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Dimensional Space Exploration with Multi-
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Abstract — Although the Euclidean distance does well in measuring data distances within high-dimensional clusters, it does 

poorly when it comes to gauging inter-cluster distances. This significantly impacts the quality of global, low-dimensional space 

embedding procedures such as the popular multi-dimensional scaling (MDS) where one can often observe non-intuitive layouts. 

We were inspired by the perceptual processes evoked in the method of parallel coordinates which enables users to visually 

aggregate the data by the patterns the polylines exhibit across the dimension axes. We call the path of such a polyline its 

structure and suggest a metric that captures this structure directly in high-dimensional space. This allows us to better gauge the 

distances of spatially distant data constellations and so achieve data aggregations in MDS plots that are more cognizant of 

existing high-dimensional structure similarities. Our bi-scale framework distinguishes far-distances from near-distances. The 

coarser scale uses the structural similarity metric to separate data aggregates obtained by prior classification or clustering, while 

the finer scale employs the appropriate Euclidean distance.  

Index Terms— Information Visualization, Multivariate Visualization, Clustering, High-Dimensional Data, Visual Analytics 

 

 

1 INTRODUCTION

HE recognition of relationships embedded in high -

dimensional (multi-attribute) data remains a chal-

lenging task, and visual analytics has been identified  

as a powerful means to aid  humans in this mission. Visu-

al analytics appeals to the intricate pattern recognition 

faculties of the human visual system which can recognize 

relationships with ease when presented  in a su itable vis-

ual manifestation [4]. One such paradigm, especially use-

fu l for the visualization of high -D data relationships on a 

2D canvas amenable to human perception is multi-

dimensional scaling (MDS) [15][24]. MDS seeks to visually 

group data objects so that similar objects are close to each 

other and d issimilar data objects are far away, as judged  

by some similarity metric. As such, MDS provides a good 

visual overview on the data. 

However, w hen using these types of overview dis-

plays it is important to realize that relationships por-

trayed with MDS (or any other low -D embedding tech-

nique) are still only approximations. There are numerous 

ways to embed high-D data into 2D, and unless the high-

D space is trivial, there are always data relationships that 

are being suppressed . While the protocol used  to opt i-

mize the embedding certainly plays a significant role 

here, the similarity metric used  to gauge the d istance rela-

tionships plays another important part.  

By far the most popular metric to guide 2D MDS (and 

other) layouts for the visualization of high -D data is the 

Euclidean d istance. However, once the number of d imen-

sions grows, the contribution of each coordinate to the 

Euclid ian d istance rapid ly decreases and  u ltimately all 

high-D data points have similar d istances from one a n-

other [2]. As a consequence, a low -D embedding compu t-

ed  from these d istances is not overly robust to small d is-

tance perturbations and this and other peculiar phenom-

ena associated  with high-D space are commonly referred  

to as the curse of dimensionality  [2]. In fact, it is already at 

relatively low dimensionality, say 10, that the use of the 

Euclidean d istance as a means to gauge the spatial prox-

imity of two distant points becomes questionable [3].  

MDS is well su ited  to show proximity relationships in 

the data, however any quantitative information on the 

data points is lost. Hence, MDS is often used  in conjunc-

tion with parallel coordinate (PC) plots [13] by which ana-

lysts can inspect the data at an attribute level. A PC plot is 

generated  by erecting a set of parallel coordinate axes – 

one per attribute. Each data point then gives rise to a 

piecewise linear line called  polyline which is defined by 

connecting the corresponding attribute values on these 

parallel axes. We shall call the path of such a polyline its 

signature or structure. By looking at these plots, u sers vis-

ually aggregate the data by the patterns the polylines ex-

hibit across the d imension axes. The usefulness of parallel 

coordinates for practical applications executed  by main-

stream users has been demonstrated  by Siirtola et al. [21].   

T 

———————————————— 

 Jenny Hyunjung Lee and Klaus Mueller are with the Visual Analytics and 
Imaging Laboratory, Center for Visual Computing, Computer Science De-
partment, Stony Brook University, Stony Brook, NY. Email: {hyunjlee, 
mueller}@cs.sunysb.edu. 

 Kevin  T. McDonnell is with the Department of Mathematics and Comput-
er Science, Dowling College, Oakdale, NY, Email: mcdonnek@dowling.edu 

 Dan Imre is with Imre Consulting, Email: dimre2b@gmail.com  
 Alla Zelenyuk is with the Chemical and Material Sciences Division, Pacific 

Northwest National Lab, Richland, WA. Email: alla.zelenyuk@pnnl.gov  

mailto:hyunjlee,%20mueller%7d@cs.sunysb.edu
mailto:hyunjlee,%20mueller%7d@cs.sunysb.edu
mailto:mcdonnek@dowling.edu
mailto:dimre2b@gmail.com
mailto:alla.zelenyuk@pnnl.gov
suny-korea
Text Box
This paper is © IEEE and appeared reformatted in IEEE Trans. on Visualization and Computer Graphics, 20(3): 351-364, 2014. DOI 10.1109/TVCG.2013.101




2 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 

 

Fig 1: Comparing eDist (Euclidian distance) to sDist (pattern simi-

larity distance). (a) Relative contrast as a function of dimensionality 

with un-clustered data – a single Gaussian distribution with 1,000 

points. We observe that sDist has a higher value dynamic range 

than eDist throughout. This means that sDist offers a wider spread 

of distinct distances. (b) Distance distribution of clustered data – a 

mixture model of 5 Gaussians distributions with 200 points in 200-

D space. The first peak is due to intra-cluster distances, while the 

second peak is due to inter-cluster distances. We observe that 

sDist has a larger separation between the two peaks. This means 

that sDist can distinguish clusters better than eDist.  

 

  (b) Clustered data (a) Non-clustered data 

 

Typically there is no explicit support for analysts to as-

sess the d istances of these polyline patterns – they simply 

use their own human perceptual system to make such 

associations. We therefore ask – can we capture these per-

ceptual processes into a d istance metric that can  then be 

used  to drive the linked  MDS layout? This in turn would 

be vastly beneficial because having the same underlying 

d istance metric would  make these two displays more mu-

tually consistent and complementary. We propose such a 

metric in this paper.  

In the following, Section 2 presents an overview and 

motivation of our work, Section 3 offers a d iscussion of 

related  efforts, Section 4 presents background on embed-

ding algorithms and Section 5 describes the theory of our 

metric. Section 6 presents the datasets and  Section 7 de-

scribes our framework and compares it with other ap-

proaches. Section 8 provides a few case studies using our 

system, Section 9 presents a d iscussion , and Section 10 

ends with conclusions and an outlook onto fu ture work. 

2 OVERVIEW AND MOTIVATION 

We seek a perception-motivated  metric that can compare 

clusters in terms of the patterns they exhibit across their 

attribute (d imension) levels. This metric would  capture 

d ifferences in the structure of the d imension signature of 

two data points. In other words, we would  regard  two 

data points d issimilar if their d imension signatures had 

low correlation and  d ifferent variances and means. An 

excellent metric that can be adapted  to gauge this type of 

similarity is the Structural Similarity Index (SSIM) [25]. The 

SSIM is a perceptual metric popular for measuring the 

quality of compressed  video and images, compared to 

some reference medium. We formally introduce our per-

ceptual similarity metric, termed sDist, in Section 5.  

We first ask – does our perceptual d istance metric have 

good potential to yield  a better d istance measure than the 

Euclidean d istance for high-D space? To determine this 

we can make use of the concept of relative contrast [1]:  

max min

min

lim 0
m

dist dist

dist


  (1) 

where distmax and  distmin are the minimum and maximum 

distances, respectively, in a given high-D data d istribu-

tion, and m is the number of d imensions. So essentially, as 

m increases, the d istances between pairs of data points 

become increasingly indistinguishable and this adversely 

affects the MDS layout. While this is a property of any 

d istance metric, some will do better than others. 

As a first experiment on gauging the effectiveness of 

our pattern-similarity d istance (sDist) in comparison with 

the conventional Euclidean d istance (eDist), we created  a 

Gaussian-distributed  dataset with 1,000 points and a var-

ying number of intrinsic d imensions. For each metric, we 

computed  the d istances for all point pairs, determined 

distmin and  distmax and  normalized  these d ifferences by 

distmin. The results are plotted  in Fig. 1a. We observe that 

sDist has a consistently higher relative contrast than eDist, 

for all d imensionalities. While this does not overcome the 

curse of d imensionality, it does produce a better d istribu-

tion of point d istances for the MDS layout.  

Next we created an artificial Gaussian mixture dataset 

in 200-D with 5 clusters and 200 data points each. For 

each metric, we computed  the histogram of d istances for 

each point pair, normalized them by the maximum dis-

tance of each metric and plotted  the curves sh own in Fig. 

1b. Both metrics exhibit a bimodal d istribution of d istanc-

es. The first mode is due to intra-cluster d istances, while 

the second mode is due to inter-cluster d istances. It is 

interesting to see that the two modes for our pattern -

similarity metric are significantly more separated  than for 

the Euclidean metric. This separation is sufficiently large 

and cannot be explained by any additional scaling effects 

– we already normalized  the d istances. 

This example demonstrates that there are typically two 

modes in the d istribution of point-pair d istances: one for 

mutually close points located  inside a cluster and one for 

far-spaced points that are part of d ifferent clusters. Clus-

tering algorithms like k-means can identify points that are 

close even in high-D spaces, and in many cases classifica-

tion tags already exist that can semantically group data 

points. So, while the overall density of points in the vast 

ocean of high-D space is low, there are dense island s of 

points (the clusters) that are mutually relatively close – 

close enough to gauge nearest-neighbor relations and 

proximity via the Euclidean d istance. Using this d istance 

at that scope is also the most appropriate one because it 

most accurately defines the small-scale and nuanced d e-

viations among neighboring points. This recognition 

gives rise to what we call a bi-scale metric – it uses the Eu-

clidean d istance at the local (intra-cluster) scale and pat-

tern-similarity at the global (inter-cluster) scale. 

3 RELATED WORK 

A prominent method for high-D data visualization is via 

an m×m matrix of 2D scatterplots [11], but since multivar-
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iate relationships are d istributed  across the matrix of 

plots, they can be d ifficult to d iscern. To overcome this 

problem, Nam and Mueller [17] devised  an interactive 

user interface and framework that allows users to control 

multivariate dynamic scatterplots. Alternative to these 

d irect projection methods, 2D embedding techniques 

“flatten” the high-D space to render the points optimally 

on a 2D canvas. Apart from the aforementioned MDS 

(used e.g. by Yang et al. [28]), also popular are methods 

bases on Linear Discriminant Analysis (LDA). An inter-

esting recent work in the latter area is the LDA-based 

framework by Choo et al. [7][8] which decomposes the 

process into two stages. The first stage uses LDA to max-

imize the d istance of cluster centroids. It achieves this 

well-spaced layout in part by shaping the clusters them-

selves compactly: in the limit, to a single point. Since LDA 

can only reduce the number of d imensions to k – 1 (k is 

the number of clusters, and typically k – 1 is greater than 

2), the second  stage gives users visual tools that allow 

them to explore and select two dimensions to be used  for 

the final 2D scatterplot layout. Oesterling et al. [19]  chose a 

similar two-stage framework as Choo et al. They also first 

use an LDA-based strategy to create an intermediate repre-

sentation, but then generate a topology-based layout in the 

second stage. The topological features are determined by 

user-guided  density filtering. We, on the other hand, 

aimed for an automated approach . Finally, both LDA-

based approaches focus more on discrimination than on 

preserving distance relationships. Therefore, if there are 

many clusters, their data layouts might look uniformly dis-

tributed, suppressing true distance relationships.  

There are also geodesic and  kernelized  d istance met-

rics as used  in popular algorithms such as Isomap [23], 

Locally Linear Embedding (LLE) [20], Diffusion Map Er-

ror! Reference source not found. and  the random walk 

version of t-SNE [14]. All of these employ neighborhood 

graphs and measure the d istance of two poin ts as a geo-

desic path across this graph. Conversely, our metric 

measures the d istances d irectly, without involving any 

other points. 

Finally, as mentioned, the method of Parallel Coord i-

nates [13] reduces a high-D data point to a piecewise line-

ar curve. While the emerging ensemble of lines can reveal 

data patterns, it often occurs that a pattern of interest is 

fu lly or partially occluded by other data patterns. Interac-

tion can help to isolate a desired  pattern and so reduce 

the clu tter, or one might hide unnecessary detail via ana l-

ysis-informed illustrative abstraction [18].  

4 EMBEDDING ALGORITHMS 

In the following we provide more detail on MDS and 

LDA, which are referred  to in later sections of this paper.  

4.1 Multi-Dimensional Scaling (MDS) 

The essence of MDS is to embed the set of high-D data 

points into low -D space – mostly 2D in visualization ap-

plications. We are given a set of n points X  = (x1, x2, ... , xn) 

in m-d imensional space and compute from them an n×n 

d istance (or similarity, ad jacency) matrix with high-D 

distances              . We then seek to reduce this 

matrix to an n×n d istance matrix with 2D distances 

             , where y i,j, 0 ≤ i,j < n, are the locations of 

the corresponding points on the 2D canvas. This comes 

down to the following optimization problem: 

 
2

1min( ,.., )n i j ij

i j

y y y y  


   (2) 

Two main approaches exist to find  this minimum. The 

first was devised  by Torgerson [24] and is typically re-

ferred  to as classical MDS. It seeks to obtain the embed-

ding by fitting inner products, using Singular Value De-

composition (SVD) of XX T. The other variant is based  on 

the initial work of Kruskal [15] known as distance scaling 

MDS. It obtains the embedding by non-linear optimiza-

tion, which is often achieved using a spring-model ap-

proach. For the classical method, since X  is typically ra-

ther large, there are two popular algorithms, called  Land-

mark MDS [22] and Pivot MDS [5] that only optimize for a 

representative subset of the points and then place the r e-

maining points with respect to these locations. Several 

algorithms have sought to improve on both of these prin-

cipal MDS approaches. However, their focus was primari-

ly on reducing local minima for more accurate 

embeddings achieved at higher speed, but still using the 

Euclidean d istance as a d istance metric – in fact, the Eu-

clidean d istance has been the most often used  d istance 

metric for 2D MDS in visualization research. One of these 

techniques is Glimmer [12], which uses a sophisticated  

multi-level approach for classical MDS. Glimmer was 

inspired  by the multigrid  method devised  for d istance 

scaling MDS by Bronstein et al. [6]. It is in some sense 

related  to the user-steerable MDS approach described by 

Williams and Munzner [27]. We employ Glimmer’s multi-

level MDS strategy, but instead  of using the Euclidean 

d istance for  ij, we u tilize the more robust bi-scale pattern 

similarity/ Euclidean d istance metric that is subject of this 

paper.   

4.2 Linear Discriminant Analysis (LDA) 

LDA aims to project the data from high-D space into an 

optimal lower-D space by maximizing the ratio of be-

tween-cluster variance and  within-cluster variance. This 

guarantees maximal separability of clusters. Following 

the notation of Choo et al. [7], we define a d imension-

reducing linear transformation GT as: 

11:   lTmT RxGzRxG  (3) 

With m being the d imensionality of the original data 

space, GT maps an m-d imensional data vector x in Rm to a 

vector z in l-d imensional space R l (m > l). We call this re-

duced d imensional space intermediate space, since typically 

l > 2. Let us assume we have k classified  clusters i, each 

with N i points and centroid  c(i). We can then define the 

within-cluster scatter matrix Sw and  the between-cluster 

data scatter matrix Sb on the clustered  data points aj, jN i:   

  

 

 (4) 
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where c is the overall centroid . Following the general 

LDA strategy, the approach of Choo et al. then  maximizes 

trace(GT Sb G) and  minimizes trace(GT Sw G) in the reduced 

d imensional space. This yields the desired  embedding 

where the k clusters are optimally spaced apart, at the 

expense of compressing the data points inside the clusters. 

The two optimizations are simultaneously satisfied  and 

can be approximated  in a single form: 

))()((max)( 1

/ GSGGSGtraceGJ b

T

w

T

wb


 (5) 

The solu tion, 
LDAG , is a matrix in which the columns are 

the leading generalized  eigenvectors u of the generalized  
eigenvalue problem : 

uSuS wb 
 (6) 

Lastly, the m-d imensional data vectors are projected  into 

the l-d imensional space. This space has d imensionality l = 

k – 1 at most and so does not produce the desired  2D lay-

out as yet. This is somewhat of a shortcoming for LDA, 

and there are many choices how to go from l to 2.  

Choo et al. offer two strategies for this. Their first 

method, called  Rank-2 LDA  [7], chooses the two dimen-

sions with the largest lead ing generalized  eigenvalues, 

while their second method [8] allows users to select the 

two dimensions via an interactive framework that uses a 

parallel coordinate d isp lay with bivariate scatterplots for 

each axis pair. We shall refer to this second , more general 

method as Selected-2 LDA .  

As mentioned, all LDA-based approaches generally focus 

more on cluster discrimination than preserving distance 

relationships. Therefore, if there are many clusters, their data 

layouts might look uniformly distributed, suppressing true 

distance relationships. In contrast, our goal is to find  a per-

ceptually-motivated  similarity metric that preserves the 

pattern that data items (clusters) have in high-D space. 

Using MDS with the pattern similarity d istance metric 

also enables a well-separated  global cluster layout in 2D, 

but unlike the two-stage LDA approach, this layout is 

optimized for d irect 2D embedding and does not require 

user interaction. In addition, our local Euclidean d istance 

metric – the second scale in our bi-scale framework – pre-

serves the local cluster appearance well and does not ap-

pear compacted . 

5 THE STRUCTURE BASED DISTANCE METRIC 

As mentioned, we derive ou r new high -D distance metric 

from the Structural Similarity Index (SSIM) [25] which has 

found popular use in the quality assessment of com-

pressed  video and images. The SSIM is a refinement of 

the image quality index (UQI) [26]. Both metrics have 

been designed to quantify the d ifference between a de-

graded  image – for example, by a compression algorithm 

– and a high-quality reference image. Their effectiveness 

has been amply verified  in large-scale user studies [26]. In 

the following, we first describe the SSIM and then show 

and demonstrate its adaption to high -D data spaces.  

5.1 The Structural Similarity Index (SSIM) 

The Structural Similarity Index (SSIM) evaluates three 

image-centric measures – luminance L, contrast C, and  

structure S [25]. Formally:  
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All measures are based  on the image luminance va l-
ues. The x and y stand  for the two images to be compared, 

   and     are the mean values, σx, and  σy are the standard 

deviations, and σxy is the covariance of the two images. 
The constants c1, c2, and  c3 are typically small and prevent 
numerical instabilities when the main terms are close to 
zero. We use the settings suggested  by the authors [25], 
which are c1 = (K1L)2, c2 = (K2L)2, c3 = c2/ 2, where K1 = 0.01, 
K2 = 0.03, and L is the dynamic range of the values. 

The first SSIM term is the luminance comparator with 

a dynamic range of [0, 1]. It judges how similar the mean 

luminance is, and the best value of 1 can be obtained 

when both means are identical. The second term com-

pares the contrast between two images. Its dynamic range 

is [0, 1] and it can be 1 only when both variances are iden-

tical. Finally, the third  term  is the structure comparator. It 

measures the degree of linear correlation between two 

images. Its dynamic range is [-1, 1], and the best value of 

1 can be obtained when they are perfectly linearly corre-

lated . This term evaluates the structural similarity after 

the d ifferences in mean and contrast have been accounted  

for. The three components can be exponentially scaled 

with d ifferent weights, with α>0, β>0 and γ>0, according 

each component’s importance. 

In practice [25], the SSIM metric is typically computed  

over a slid ing 11×11 window, in conjunction with a 

Gaussian weighting with standard  deviation of 1.5 sam-

ples, and then averaged into a single descriptive number. 

This models the property of the human eye to focus on 

small local image regions at a time. One obtains: 

1

1
  ( , )

wn

pooled i i

iw

SSIM SSIM x y
n 

   (8) 

where nw is the number of slid ing windows.   

5.2 Adapting the SSIM to High-D Data Spaces 

The SSIM and UQI metrics were originally devised  in 

response to the inadequacy of the RMS error to capture 

the structural d istortions that give rise to the perceived 

d ifference between two images. Since the RMS error is 

strongly based on the Euclidean d istance, it is sensible to 

also use this metric to overcome the problems of the Eu-

clidean d istance in gauging the (d is)similarity of two 

high-D points. To the best of our knowledge, the 

SSIM/ UQI has never been used  outside the image pro-

cessing domain. 

To make the analogy from the image domain to high-D 

data spaces let us recall ou r introductory d iscussion on 

the method of parallel coord inates. As mentioned, PC is a 

popular means to assess all (or a selected  number of) at-

tribute values of a high-D data point simultaneously in 

one d isplay. Now, just like a gray-level image consists of 

pixel intensity patterns that span the spatial domain, a 

high-D data point visualized  in PC consists of the pattern 

a polyline generates as it undulates across the parallel 

axes. We argue that the visual qualities human analysts 
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   (a) Same Mean   (b) Different Mean 

(c) Experiments for 8 cases 

Fig 2: Exploration of the SSIM index. SSIM(x,y) consists of three 

terms – mean(x,y), contrast(x,y) and structure (x,y). (a) Four 

experimental cases with the same means. (b) Four experimental 

cases with different means. (c) Experiments for these eight cas-

es. Each row shows one experimental case with a parallel coor-

dinates display (first column), sMDS considering one of three 

terms at a time (columns 2-4), and sMDS with all three terms 

together (last column).  

 

assess when comparing two polylines are quite related  to 

those human observers employ when judging the d iffer-

ence of two images. Just like images, polylines have 

means and variances, and two polylines have a certain 

degree of correlation. So w e can simply exchange the 

SSIM image-domain term of luminance with the m ore 

general term ‘mean’, but keep the terms ‘contrast’ and 

‘structure’ because they are perceptually meaningful also 

for the high-D domain. Each vector of a high-D data point 

then plays the role of ‘image’ and its components (attrib-

u tes) map to ‘pixels’.  

The correlation term xy deserves special attention. In 

some scenarios, a perfectly negative correlation of -1 

might be considered  very similar to a perfectly positive 

correlation of 1 – after all one might just mirror the values 

of one of the two dimensions about the mean. This would  

then make data points with correlation close to 0 least 

similar. Conversely, in other scenarios a negative correla-

tion may be considered  rather d issimilar. We therefore 

provide two options – users may select either | xy|  or 

(xy+1)/ 2 to compute the correlation of two high -D points. 

In the paper, this latter setting will be used . Both will re-

sult in values within [0, 1].  

5.2.1 SSIM Windowing: The Pooled Metric 

Just like images, polylines span the spatial domain and 

are perceptually evaluated by focusing onto one local 

window at a time, however brief. This then motivates a 

pooled  SSIM-like metric as formulated  in (8). In experi-

ments we found that a window size of 11 (d imensions, 

attributes) worked quite well and produced layouts with 

desirable qualities (more on this below). Thus given these 

strong analogies, an MDS layout driven by this metric is 

poised  to arrange the high-D points on a 2D canvas in a 

manner quite similar to how they are perceived as pol-

ylines within a corresponding linked PC display. 

The outcome of the windowed SSIM is affected  by the 

order of the d imensions, and so we require a consistent 

and practice-informed strategy to determine the d imen-

sion order in this case. A useful measure for arranging the 

d imensions in a parallel coordinate plot is to ensure that 

neighboring d imensions are well correlated  [1]. To 

achieve this, we have applied  the approach recently pro-

posed by Zhang et al. [30]. It uses an approximate travel-

ing salesman scheme (TSP) via a genetic algorithm  [16] to 

optimize the sum of pairwise correlations in a parallel 

coordinate plot (all selected  d imensions must appear once 

and only once). Then by arranging highly correlated  d i-

mensions into close neighborhoods, the windowed SSIM 

will factor them together. We have chosen this approach 

over one that optimizes the SSIM itself – which would  

also have taken mean and variance into account – because 

these are d imension orderings that are often used  in pra c-

tice. 

5.3 Using the Structure-Based Metric: A First Study   

We shall now study the new  metric more closely and also 

specifically examine the influence of the three SSIM 

terms. As mentioned, we can use the factors α, β and γ to 

weigh the influence of these terms to the overall metric 

outcome. In our study, we set them to either 1 or 0, which 

is equivalent to either keeping the corresponding comp o-

nent in the SSIM expression or not. Thus, there are 8 cas-

es, which we capture in the two tables of Fig. 2a and b. 

Below these tables (Fig 2c) we show the corresponding 

parallel coordinate plots for case 1-8, each with the pol-

ylines of two data points. To the right of these plots are 

the corresponding MDS layouts generated  using our 

SSIM-based metric to evaluate the d istance between the 

two data points – hence we call it sMDS. There are fou r 

sMDS columns. The first three columns show the sMDS 

layouts using only one of the three individual SSIM terms 

– mean M , contrast (variance) C, or structure (correlation) 

S. The last column shows all of them with equal 

weighting – the fu ll SSIM adapted  to high-D data. All 

cases use (xy+1)/ 2 to compute the correlation term.   
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Fig 3: Exploration of the window approach with the Operating Systems dataset using sMDS for layout. (a) Without windowing – both 

clusters inside group G1 have a somewhat compact distribution, (b) with windowing – the purple cluster inside group G1 has a wider 

distribution than in (a); (c) parallel coordinates display of G1 and G2, (d) cluster variance per dimension for each of the two clusters in 

G1. The purple cluster has a rather dominant local variance profile around dimension 30 and this causes the larger spread in (b). On the 

other hand, these local effects are somewhat averaged out when factored in globally and therefore they play a lesser role for (a). 

   (a) Without windowing 

G1 

      (b) With windowing 

  G1 

(c) Parallel coordinate display of G1  (d) Cluster variance  

per dimension of G1  

In Fig. 2a we keep the means identical which corre-

sponds to the first four rows of Fig. 2c. The first case, Case 

1, where the variances are identical as well and the corre-

lation is 1, results in two overlapping points in all fou r 

d isplays. Case 2 also has a correlation of 1 but now the 

variances are moderately d ifferent. Correspondingly, the 

C term has the two data points moderately d isparate, 

while they overlap for M  and  S. Conversely, the two pol-

ylines in Case 3 have the same variances but they are 

phase shifted  and therefore less correlated . As a result, 

the data points are more d isparate in  the S layout, while 

they overlap for M  and  C. Finally, Case 4 also has a 

phase-shifted  constellation but now the variances are 

moderately d ifferent as well. The sMDS layouts capture 

this correctly – both the C and  S terms have the two 

points moderately d isparate, while they overlap for M .  

Next, In Fig. 2b we now also allow the means to 

change and we again consider the four most interesting 

cases in the lower four rows of Fig. 2c. In Case 5 the two 

polylines have identical variances and a correlation of 1. 

The sMDS layouts reflect this correctly – the two points 

are moderately d isparate only in the M layout, while they 

overlap for C and  S. In Case 6 the polylines have a corre-

lation of 1 but also moderately d ifferent variances. Corre-

spondingly, the two points are moderately d isparate in 

the M  and  C layouts, while they overlap for S. Converse-

ly, in Case 7 the two polylines have identical variances 

but now they have a d ifferent frequency. The sMDS lay-

outs capture this – both M  and  S layouts have the two 

points d isparate, while they overlap for C. Finally, Case 8 

has all three SSIM terms d issimilar , which is properly 

reflected  in the plots.  

For all cases, each fu ll SSIM plot reflects the combina-

tions of the three individual terms appropriately. In par-

ticular, we observe that the points are further apart than 

in the individual layouts whenever there are two or three 

SSIM terms that are d issimilar at the same time.  

We end by noting that all three SSIM terms are needed 

to fu lly appreciate cluster similarity. The correlation term 

is independent of cluster mean and extent, so the two 

clusters which have similar correlations with d ifferent 

means may still reside at very similar locations in high-D 

space. This may be interesting in some data analysis 

tasks, for example, one seeks to compare the behavior of 

d ifferent populations with possibly d ifferent sensitivities. 

If this is desired , one might just set α=β=0 and only set 

γ=1. It is the beauty of the SSIM metric that it enables 

such comparisons with a simple change of weights. How-

ever, in the following experiments of this paper, we have 

set α=β=γ=1 which requires similar data points with simi-

lar values (i.e. mean and variance) to be in similar high-D 

locations. 

5.4 Effect of Windowing 

To confirm the necessity of a slid ing window to pool con-

tributions we conducted  an experiment using a dataset 

with 33 d imensions, 28 clusters and 50 data points each  

(this is the Operating Systems dataset described more 

closely in Section 6). Fig. 3a and b show the sMDS layout 

for region G1 with and  without windowing, respectively. 

While the purple cluster already has a somewhat larger 

footprint without windowing (Fig. 3a), it is significantly 

more spread out when windowing is applied  (Fig. 3b). 

And indeed, when looking at the parallel coord inate plot 

in Fig. 3c the purple cluster does seem to have more local 

variations compared to the navy cluster. Fig. 3d  makes 

this clearer. Here we plot the cluster variance per d imen-

sion for each of the two clusters. We observe that the na-

vy cluster has a higher level of variation around dimen-

sion 17, but this variation is dwarfed  by the very large 

variation of the purple cluster around d imension 30 (Fig. 

3d). At all other locations the variations are about the 

same. This explains the wider spread of the pu rple cluster 

in G1 of Fig. 3b. The spread is not as large in the non -

windowed display of Fig. 3a because these effects are 

somewhat averaged out when computing the SSIM terms 

across the entire d imension spectrum. 

We add  that the windowing does not always produce 

a better spread in the d istribution. Also, users may prefer 

to focus on global and not local similarity. Hence our sys-

tem allows users to d isable the windowing via a button. 

All of the results presented  here use an 11-point window. 

6 DATASETS 

As mentioned, we see our framework as a platform to 

visualize datasets that are either the output of some clu s-

tering algorithm or have been classified  or generated  by 
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 m = 6 

(a) eMDS 

 (b) sMDS 

Fig 4: 2D scatter plots obtained by applying MDS with (a) the 

Euclidean metric (eMDS) and (b) the SSIM-based metric (sMDS) 

to plot a synthetic Gaussian mixture dataset with 8 clusters and 

800 data points (100 points for each cluster), for a variety of di-

mensionalities (m). A different color corresponds to a different 

cluster. When the number of dimensions is 6, the clusters do not 

overlap significantly for either metric – however eMDS shows a 

few overlaps. For larger numbers of dimensions, eMDS leads to 

severe cluster overplotting while sMDS preserves and distin-

guishes the individual clusters well.   

 m = 100  m = 800  m = 40 some other means. In this paper we have used : (1) various 

artificial datasets generated  by high-D Gaussian mixture 

modeling, (2) the Concrete Compressive Strength  dataset 

from the UCI database (1,030 data points, 9 d imensions) 

[31], (3) a dataset with mass spectra of aerosol particles 

acquired  by a state-of-the-art SPLAT (Single Particle Laser 

Ablation Time-of-Flight) mass spectrometer [29] d ivided  

into 4 clusters, each for a specific particle type – ANLA, 

NaCl, NaNO3 etc. (2,000 data points, 450 d imensions), (4) 

the Waveform Database Generator dataset from UCI 

(5000 points, 22 d imensions) [32], and (5) a dataset ob-

tained for file system analysis, called  the Operating Sys-

tems (OS) dataset. This dataset has 1,400 data points d i-

vided into 28 clusters, each for a specific file system oper-

ation – ALLOCATE, DELETE, RELEASE, etc. Each data 

point characterizes a system operation as a 33-D vector 

which is essentially a binned histogram of completion 

times. By collecting many observations over time, for d if-

ferent benchmarks and execution profiles, each file sys-

tem operation has a characteristic histogram which  can 

yield  insight into the behavior of a particular file system , 

but also allows for the comparison of d ifferent file sys-

tems. Much of the research reported  in this paper has 

been motivated  from the interaction with the file system 

researchers – specifically the d istance d iscrepancies that 

are inherent to conventional MDS layouts.  

While the initial order of d imensions in the Concrete 

Compressive Strength dataset is arbitrary, the other d a-

tasets have a meaningful initial order. Therefore, the d i-

mension ordering method  is applied  only to the Concrete 

Compressive Strength dataset. 

7  MDS WITH STRUCTURAL DISTANCE (SMDS)  

Section 5.3 demonstrated  the promise of sMDS via a small 

low-D toy example. We shall now examine its effective-

ness using a larger synthetic dataset. Specifically, we 

compare two versions of MDS: (1) the conventional MDS 

(eMDS) using the Euclidean d istance metric eDist, and  (2) 

our sMDS using the new structural d istance metric sDist. 

For this purpose w e generated  four Gaussian mixture 

datasets with m=6, 40, 100, and 800 d imensions, each with 

800 data points d ivided equally into eight non -

overlapping clusters. Each cluster was generated  at ran-

dom with identical variance, which yields clusters of sim-

ilar d istributions but d ifferent structure. Fig. 4 shows the 

corresponding 2D scatter plots obtained with eMDS (Fig. 

4a) and our sMDS (Fig. 4b). We observe that for m=6 both 

eMDS and sMDS visualize the six clusters well, but that 

eMDS fails to separate the individual clusters once m in-

creases, mapping points of d ifferent clusters into over-

lapping areas. But even for m=6 (first column), eMDS 

cannot completely separate the clusters – points from dif-

ferent clusters are intermixed  and the structures of the 

individual clusters are lost. Conversely, sMDS has none 

of these problems and separates individual clusters even 

for m=800.  

This shortcoming of eMDS could  either be due to d is-

tortion or because the Euclid ean metric cannot gauge the 

d istance between points correctly. The first issue is u n-

likely for m=6 since the stress values are low enough to be 

ignored . For the second possible reason we recall Fig. 1b, 

where we d istinguished between two distances: (1) the 

min (intra-cluster) d istance and (2) the max (inter-cluster) 

d istance. The most significant condition for non-

overlapping clusters is that the d istance between a pair of 

points that belong to the same cluster is clearly d istinct 

from that of two points w ith d ifferent cluster member-

ships. However, the overlapping clusters for eMDS ind i-

cate that it is unable to d istinguish the two distances in 

high-D. Hence, the d istribution of pair-wise d istances is 

uniform or near-uniform -- a hallmark of the curse of d i-

mensionality. Conversely, the sDist d istance metric of 

sMDS preserves the ability to d ifferentiate between intra 

and inter-cluster points consistently even for high d imen-

sionality. This ind icates (again) that the sDist  has a less 

uniform distribution of pair-wise d istances and so allevi-

ates the curse of d imensionality to some extent. 

7.1 Comparing sMDS with Rank-2 LDA 

As noted  in Section 4.2, previous work has suggested  the 

use of Rank-2 LDA to overcome the problems with over-

lapping clusters. While this has been shown to separate 

the clusters very well – with the shortcoming of having to 

first select two major d imensions for projection – the issue 

of correct placement of the clusters has not been d is-

cussed  thus far. We shall examine this now, using the OS-

dataset as an example. Fig. 5a shows a Rank-2 LDA pro-

jection, Fig. 5b zooms into the rectangular region marked 

C1, and Fig. 5c provides the associated  parallel coord i-

nates plot. Let u s focus on the two clusters colored  green 

and cyan and labeled  cc1 and cc2 in the marked rectangu-

lar region in Fig. 5b. For ease of comparison, we have iso-

lated  the parallel coordinate plots for these two clusters in 
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Fig 5: Comparing Rank-2 LDA and sMDS using the OS-dataset. (a) Rank-2 LDA projection – the selected region C1 includes 19 clusters. 

(b) Zooming into region C1 – the selected region inside the black box contains two clusters, cc1 (green) and cc2 (cyan). (c) Parallel co-

ordinates display of C1. (d) sMDS layout – the two clusters cc1 and cc2 map to distant locations, but all clusters of C1 are contained 

exclusively in the outlined region. (e) Parallel coordinates display of cc1 and cc2 – the two clusters have very different distributions along 

the dimensions, but they are close in (a) and (b), but not in (d), confirming that sMDS can gauge the similarity better than Rank-2 LDA. 

(e) Parallel Coordinates for cc1 & cc2 

(c) Parallel Coordinates for C1 

  (b) Zoomed window  

             for C1 

cc1 & cc2 

   (a) Rank-2 LDA 

C1 

   (d) sMDS 

cc2 

cc1  
    C1 

 

Fig 6: Comparing MDS-LDA with sMDS using the OS-dataset. (a) 2D layout obtained by sMDS – we outlined a set of clusters, C2, which 

are close to each other but are distant from the remaining clusters (the arrows point at some interesting clusters – see text); (b) 2D layout 

obtained with MDS-LDA using the first 12 dimensions from the LDA result – the outline contains the clusters of C2 previously marked in 

(a).There is no clear separation between the C2 clusters and those not in C2. (c) Parallel coordinates display of C2 and (d) parallel coor-

dinates display of the clusters not in C2 – the difference between the clusters in C2 and the clusters not in C2 is much larger than the 

difference of clusters within C2 which confirms the superiority of the sMDS layout.  

      (b) MDS-LDA  

C2 

     (c) Parallel Coordinates of the clusters in C2 

     (d) Parallel Coordinates of the clusters not in C2 

 

    (a) sMDS 

C2 

Fig. 5e. Clearly, these two clusters are not overly similar, 

yet they come to rest very closely in the Rank-2 LDA plot. 

Conversely, as we can observe in Fig. 5d , the sMDS lo-

cates the two clusters appropriately far apart. On the oth-

er hand, a second observation we make is that the ou t-

lined  region in Fig. 5d  contains no cluster that is outside 

the rectangular region marked in Fig. 5a but contains all 

clusters within it. This means that while Rank-2 LDA 

cannot resolve small-scale d istances (which sMDS can), it 

is able to d istinguish large-scale neighborhoods quite 

well. 

7.2 Comparing sMDS with MDS-LDA 

One might ask if Rank-2 LDA’s inabilities of resolving 

small-scale d istances are rooted  in the fact that only the 

major two dimensions are used  to perform the 2D projec-

tion. Clearly there is some degree of variation that is lost 

in this d imension-culling process. As a possible solu tion 

we replaced the selection of two projections by a non -

linear MDS layout optimization that uses all or a repre-

sentative subset of the k-1 d imensions that the LDA iden-

tifies. We call this approach MDS-LDA  and  it uses the 

Euclidean d istance metric for layout to be in keeping with 

the other steps of the LDA algorithm.  

We again employ the OS-dataset to demonstrate this 

approach and compare it with our sMDS. The OS-dataset 

has k=28 clusters, but we empirically found that the 12 

d imensions with the highest generalized  LDA eigenval-

ues achieved  the best separability between the clusters. 

Figs. 6a and b show the sMDS and the MDS-LDA plot, 

respectively. When examining the sMDS layout (Fig. 6a), 

we readily notice in the bottom right corner an archipela-

go of clusters that is clearly separated  from a crescent of 

clusters that extends across the top left corner. We subse-

quently outline and label this archipelago C2. We then 

outline the same clusters also in the MDS-LDA layou t 

(Fig. 6b) where these two distinct constellations cannot be 

recognized at all. To gather more insight into this d is-

crepancy, we visualize both the C2 and the non-C2 points 

in two parallel coordinate plots (Figs. 6c, d). We see that 

the C2 clusters (Fig. 6c) have their peaks mainly in the 

first third  (and half) of the d imension spectrum, while the 

non-C2 clusters (Fig. 6d) have their peaks mainly in the 

remaining two thirds. Three clusters stick out as being 

part of the overlap region of these two dimension spectra 

– the olive cluster in C2 and the faint-cyan and salmon 

clusters in non-C2 (see arrows in Fig. 6a). The olive clus-

ter has two peaks – at the 6th and  at the 12th d imensions – 

and indeed it is at the archipelago’s edge close to the cres-

cent. On the other hand, the faint-cyan cluster has a peak 

at the 6th but also at the 15th and  28th d imension and right-

fu lly so it is at the extreme of the crescent closest to C2. 
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Fig 7: Visualizing cluster distribution using a 100-D synthetic 

Gaussian mixture model dataset (800 points) consisting of 8 

equal-sized clusters with a wide variety of distributions (appear-

ances): red < blue < purple < yellow < cyan < pink < orange < 

green. (a) and (b) 2D layouts generated by Rank-2 LDA and MDS-

LDA, respectively – every cluster has a very similar type of distri-

bution regardless of their size in high-D. (c) eMDS layout – it pre-

serves the distribution appearance but suffers from overplotting, 

(d) sMDS layout – it can be appreciated that the cluster distribu-

tion in the layout respects the corresponding distribution in high-D 

but without incurring any overplotting. 

     (c) eMDS     (d) sMDS 

    (a) Rank-2 LDA     (b) MDS-LDA 

Fig 8: Visualizing cluster distribution using a synthetic Gaussian 

mixture model dataset consisting of five 20-D 100-point clusters 

with a variety of non-uniform extents determined by the sampling 

standard deviation:  red < blue < purple < orange < green. (a) 

eMDS layout – each cluster has a distribution largely reflecting its 

distribution in 20-D. (b) sMDS layout – all clusters have rather 

similar distributions. (c) parallel coordinates display of the red and 

green clusters – the green cluster has a slightly wider distribution. 

(d) dimension profile histogram, one for each cluster – the higher 

the bar, the greater the standard deviation for that dimension (e) 

bi-scale visualization – the tiles are laid out via sMDS, but the 

distributions within the tiles are laid out via eMDS.   

  (a) eMDS   (b) sMDS 

(c) Parallel Coordinates 

   (e) Bi-scale visualization 

(d) Dimension profile histogram 

The salmon cluster, on the other hand, is far from C2, but 

this is justified  by its many peaks in the upper two thirds 

of the spectrum.    

Given this apparent d issimilarity of the C2 and the 

non-C2 populations, embedding the C2 region into the 

non-C2 region as is done by the MDS-LDA does not seem 

overly accurate. The sMDS, on the other hand, spaces 

these two populations appropriately far apart which fu r-

ther confirms the promise of this approach. So we con-

clude that while both methods – MDS-LDA and sMDS – 

achieve a good separation of the clusters, only the latter 

also maintains their mutual d istances.   

7.3 Preserving Cluster Distribution 

An important quality to maintain is cluster d istribution 

(its appearance), that is, a cluster with a wider spread of 

points in high-D space should  also have a wider spread in 

the corresponding 2D layout. To explore this property we 

generated  a Gaussian mixture dataset consisting of eight 

Gaussians (100 points each) with a wide variety of d istri-

butions, expressed  in terms of their standard  deviations  

in 100-D space. Their d istribution ordering in ascending 

order of  is red , blue, purple, yellow, cyan, pink, orange, 

and green. Fig. 7a and b explore how Rank-2 LDA and 

MDS-LDA perform in this regard . We observe that while 

the clusters are now well separated , their d istributions are 

rather similar. This is rooted  in the fundamental defin i-

tion of LDA, which seeks to maximize inter -cluster d is-

tances by minimizing (or shall one say, sacrificing) intra -

cluster d istances, yield ing fairly similar and tight d istr i-

butions of points in the 2D layouts. However, eMDS can 

resolve the ordering, but at the price of overplotting (see 

Fig. 7c). The sMDS layout, on the other hand (see Fig. 7d ) 

preserves the d istribution ordering – the red  cluster is 

smaller than the blue cluster which in turn is smaller than 

the purple cluster and so on – but without overplotting.  

To get further insight into the ability of sMDS to pre-

serve cluster d istribution at a less extreme scale we gen-

erated  yet another Gaussian mixture dataset, now consist-

ing of five 20-D 100-point clusters with moderately d iffer-

ent d istributions, ordered  in increasing d istribution: red , 

blue, purple, orange, and green. The d istribution profiles 

across the d imensions are visualized  in Fig. 8d  as d imen-

sion histograms of standard  deviations for each of the five 

clusters. Fig. 8c shows a parallel coordinate plot for the 

red  and green clusters, respectively. For the sMDS display 

(Fig. 8b), we notice that every cluster has a rather comp act 

appearance – much more compact than would  be justified  

from the d imension profiles. In contrast, the eMDS layou t 

(Fig. 8a) preserves these profiles quite well. The mediocre 

performance of sMDS in this respect is no huge surprise 

since the SSIM-based  d istance metric only looks for statis-
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Fig 9: Overlap removal using the OS dataset: Without tile cropping - (a) No overlap removal – initial layout, (b) 20% overlap allowed, and 

(c) 5% overlap allowed. With tile cropping - (d) 20% overlap allowed. We observe that cropping the tiles to cluster size is the best solution. 

If this cannot be done, then reducing the overlap just moderately can already yield acceptable displays which are also less distorted than 

with full overlap removal.  

(a) No overlap removal     (c) p = 0.05 (DISSIM = 3.482)     (d) p = 0.2 (DISSIM = 1.999)   (b) p = 0.2 (DISSIM = 3.252) 

tical similarities and not for absolu te component-wise 

d ifferences. Thus, while this metric is useful to judge in-

ter-cluster d istances, it is less useful on the local, intra -

cluster scale. There, the Euclidean metric seems more ap-

propriate. This observation has motivated  our final layout 

scheme – the bi-scale layout described next.  

7.4 The Bi-Scale Layout: Fusing sMDS and eMDS 

The inability of sMDS to preserve d istribution motivates 

us to return to the Euclidean metric on the local scale (in-

tra-cluster scale). In the bi-scale framework that results, 

the global scale (inter-cluster scale) is u sed  to compare 

d ifferent clusters, while the local scale visualizes the d is-

tribution within each such cluster. It first lays all out data 

points using sMDS and then computes the midpoint of 

each cluster. Next, the tiles are centered  on these mid -

point, the individual cluster d istributions are laid  out via 

eMDS, and finally mapped onto the tiles.  

However, since the d istances of these two metrics are 

not 100% comparable, we may not w ant to merge the in-

ter- and intra-cluster layouts outright. To provide a 

graphical d istinction, we devise a two-level d isplay that 

represents the clusters as an arrangement of tiles laid -out 

with sMDS. Making the tiles semi-transparent, similar to 

the value-relation d isplay of Yang et al. [28], helps avoid  

problems with occlusions. An example for this layout is 

shown in Fig. 8e, where the d istribution patterns inside 

the tiles now match those in the profiles and parallel co-

ordinate plots quite well. The transparency of the tiles can 

be controlled  by the user.  

7.4.1 Controlling Tile Overlap for the Bi-scale Layout 

The semi-transparent tile approach proves effective when 

the number of tiles involved is manageable. However, it 

is not sufficient in dense areas where many clusters are 

intermixed. In this case, the only way to cope with this 

problem is to reduce the overlap altogether. For this pur-

pose we adapted  an algorithm originally designed  for 

reducing the overlap of nodes in graph drawing applica-

tions [10]. This algorithm utilizes a proximity stress mod-

el that seeks to preserve the initial layout as much as pos-

sible. To ensure smooth convergence to the solu tion, it 

iteratively adjusts the graph nodes by small increments. 

The quality of a layout with respect to the original layout 

is assessed  by a d issimilarity value, DISSIM – two layouts 

are more d issimilar when DISSIM is greater. 

To allow users to be more in control of the layout and 

the time it takes to achieve it, we have incorporated  the 

algorithm into an interactive interface. The first, very 

basic mode allows users to stop iterations at any time, 

which also reduces the risk of deviating too much from 

the initial layout. Further, we also added support to con-

trol the amount of overlap permitted . The original scheme 

does not allow for any partial overlap and so often un-

necessary overlap removal operations are performed . 

This usually occurs in empty spaces of cluster tiles. We 

therefore provide an interactive slider interface by which  

users can control how much partial overlap is allowed . It 

sets the permitted overlap ratio p which virtually scales the 

sizes of the tiles before passing them into the algorithm. 

When p>0 partial overlap will be the result, while when 

p=0 there will be no overlap between the tiles. Using p, 

the width w i and height hi of a tile are set to w i*sqrt(1-p) 

and hi*sqrt(1-p), respectively. We find  that the resulting 

layouts are typically acceptable in terms of readability, 

but they preserve the original space relationships much 

better as is evident by lower DISSIM values.  

Fig. 9a shows the original bi-scale layout of the OS-

dataset (p=1) which is fairly clu ttered  in some areas. Fig. 

9b and c show the layouts for p=0.2 and p=0.05, respec-

tively. We find  that p=0.2 is already quite acceptable d e-

spite some remaining overlap. Conversely, the latter has 

nearly no overlap but its layout is more d istorted , as is 

evidenced by the higher DISSIM value. 

Another way to remove the tile overlap is by adjusting 

(cropping) tile size to the cluster’s bounding box. As is 

shown in Fig. 9d  for p=0.2, this can reduce the need for 

overlap removal when some of the clusters are small. It 

typically leads to lower DISSIM values for all settings of 

p. Here, the layout only for p=0.2 is shown due to the 

space limitation. In practice, our framework uses both tile 

cropping and partial overlap  removal.  

8 MORE RESULTS WITH PRACTICAL DATASETS 

We have applied  our framework to visualize four practi-

cal data sets as specified  in Section 6.   

8.1 Concrete Compressive Strength Dataset 

The concrete dataset has nine d imensions – eight quanti-
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Fig 10: Concrete Compressive Strength Dataset – low strength group of data points. In the parallel coordinate display the correlation-based 

dimension ordering method was applied. (a) (b) eMDS and sMDS with two user-selected clusters  colored in cyan and magenta – these two 

clusters can be easily distinguished in both plots, (c) (d) eMDS and sMDS with three user-selected clusters colored in cyan, magenta, and 

orange – only sMDS can distinguish the cyan and orange clusters. (e) parallel coordinate display of the cyan and magenta clusters – they 

give rise to clearly different patterns, (f) parallel coordinate display of the cyan cluster only – one can observe two separate patterns espe-

cially in the 5
th
 dimension; (g) the same parallel coordinate display colored according to the two sub-clusters in (d) – the observation of (f) is 

confirmed. (h) abstracted parallel coordinate display only showing the centerlines of the three clusters of (d) – the similarities of their pat-

terns reflects the cluster distances in (d).  

 (a) eMDS (b) sMDS 

 (c) eMDS (d) sMDS   (h) 

(e) (f) 

   (g) 

     (c) PC      (a) eMDS (b) sMDS 

Fig 11: Mass Spectra of Aerosol Particles. (a)(b) 1
st
 row: eMDS 

and sMDS with one cluster (particle type – NaNO3), and 2
nd

 row: 

two user-selected sub-clusters colored in red and blue – these 

two sub-clusters can be clearly distinguished only in sMDS, (c) 

parallel coordinate display of the red and blue sub-clusters – they 

give rise to clearly different patterns.  

 

tative input variables and one quantitative output varia-

ble (concrete compressive strength). We classified  the 

dataset into three groups based on the output values – 

low, mid , high. In the following we only consider points 

belonging to the low strength group. After applying the 

correlation method to obtain a good order of d imensions, 

we computed  the eMDS and sMDS layout (see Fig. 10a 

and b). There is an obvious separation of the points into 

two groups for both schemes – colored  cyan and magenta 

in Fig. 10a and b. When examining these separated  

groups in parallel coordinates (Fig. 10e), we clearly see 

their d ifferent patterns, especially in the 4th d imensions. 

Both eMDS and sMDS preserve this d ifference well.  

Let us now focus on the cyan sub-group in the sMDS 

plot of Fig. 10b where we see one further separation of 

points, colored  orange and  cyan in Fig. 10d. When we 

color these points also in the eMDS plot of Fig. 10c, the 

two groups are contained but they are not well separated . 

Hence, it will be d ifficult to recognize them in this plot. 

The parallel coordinate plot of Fig. 10f also indicates that 

there are two groups of polylines with d ifferent patterns, 

most pronounced  in the 5th d imension. In fact, there is a 

strong correspondence between these groups and th e 

ones found in Fig. 10d. This becomes readily apparent 

when we color the corresponding polylines in the same 

colors, as has been done in Fig. 10g. 

Finally, Fig. 10h summarizes these findings in an ab-

straction parallel coordinate plot which only shows the 

centerlines of each of the three d istribu tions. We observe 

that the structural similarity of these polylines quite close-

ly matches the d istances of the corresponding clusters in 

the sMDS plot of Fig. 10d.  

8.2 Mass Spectra of Aerosol Particles 

This case study, like the concrete data, shows that the 

structural similarity is preserved in the sMDS plot (see 

Fig. 11). In this study, we only consider points belonging 

to the particle type NaNO 3. The first row of Fig. 11a and b 

plots these points with eMDS and with sMDS, respective-

ly. An obvious separation of the points into two groups is 

observed only in the sMDS plot – colored  red  and blue in 

the second  row of Fig. 11b. The parallel coordinates plot 

(Fig. 11c) also indicates that the two groups have d ifferent 

patterns – higher first peak, lower second peak in the red  

group and additional peak between the two peaks in the 

blue group. Finally, we notice that the red , more skewed 

(noisier) sub-cluster in the sMDS plot is also the one that 

has a set of additional small peaks in the upper half of the 

d imension spectrum . Hence, the sMDS captures this add i-

tional variability well, while the eMDS fails to do so.  

8.3 Waveform Database Generator Dataset 

This dataset has 21 continuous variables and 1 class vari-

able – each class has 33% of the points. Fig. 12a and b plot 

these points using eMDS and sMDS, respectively, with 

the three classes colored  red , green and blue. We again 
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Fig 12: Waveform dataset. (a) (b) eMDS and sMDS with three 

clusters and (c) abstracted parallel coordinate display only show-

ing the centerlines of the three clusters. The next plots only con-

sider the blue cluster for two experiments, Exp1 and Exp2. Exp1: 

(d) eMDS plot with three filled circular regions, (e) sMDS plot with 

these marked points colored – the marked points of (d) appear 

largely at random locations, and (f) the corresponding parallel 

coordinate plot – there is some bundling of the marked points but 

also a high degree of intermixing. Exp2: (g) eMDS plot with the 

points marked in (h) colored – they appear largely at random loca-

tions, (h) sMDS plot with three filled circular regions marked in 

color, and (i) the corresponding parallel coordinate plot – there is 

much better bundling of the marked points than in (f). All patterns 

of the three circular regions are seen quite clearly in (i) while we 

can hardly see the pattern of the cyan group in (f). 

 

  (a) 

     eMDS 

   (d) 

   (g) 

(c) 

PC(c) 

     (f) 

    (i) 

  (b) 

   (e) 

   (h) 

    sMDS  Parallel Coordinates 

Fig 13: OS dataset. (a) eMDS plot with two clusters marked – CL1 and CL2, (b) sMDS plot with the same clusters marked, (c) parallel 

coordinates display of CL1 and CL2, (d) bi-scale visualization. In (c), the parallel coordinates show that the pink cluster TRUNCATE (CL1) 

is much more diverse than the green cluster READPAGE (CL2), but the two clusters have a quite similar set of non-zero valued dimen-

sions. The sMDS plot in (b) plots C1 and C2 correctly close together but has them equally compact, while eMDS in (a) plots them further 

apart, but maps their extents correctly. The bi-scale plot in (d) combines the best of both worlds: correct cluster location and correct clus-

ter appearance.  

 

(a) eMDS 

 CL2 

CL1    (c) Parallel Coordinates              

( CL1 & CL2 ) 
 (d) Bi-scale visualization 

 CL2 
 CL1 

(b) sMDS 

 CL2  CL1 

observe that sMDS does much better than eMDS in 

isolating the three classes. The parallel coordinate plots of 

the three classes in Fig. 12c confirm this – one can clearly 

observe that these three classes have d ifferent patterns 

and so should  be well separated  in an MDS plot.  

Interesting insight comes from an experiment in which 

we take the blue cluster and mark three arbitrary filled  

circular regions. We find  these regions by marking a (cen-

ter) point and locating the k nearest neighbors in 2D 

which results in near circular regions for both layouts – 

eMDS (Fig. 12d) and sMDS (Fig. 12h). We subsequently 

color the corresponding points in the other layout. Fig. 

12e shows the marked points in Fig. 12d  and Fig. 12g 

shows the marked points in Fig. 12h. We observe that 

there is no correspondence for either combination and 

conclude that the two layouts do not share a common 

mapping. But the most valuable insight is gained when 

examining the corresponding parallel coordinate plots. 

Fig. 12f colors the polylines for the three regions marked 

in the eMDS plot (Fig. 12d), while Fig. 12i colors the pol-

ylines for the three regions marked in the sMDS plot (Fig. 

12h). We observe that for sMDS the three d ifferent pol-

yline groups form three coherent bundles, at least for the 

upper 2/ 3 of the d imensions, while for the eMDS groups 

these polylines are more intermixed. The cyan group can 

be hardly seen in Fig. 12f but it is well visible in  Fig. 12i. 

We feel that this is an impressive demonstration of the 

SSIM-based d istance metric and sMDS overall. It essen-

tially means that users can perform manual clustering  

and segmentation of high-D point clouds d irectly in at 2D 

projection d isplay where it is most intu itive.  

     

8.4 Operating System (OS) Dataset 

This case study is illustrated  in Fig. 13. We shall focus on 

two clusters, C1 (pink) and C2 (green), which are due to 

the TRUNCATE and the READPAGE operations, respec-

tively. The eMDS plot (Fig. 13a) suggests that TRUN -

CATE is quite d ifferent from READPAGE, which, how -

ever, is not confirmed when looking at the corresponding 

parallel coordinate plot (Fig. 13c). The sMDS plot, on the 

other hand, puts these two operations close by, which is 

more appropriate. Yet, in sMDS both clusters have the 

same spread which is incorrect – TRUNCATE has much 

more d iversity than READPAGE (see again Fig, 13c), 



 13 

 

Fig 14: SSIM comparator function. (a) Contour plot – with value 

mapped to brightness. (b) derivative of the function expressed as 

ratio y/x. 

      (b) Derivative of  
SSIM comparator function 

    y/ x 

  (a) SSIM comparator  

 

which is well represented  by eMDS. The bi-scale MDS 

plot of Fig. 13d unifies the two findings. By inspecting 

this plot, OS analysts can learn that while READPAGE 

and TRUNCATE have similar time histograms, the for-

mer is a much more stable operation.  

9    DISCUSSION 

The comparator function 2xy/(x2+y2) that lies at the heart 

of the SSIM metric has a few  convenient properties which 

can be d iscerned from the plot shown in Fig. 14a. First, 

unlike metrics that are based  on the d ifference | y-x | , as is 

the RMS error which underlies the Euclidean d istance, its 

multiplicative form  is naturally normalizing into an in-

terval of [-1, 1] for any range of x and  y – in practice we 

normalize our data into [-1, 1] or [0, 1]. Second, its sensi-

tivity is large at low levels of x and  y and  also for small 

deviations of x and y. This is somewhat reminiscent of 

Weber’s Law where the perception p of a stimulus s is 

proportional to ln(s/ s0), with s0 being the baseline of the 

stimulus. The sensitivity of p is the derivative of this func-

tion, 1/ s, which decays rapid ly as s deviates from s0. Simi-

lar is true for the SSIM comparator function. To show this, 

let us write x and  y as the ratio r=y/ x where, without loss 

of generality, we assume y≥x. This yields the rationalized  

comparator function 2r/ (1+r2). We then take its derivative 

to arrive at the function (2-2r2)/ (r4+2r2+1), plotted  in Fig. 

14b. In this plot we observe the same principal behav ior 

than in Weber’s law – small ratios get emphasized  

(spread apart) and large ratios get de-emphasized  (com-

pressed). This behavior is very important for visual stim-

uli and explains why the SSIM has been so successfu l in 

evaluating the fidelity of images. 

But our focus is not images. Rather, we aim to replicate 

the perceptual experience users have when examining a 

parallel coordinate plot and transform this into the high-

D distance metric used  for MDS. Intu itively, when two 

polyline segments are close and similar, small d ifferences 

will be noticed  much more intensely as when they are 

further away and largely d issimilar. As the derivative 

plot of Fig. 14b shows, this impression is replicated  by the 

SSIM comparator function. But there we also notice that 

very small deviations are less recognizable. This, howev-

er, is justified  since these deviations could  just be due to 

noise and should  indeed be less influential.  

Another feature of the comparator function has been 

mentioned already in the onset of this section – the fact 

that the comparator function is also more sensitive for 

low levels of x or y. This is deeply rooted  in Weber’s law 

but less motivated  for the perception of parallel coord i-

nates since here these would  just be polyline segments 

near the zero-line. We might think of these polyline seg-

ments again as noise or as less significant – we can always 

shift the zero-line up or down if this is not the case.  

The observations with regards to the SSIM comparator 

function are only relevant for the mean and variance 

terms – the correlation term is naturally expressed  by this 

function. And also, while the d iscussion presented  here 

may not fu lly substitu te for a fu ll-scale psycho-physical 

study, the various examples presented  in this paper have 

clearly confirmed that the metric works exceedingly well.  

10    CONCLUSIONS 

We have described a novel high-D distance metric that 

leads to more accurate MDS layouts, both in terms of 

global and in terms of local d istance relationships. Our bi-

scale d istance metric uses a pattern-based similarity met-

ric inspired  by vision research to assess proximity of d is-

tant clusters, but uses the conventional Euclidean d is-

tance to evaluate local d istance relationships. Using this 

framework, we were able to create MDS layou ts with 

point d istributions that closely match the polyline data 

signatures observed in parallel coordinate d isplays. Next, 

we would  like to incorporate multi-scale and multi-

resolu tion analysis to compare patterns at d ifferent levels 

of scale, and we would  like to embed our framework into 

interactive cluster analysis applications, such as k -means 

and others. We would  also like to apply an adaptive-step  

size for controlling the overlaps between cluster tiles in 

order to make our bi-scale framework faster and more 

robust. Further, it would  be interesting to confirm our 

currently more empirical successes with rigorous psycho-

physical experiments. Finally, we would  also like to study 

the impact of the approximate TSP solver on our layout. It 

might not be significant since the windowing has a 

smoothing effect on the small and local d imension order-

ing variations.    
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