 CycleGANs which train generators for the final step.

II. METHODS

Figure 1 highlights our sequence of steps. We will briefly
summarize each step in the same sequence below.

A. Texture Augmentation

The smaller dataset consists of chest CT scans with seg-
mentation maps (lungs, heart, etc.) of 30 patients. The larger
dataset consists of non-annotated chest CT scans of ∼14k
patients. To use the two datasets together we modified the
textures of the smaller dataset with those of the larger one,
augmenting the smaller annotated dataset 3-fold. We used the
network architecture of [1] for segment-wise texture learning
and created new CT images with the anatomy from the small
dataset and the textures from the larger dataset.

B. Further Augmentation from Label Training

We train a U-Net [4] to output a segmentation map given
a chest CT image as input. We use the augmented annotated
dataset created in the previous step for training our U-Net.
Having similar textures across the two different datasets helps
in training a segmentation network on one dataset to segment
the images of another. We use the trained U-Net to segment
all 14k patient images. Since the smaller dataset has limited
anatomy, there are errors in the segmentation outputs of
the larger dataset. k-NN classifiers are used to rank them
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Fig. 2. Above figure shows two examples of novel ct scans generations. The sequential training and generation learns the correlations of anatomical details
and could be clearly seen within the columns as we move from left to right. The last two columns depict the anatomical consistency observed in different
HU windows than in generated ones. Each red arrow represents a generator of the two generators trained in a cycleGAN setup for corresponding modalities

by accuracy using certain characteristics of the segmentation
images. We choose the best 1/4 of segmentation outputs and
add them with their CT scans to the smaller segmented dataset.
This dataset along with the larger dataset of unsegmented
images is then used to train the generators for the synthesis.

C. Decomposing the Hounsfield Range for Generation Steps

Fig. 3a shows the average distribution of pixels values of
a chest CT-scan over HU values. Fig. 3b shows an image in
(-160, 240) HU range while Fig. 3c shows an image in (-
600, -1000) HU ranges. Two separate generators are used to
generate these HU ranges thereby assisting the GANs to focus
on the minute details within these ranges since discriminators
within a GAN setup focus on the accuracy of the majority
group of pixels within a particular HU range. Hence we use
five generators to generate five distinct sets of images for five
distinct HU ranges for a single CT image generation. We first
generate the middle HU range image using the segmentation
map as input since it details the major anatomical features
such as bones and organs. We then use this generated image
as input for generating the other HU range images (Fig. 2).

D. Paired and Unpaired Training via CycleGAN

We follow the network architecture of [2] for paired and
unpaired training. We use a different algorithm and data setup
for training since our paired and unpaired datasets come

Fig. 3. We use 5 CycleGANs to train 5 generators for 5 non-overlapping HU
ranges (-1000, -600), (-600, -160), (-160, 240), (240, 640), (640, 1000).

from different sources. We use only the large CT dataset for
unpaired training while we use all the segmentation maps
for both paired and unpaired training. Training was done in
an alternate fashion; every iteration of paired training was
followed by two iterations of unpaired training to learn the
anatomical diversity present in the unsegmented dataset. As
mentioned before. we have five such setups to produce five
relevant generators to cover all five HU ranges.

E. Addition of Segmentation Maps via PCA

The larger dataset contains CT scans of around 14k patients
while we have segmentation maps for only 3k patients. To
balance the number of segmentation maps with CT-scans for
training the cycleGAN we interpolate new segmentation maps
in the PCA space of existing ones. For this we used our
previous methodology [3] of representing segmentation maps
as a set of B-Spline curves. Since interpolations may not
be perfect anatomically we use k-NN classifiers to rank the
validity of segmentation maps and chose the best ones as
input for training the generators in paired/unpaired training
in a cycleGAN [2] setup. The creation of new segmentation
maps also helps in creating CT images with novel anatomy.

III. RESULTS

Fig. 2 shows the image synthesis sequence we use to
cover the full HU-range. Shown are two CT images which
exhibit novel anatomy. The left two columns demonstrate their
anatomical consistency in the lung and bone windows.
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