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Abstract—The Lattice Boltzmann method (LBM) for visual simulation of fluid flow generally employs cubic Cartesian (CC) lattices

such as the D3Q13 and D3Q19 lattices for the particle transport. However, the CC lattices lead to suboptimal representation of the

simulation space. We introduce the face-centered cubic (FCC) lattice, fD3Q13, for LBM simulations. Compared to the CC lattices, the

fD3Q13 lattice creates a more isotropic sampling of the simulation domain and its single lattice speed (i.e., link length) simplifies the

computations and data storage. Furthermore, the fD3Q13 lattice can be decomposed into two independent interleaved lattices, one of

which can be discarded, which doubles the simulation speed. The resulting LBM simulation can be efficiently mapped to the GPU,

further increasing the computational performance. We show the numerical advantages of the FCC lattice on channeled flow in 2D and

the flow-past-a-sphere benchmark in 3D. In both cases, the comparison is against the corresponding CC lattices using the analytical

solutions for the systems as well as velocity field visualizations. We also demonstrate the performance advantages of the fD3Q13

lattice for interactive simulation and rendering of hot smoke in an urban environment using thermal LBM.

Index Terms—Lattice Boltzmann method, face-centered cubic, fD3Q13, D3Q13, D3Q19, GPU.

Ç

1 INTRODUCTION

WHEN it comes to regular gridded sample arrangements
in both space and time, the Cartesian lattice has been

the lingua franca in science, medicine, and engineering. It is
simple, straightforward to index, and easy to collect data
on. However, recent years have seen an increasing move
toward other regular lattices hailed to be more space
efficient, and thus, more optimal in their distribution of
samples. These proposals were based on the recognition
that an optimal packing of these lattices in the frequency
domain yields the sparsest sample arrangement in the
spatial domain, assuming a near-spherical frequency
spectrum. This finding emerges from the application of
the Fourier sampling theorem and also the theory of lattice
reciprocity. The one lattice that achieves this sparse
sampling is the Body-Centered Cubic (BCC) lattice. It was
elaborately shown that the BCC lattice affords a 30 percent
reduction in the number of samples, or a 30 percent increase
of resolution in the spatial domain, a number that grows to
50 percent when extended into 4D. The reciprocal lattice to
the BCC is the Face-Centered Cubic (FCC) lattice, which is
the lattice that exhibits the tightest packing. However, this
tight packing has other implications as well. It also
produces the most isotropic sample distribution, yet not
the sparsest. This property, while often neglected, is very
desirable in any type of communication scenarios and also

for digital object representation. It affords the best optimal
orientation independency in the coverage of space and time.

We claim that the FCC lattice is the perfect medium to
conduct simulations that use communications over lattice
links to propagate energy within the simulation medium.
At the same time, we also claim that this lattice is ideal to
model interactions of the flow phenomena with scene
objects, since afforded by this isotropy, this lattice is most
insensitive to how scene objects came to rest with respect to
the orientation and organization of the lattice. Interestingly
enough, it is this isotropy that subsequently affords a more
efficient communication in these simulations, which leads
to the possibility to dispense with some of the lattice links
without harm, and thus save on costly communication
computations. In this paper, we employ the FCC lattice in
the context of flow simulation and visualization via the
Lattice Boltzmann method (LBM) which has become a
popular method for physically-based simulations.

In recent years, the importance of physically-based
simulations has been growing in fields such as computer
games, movie productions, and product design testing,
where there is a need for computer-generated realism at
interactive rates. Simulations based on the finite element
method are expensive and unsuitable for interactive
application while lattice-based simulations have emerged
as an efficient and easy-to-implement alternative. In
particular, the LBM is a powerful technique that can be
used to model complex fluid flows [29]. It uses a simple set
of collision and propagation rules that are applied
independently at a mesoscopic level on particle distribu-
tions in the lattice. These local distributions can then be
used to model the global behavior of the fluid flow, solving
the Navier-Stokes equations in the incompressible limit.

We adopt the notation DmQn used by physicists to
describe lattices, where m represents the number of spatial
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dimensions and n is the number of velocity links at each
lattice site, including a zero-velocity link. Traditionally,
LBM simulations have been performed on cubic Cartesian
(CC) lattices, where the D3Q19 lattice provides a good
balance between stability and computational/memory cost.
Its properties and limitations are well known [29] and its
cubic grid structure maps conveniently to memory layouts
on both CPU and GPU architectures. At the same time, its
high number of links and multiple link speeds introduce
additional complexity in the LBM simulation, increase
communication overhead across the links, and therefore,
decrease performance. Based on the arguments of isotropy
raised above, we propose the use of the face-centered cubic
lattice (fD3Q13) for highly efficient LBM simulations.

The low number of single-speed links and the efficient
node indexing on the fD3Q13 lattice greatly simplify and
accelerate the simulation. The LBM is already amenable to
GPU acceleration because of the highly local computations
and the use of the fD3Q13 lattice further increases the speed
of GPU-based implementations.

2 RELATED WORK

2.1 The Lattice Boltzmann Method

The LBM is a grid-based model that is used to compute
macroscopic fluid behavior by simulating mesoscopic
particle interactions [29]. The approach is similar to the
previously employed lattice-gas cellular Automata (LGCA),
which as the name suggests models fluid flows in a manner
similar to a cellular automaton. In the lattice-based
approach, we describe the mesoscopic behavior by particle
collisions at lattice sites and propagations along lattice links.
The LGCA method models single particle Boolean dy-
namics, which leads to statistical noise. The LBM overcomes
this limitation by tracing particle density distributions and
the average effect of particle collisions. In the limit, as the
lattice pitch approaches 0, the system solves the Navier-
Stokes differential equation for incompressible fluids.

In the LBM, we have a lattice, which discretizes the
spatial domain into a regular arrangement of lattice sites x.
Also, particle velocities u are represented by a finite set of
lattice velocities denoted by ci. The continuous distribution
function fðx;u; tÞ is therefore represented by a set of
distributions fiðx; tÞ, which assign a particle density value
to each of the discrete lattice velocities for a site x at time t.
For a given state of the particle densities, the next discrete
state of the simulation is described by the discrete Lattice
Boltzmann equation:

fi xþ ci�t; tþ�tð Þ � fiðx; tÞ ¼ �
1

�
feqi � fi
� �

: ð1Þ

In essence, this formula describes a simple collision and
propagation rule. At each step of the simulation and for each
lattice site, we examine the particle distributions, calculate
the distribution contributions from particle collision, and
synchronously propagate the new densities along the lattice
links. Note that here, we employ the Bhatnagar-Gross-Krook
(BGK) approximation to the collision integral, which de-
scribes how the particle densities are affected by the collision.
The BGK approximation models collisions as a relaxation of

momentum toward an equilibrium state defined by the
distributions feqi and conserves mass and momentum in the
system. The constant � controls the relaxation rate and its
value is derived from the kinematic viscosity of the fluid �:

� ¼ 1

2
c2
s 2� � 1ð Þ ) � ¼ �

c2
s

þ 1

2
: ð2Þ

In this equation, cs is the lattice speed of sound. This
value determines the highest possible speed for information
propagation and is specific to the selected lattice structure.
Negative values for the distributions fi quickly lead to
numeric instability, and therefore, stable simulations can be
achieved only for a limited range of � values. At each step of
the simulation, we can recover the macroscopic properties
of the flow from the mesoscopic particle distributions at
lattice sites:

�ðx; tÞ ¼
X
i

fiðx; tÞ; ð3Þ

jðx; tÞ ¼ �ðx; tÞ�ðx; tÞ ¼
X
i

cifiðx; tÞ: ð4Þ

In these equations, � is the mass density at a specific site
location x and time t, and j is the momentum density. We
can then calculate the particle velocity:

uðx; tÞ ¼ jðx; tÞ
�ðx; tÞ ¼

1

�ðx; tÞ
X
i

cifiðx; tÞ: ð5Þ

The equilibrium state used in the BGK collision model
depends only on the conserved quantities, namely mass
and momentum, and is described by the following:

feqi ¼Wi� 1þ ci � u
c2
s

þ ðci � uÞ2

2c4
s

� u � u
2c2

s

 !
: ð6Þ

Here, cs is the speed of sound for the lattice, u is the particle
velocity calculated from (5), and each lattice velocity ci has an
associated weight Wi. These weights and the lattice speed of
sound are specific to the selected lattice geometry. Their
values are obtained from the nonvanishing elements of the
even velocity moments up to fourth order:X

i

Wi ¼ �0;X
i

Wici�ci� ¼ �0c
2
s���;X

i

Wici�ci�ci�ci� ¼ �0c
4
s ������ þ ������ þ ������
� �

:

ð7Þ

The calculated weights Wi ensure that: 1) the mass
density is positive and 2) the lattice velocity moments up to
fourth order are identical to the respective velocity
moments over the Maxwell distribution [29]. Vanishing
velocities have no influence on the isotropy of the lattice
tensors. In these equations, �0 is the constant mass density
for incompressible fluids, which is usually set to 1, and �ij is
the Kronecker delta symbol:

�ij ¼
1; if i ¼ j;
0; if i 6¼ j:

�
ð8Þ
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Note that the odd velocity moments vanish and do not
provide any additional constraints. Each of the Greek letters
�, �, �, and � corresponds to a Cartesian index of the lattice
velocity, such as 1 or 2 in the case of 2D LBM and 1, 2, or 3 in the
case of LBM in 3D. Detailed derivations and analysis of the
LBM on frequently used lattices can be found in the work of
Wolf-Gladrow [29] and Chen and Doolen [5].

While the LBM can model complex fluid systems with a set
of simple collision and propagation rules, it suffers from a few
limitations. It cannot easily handle the high-velocity flows
used in aerodynamic simulations, for example. The physical
system under consideration is made dimensionless by the
selection of a length scale and a time scale, and is further
discretized using an appropriate lattice step and a time step.
The lattice viscosity depends on the discretization parameters
and restricts the range of flow velocities that lead to stable
simulations. Decreasing the lattice spacing and the time step
increases the viscosity used in the LBM and allows for stable
simulations with larger physical velocities (see [18] for
additional information). However, simulating high-Rey-
nolds-number flows can be prohibitively expensive in terms
of both memory requirements and computational time. Hou
et al. [13] proposed a subgrid model to deal with high
Reynolds Number flows. Also, the single-relaxation-time
constraint imposed by the BGK collision model leads to
numerical instabilities when the simulation is coupled with
heat transfer or body forces. The multiple-relaxation-time
LBM (MRT-LBM) performs the collisions in moment space as
opposed to the single-relaxation-time LBM (SRT-LBM)
collision in the distributions space, and each moment is given
an independent relaxation parameter [8]. After the relaxation,
the inverse transform is used and the propagation rules are
applied in phase space, or the space of the distributions. This
approach exhibits improved numerical stability and has been
coupled with heat transfer in the hybrid thermal Lattice
Boltzmann Model (HTLBM) [17].

2.2 Boundary Conditions

In many simulations, the fluid interacts with objects whose
boundaries may not follow the links in the discrete lattice
structure, for example, when the object is defined procedu-
rally or through a finite mesh. Different schemes for
handling boundary conditions can be implemented by
simply manipulating the particle densities during the
collision step. This simplicity is offset by the fact that any
error in the scheme will propagate throughout the simula-
tion domain. The bounceback scheme is often used to
implement no-slip boundary conditions [29]. The boundary
is discretized over the lattice nodes and is assumed to
intersect lattice links at the halfway point. Densities
propagating along those links are simply moved to links
in the opposite direction. This approach is very efficient in
handling boundaries aligned with the lattice links, but leads
to inaccuracies with curved boundaries. Different boundary
conditions exist for LBM [19], [20], [25] including schemes
that exhibit second-order accuracy for the boundary
representation of curved surfaces.

In the 2D case, we employ the scheme proposed by
Bouzidi et al. [3] for the treatment of curved boundary
conditions. The curved boundary is illustrated in Fig. 1. The
scheme combines the bounceback approach with linear

interpolation along lattice links to achieve second-order

accuracy of the boundary condition:

fi0 ðxf ; tþ 1Þ ¼
2�fci ðxf ; tÞ þ ð1� 2�Þfci ðxf � ci; tÞ; if � < 1

2 ;
1

2� f
c
i ðxf ; tÞ þ 2��1

2� fci0 ðxf ; tÞ; if � � 1
2 :

(
ð9Þ

Here, fci denotes the particle distribution along link i

after the collision step, but before propagation, and

� ¼ kxf�xwk
kxf�xbk . Our 3D simulations implement a different,

computationally more expensive scheme based on linear

extrapolation [20] with the following streaming rule:

fi0 ðxf ; tþ 1Þ ¼ ð1� 	Þfci ðxf ; tÞ þ 	ffeqi ðxb; tÞ

þ 2Wi�
ci0 � uw

c2
s

;

ffeqi ðxb; tÞ ¼Wi�ðxf ; tÞ 1þ ci � ubf

c2
s

þ ðci � uf Þ2

2c4
s

� uf � uf

2c2
s

" #
;

ð10Þ

where ffeqi ðxb; tÞ is the equilibrium distribution for the

fictitious fluid node xb within the boundary of the object,

weighted by the extrapolation (or interpolation) factor 	. The

fluid velocity at the wall position xw is denoted as uw and

equals the velocity of the boundary object. The extrapolated

fluid velocity ubf along lattice link ci is not uniquely defined.

Mei et al. propose the following choices [20], which retain the

second-order accuracy of the boundary condition treatment

and improve the computational stability:

ubf ¼
��1

� uf þ 1
� uw; if � � 1

2 ;

uff ; if � < 1
2 ;

(

	 ¼
2��1
� ; if � � 1

2 ;

2��1
��2 ; if � < 1

2 :

( ð11Þ

The value of � is again defined as � ¼ kxf�xwk
kxf�xbk , which is

illustrated in Fig. 1 for the 2D case.

3 THE FD3Q13 LATTICE

In LBM, both space and velocity are discretized [29]. It is

expected that the spatial discretization will be smoothed on
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Fig. 1. Curved boundary treatment. The filled circles represent the

discretized geometric object. The clear circles represent fluid cells. The

blue circle at position xw is the intersection point between the surface of

the geometric object and a lattice link.



large enough scales compared to the grid size. However, it is
not obvious whether the coarse angular discretization of the
velocity space on the lattice links correctly models the
macroscopic fluid behavior. It has been proven that the
LBM recovers the Navier-Stokes equations at the incompres-
sible limits through Chapman-Enskog expansion [29]. In this
multiscale analysis, sufficient lattice symmetry is necessary to
guarantee the isotropy of second and fourth-rank lattice
tensors. The generalized lattice tensor is defined by

G�1�2����n ¼
X
i

Wici�1
ci�2
� � � ci�n : ð12Þ

Here, ci�j is the �jth Cartesian component of the lattice
velocity ci. From this formulation, it follows directly that
velocities with the same vector length will have the same
weights. This can also be proven by solving (7). In single
speed models such as D2Q7 on the hexagonal lattice and
D3Q13 on the Cartesian cubic (CC) lattice, all the lattice
links have the same length (1 and

ffiffiffi
2
p

, respectively), and
therefore, all nonzero velocities have the same weight.

The D2Q7 LBM is built on the hexagonal lattice, also
called the triangular lattice. As shown in Fig. 2, every lattice
site in the hexagonal lattice is linked to six nearest
neighboring sites. The six neighbors form a regular hexagon
and the Voronoi cell is also a regular hexagon. It has been
proven that the hexagonal lattice is the optimal sphere
packing in 2D [6]. Moreover, the hexagonal lattice has the
maximum kissing number (or the number of nearest
neighbors) in 2D, which means that it has the maximum
number of velocity vectors of all possible single-speed 2D
LBM. It was used in the first LGCA model that has been
proven to recover the Navier-Stokes equation [12]. In
comparison, the D2Q9 LBM is built on the Cartesian lattice,
where every lattice site is connected to four nearest
neighbors and four secondary neighbors. Because of the
different link lengths (1 for nearest neighbors and

ffiffiffi
2
p

for
secondary neighbors), the weights Wi used for the calcula-
tion of equilibrium distributions in (6) are also different.

In 3D, many lattices can be considered for LBM, such as
CC, BCC, FCC, and hexagonal close packing (HCP) lattices.
Fig. 3 shows the construction of the BCC, FCC, and HCP
lattices. Traditionally, the D3Q13, D3Q15, and D3Q19 LBMs
are the most frequently used models, all based on the CC
lattice. The difference is the choice of lattice links. In the
D3Q13 lattice, links connect only secondary neighbors. In the
D3Q15 lattice, sites are connected to primary and tertiary

neighbors, and in the D3Q19 lattice, they are connected to
primary and secondary neighbors. The CC lattice is prevail-
ing because of its simplicity and because researchers have
extensive knowledge of its properties. The FCC and BCC
lattices have not been fully explored as the underlying lattice
structures for LBM simulations.

In the D3Q13 LBM, it is observed that the lattice sites can be
divided into two distinct half-sets [7]. One set contains all the
sites where the sum of index components is even, which we
call even sites. The complementary set contains all the odd
sites and there does not exist any link between an odd site and
an even site. The partitioning is illustrated in Fig. 4. Based on
this observation, it is clear that an LBM simulation over a
D3Q13 lattice can be decomposed into two independent
simulations, each executed on an FCC lattice. In other words,
for a given simulation configuration (same parameters, initial
and boundary conditions), a simulation on a half-set of
D3Q13 will produce identical results on the corresponding
nodes of the full D3Q13 simulation. The reason is that during
the streaming step, the physical properties of one site are
calculated only from linked neighboring sites, and the
collision step is a local computation at each lattice site. This
feature is very important in the sense that we do not need to
prove the validity of the LBM simulation on an FCC lattice.
The D3Q13 LBM has been proven to recover the Navier-
Stokes equation in the incompressible limit, which auto-
matically leads to the conclusion that the LBM on an FCC
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Fig. 2. Hexagonal 2D lattice, D2Q7. The six nearest neighboring sites

(green circles) of a site (red circle) form a regular hexagon. The Voronoi

cell (blue) is also a regular hexagon.

Fig. 3. (a) A 3D BCC lattice can be constructed by adding one lattice site
at the center of every cell of the CC lattice. (b) A 3D FCC lattice can be
constructed by placing sites at the centers of the square surfaces of
every cell of the CC lattice. (c) A 3D HCP lattice can be constructed by
layering 2D HCP lattices. In (c), the blue sites form the 2D HCP lattice,
which is the first layer of the 3D HCP lattice. The green sites represent
the second layer. The entire 3D HCP lattice contains alternating blue
and green layers.

Fig. 4. A 43 CC lattice divided into two interleaving FCC lattices denoted

by light and dark cells.



lattice also recovers the Navier-Stokes equation. Further-
more, LBM is a mesoscopic method and the macroscopic
physical values of the fluid field are statistically calculated
from the particle distribution. Therefore, the LBM on the FCC
lattice (the fD3Q13 LBM) can recover the macroscopic flow
field with half the number of sites of the D3Q13 LBM, which
means that the simulation speed can be doubled with little to
no overhead. The possibility of using half the nodes of D3Q13
for LBM simulation has been presented by D’Humières et al.
[7], and in this paper, we propose an efficient implementation
that maps naturally to GPU architectures.

An FCC lattice achieves the optimal sphere packing in 3D
(another optimal sphere packing in 3D is the asymmetric
HCP) [6]. It is also the lattice with maximum kissing number,
similarly to the hexagonal lattice in 2D. Among all possible
single-speed LBMs in 3D, it is also the one with best angular
discretization granularity of the velocity space. As shown in
Fig. 5, the 12 neighbors of an FCC lattice site form a
cuboctahedron and the Voronoi cell is a rhombic dodecahe-
dron. Every lattice link (velocity vector) of the site intersects
one rhombus on the Voronoi cell at the rhombus center.

Both the FCC and HCP structures can be constructed by

layering 2D hexagonal lattices. Given a hexagonal lattice M

on the plane z ¼ 0, the HCP lattice can be constructed asfM þ
2ið0; 0;

ffiffi
6
p

3 Þji 2 Zg [ fM þ ð2iþ 1Þð12 ;
ffiffi
3
p

6 ;
ffiffi
6
p

3 Þji 2 Zg while the

FCC is defined as fM þ ið12 ;
ffiffi
3
p

6 ;
ffiffi
6
p

3 Þji 2 Zg. In HCP, each

lattice site also has 12 nearest neighbors, which is the

maximum possible value in 3D and the lattice is an optimal

sphere packing. However, for any link with direction d ¼
ðdx; dy; dzÞ such that dz 6¼ 0, the link with direction�ddoes not

exist. Consequently, the HCP lattice does not satisfy the

isotropy constraints and cannot be used in LBM simulations.
The BCC lattice can be constructed by adding an extra site

at each cell of the CC lattice. BCC is the optimal lattice for
sampling in 3D, but is not necessarily the best choice for LBM
simulation. In BCC, each site has eight nearest neighbors and
six secondary neighbors, and the unit cell is a rhombic
dodecahedron as shown in Fig. 6. Thus, BCC and FCC are
duals of each other and the Voronoi cell in BCC is a truncated
octahedron. The faces on the truncated octahedron are eight
regular hexagons (corresponding to eight nearest neighbors)
and six squares (corresponding to six secondary neighbors).
The distance from the site at the Voronoi cell center to the

faces is not uniform, while in FCC, this distance is uniform.
As a result, the BCC lattice is less isotropic than the FCC.
Furthermore, the FCC lattice is capable of simulating the
flow field with half the number of CC lattice sites, while the
BCC reduces the site count by about 30 percent [1].
Therefore, the FCC is our lattice of choice for LBM and we
call the resulting simulation model fD3Q13 LBM.

In any simulation of a practical fluid field problem, the
geometric objects of boundary conditions must be discre-
tized on the underlying lattice, which inevitably introduces
some discretization error. Both the hexagonal lattice in 2D
and the FCC lattice in 3D are better than CC lattices in
representing geometric objects because of their better
isotropy. Consider the vertices of the Voronoi cell in which
the distance to sites is a local maximum: these are called
holes [6]. If the distance from a point to the nearest site is the
absolute maximum, it is called a deep hole, otherwise it is
shallow. The maximum distance is also called the covering
radius. Suppose the distance between two neighboring sites
is 2, the covering radius is 2

ffiffi
3
p

3 � 1:15 for hexagonal lattice
and

ffiffiffi
2
p
� 1:41 for the FCC lattice, while the covering radius

for the CC lattice is
ffiffiffi
2
p
� 1:41 in 2D and

ffiffiffi
3
p
� 1:73 in 3D.

Intuitively, the smaller covering radius leads to less noisy
and more isotropic representation of the discrete geometric
object’s surface. In Section 2.2, we have discussed the
curved boundary treatment used in our simulation which is
second order accurate. The precision of the extrapolation
depends on the lattice link length. In hexagonal and FCC
lattices, the link length is uniform, thus, the extrapolation
precision does not vary with the link direction.

A hexagonal lattice in 2D is compactly stored in a 2D array
of dimension ðnx; nyÞ in row major order. For the ith lattice
site on row j, its lattice coordinates are defined as ði; jÞ and it
is the j� nx þ ith element in the array. The coordinates in
Cartesian space are computed by the following:

x; yð Þ ¼ iþ 1

2
j mod 2ð Þ;

ffiffiffi
3
p

2
j

� �
: ð13Þ

Here, the mod 2 operation can be implemented with a
bitwise AND instruction. The 6 neighboring lattice sites are
enumerated in counterclockwise order:

ðiþ 1; jÞ; ðiþ j mod 2; jþ 1Þ; ðiþ 1þ j mod 2; jþ 1Þ;
ði� 1; jÞ; ðiþ 1þ j mod 2; j� 1Þ; ðiþ j mod 2; j� 1Þ:
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Fig. 5. (a) Unit cell and (b) Voronoi structures for the FCC lattice. The

structures are the cuboctahedron and the rhombic dodecahedron,

respectively.

Fig. 6. (a) Unit cell and (b) Voronoi structures for the BCC lattice. The

structures are the rhombic dodecahedron and the truncated octahedron,

respectively.



There are many ways to generate the lattice sites for the
FCC lattice. We adopt a checkerboard generation pattern
illustrated in Fig. 4:

D3 ¼ fði; j; kÞ 2 Zn : ðiþ jþ kÞ mod 2 ¼ 0g: ð14Þ

The pattern can be viewed as removing half of the lattice
sites with odd index sums from the D3Q13 lattice. Similarly
to the 2D hexagonal lattice, the FCC lattice is stored in a 3D
array of dimension ðnx; ny; nzÞ in row-major format.
Compared to the D3Q13 LBM of size ðn0x; n0y; n0zÞ, each
row of the lattice contains nx ¼ n0x=2 lattice sites and the
other two dimensions do not change: ny ¼ n0y, nz ¼ n0z. The
index of a lattice site in the fD3Q13 LBM is defined to be the
same as in the D3Q13 LBM. The lattice site ði; j; kÞ is the
i=2þ j � nx þ k � nx � ny
� �

th element in the array. The index
of the tth lattice site in the array is described by the
following:

k ¼ t=ðnx � nyÞ;
j ¼ ðt� k � nx � nyÞ=nx;
i ¼ ðt� k � nx � ny � j � nxÞ � 2þ ðjþ kÞ mod 2:

ð15Þ

With this scheme, the 12 neighbors of a lattice site ði; j; kÞ
can be enumerated as ði� 1; j� 1; kÞ; ði; j� 1; k� 1Þ, and
ði� 1; j; k� 1Þ.

4 VALIDATION

As described in Section 3, the D3Q13 LBM simulation can
be decoupled into two independent LBM simulations on
fD3Q13 lattices. The two fD3Q13 lattices are defined over
the nodes with even and odd sums of index components,
respectively. Therefore, the validity of the fD3Q13 LBM is
proven by the validity of the D3Q13 LBM. We further
compare the performance on the Cartesian and hexagonal
lattices in 2D and the CC, FCC, and BCC lattices in 3D. The
results of interest include stability of the simulation,
convergence speed, and accuracy with respect to the known
steady-state analytical solution or approximation.

4.1 Poiseuille Flow

We investigate the performance of the hexagonal D2Q7 and
Cartesian D2Q9 lattices in an LBM simulation of the steady
Poiseuille channel flow. For a channel with width 2L that
supports a steady flow driven by a constant force F along
the x-axis, the velocity is governed by the simplified
Navier-Stokes equation [29]:

�
d2u

dy2
þ F ¼ 0; ð16Þ

where � is the fluid viscosity, and the boundaries along the
x-axis at y ¼ �L and y ¼ L enforce a no-slip boundary
condition. Then, the steady-state solution for the velocity is

uðyÞ ¼ F

2�
L2 � y2
� �

: ð17Þ

Our first experiment employs LBM to simulate the
Poiseuille flow using both the D2Q9 and the hexagonal
D2Q7 lattices. The simulation setup consists of solid walls
across the top and bottom row of lattice sites and a periodic
boundary condition along thex-axis. The boundary condition

on the walls reduces to the simple bounce-back scheme since
the boundary is aligned with the lattice links for both the
D2Q7 and D2Q9 lattices. The flow is initially at rest and is
accelerated by a constant force parallel to the x-axis, using the
microscopic forcing method [29]. With this method, a force
contribution is added to the velocity moment of the
equilibrium distribution of each lattice node at each time
step. Both simulations use approximately the same number of
lattice sites and our hypothesis is that the hexagonal lattice
will perform no worse than the cubic lattice in terms of
convergence behavior and ability to reach the steady-state
velocity profile given by the analytical solution.

In our experiments of Poiseuille flow, the D2Q9
domain contains 63� 63 nodes with a channel width
2L ¼ 62. The viscosity is � ¼ 0:1667 and the driving force
is set to F ¼ 0:0001. The equivalent D2Q7 domain
contains 59� 68 nodes and the LBM parameters are
scaled appropriately. The initial fluid density is set to � ¼
1 and link densities are in equilibrium. The force is
applied at each simulation step, slowly accelerating the
fluid. As can be seen in Fig. 7, after 20,000 iterations, the
simulations have reached a steady state and the velocities
agree with the analytical velocity profile described by
(17). Fig. 8a shows the velocity field rendered with the
Line Integral Convolution (LIC) method [4].

In addition to the simple Poiseuille Flow, we have also
implemented a simulation of a flow around a circular
boundary. The boundary condition, in this case, uses a
combination of bounce-back rules with first-order linear
interpolation, which is able to handle curved boundaries
[3]. We describe this technique in Section 2.2. Instead of a
constant driving force, we now employ inlet and outlet
boundary conditions along the left and right walls of the
simulation domain, respectively. The inlet and outlet are
implemented as Dirichlet boundary conditions, where the
velocity moment along the boundary is reset to the initial
value at each simulation step. Our investigation focuses on
the ability of both lattices to resolve the vortex structures
that form near the circular boundary.

For the simulation with circular boundary, we place a
disc of diameter d ¼ 0:2 at position ð0:3; 0:5Þ. The disc
parameters are normalized to the dimensions of the
simulation domain. The viscosity is changed to � ¼ 0:04
and the inlet velocity is set to u ¼ 0:1. Fig. 8 shows the
resulting steady-state flows using a GPU-accelerated ver-
sion of the LIC method with additional streamline render-
ing to enhance the presentation of the vortices. The
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Fig. 7. Comparison of the velocity profiles for the Poiseuille Flow. The

Cartesian and hexagonal lattices perform identically and both achieve

the analytical result after 20,000 iterations.



hexagonal lattice produces flow results comparable to the

Cartesian lattice while improving the speed of the simula-

tion, as shown in Table 1, due to the decreased use of

memory and computational resources.

4.2 Flow Past a Sphere

We investigate the performance of fD3Q13 LBM in simulating

a flow moving past a sphere, which is a well-studied problem

[11], [14], [15], [27]. It is one of the few setups in 3D for which

there is a know-analytical approximation to the dimension-

less drag coefficient if the simulation domain is an infinitely

long circular pipe with a finite diameter D [11].
For this simulation, the Reynolds number is defined as

Re ¼ U0d
� , where U0 is the steady speed of the sphere moving

against a fluid with viscosity �. The diameter of the sphere

is d. c0d ¼ 24
Re is the drag coefficient for Stokes’s Law region

(Re 	 1). We use the analytical approximation developed

by Wham et al. [28], which accounts for the effect of the wall

on a moving sphere for flows with Re 2 ½1; 100
. The drag

coefficient cd is then defined by

cd
c0d
¼ 1þ 0:03708Re1:514�0:1016 lnRe
� �

� 1� 0:75857
5

1�K
þ 2:0865
3 � 1:7068
5 þ 0:72603
6
;

ð18Þ

where 
 ¼ d
D is the ratio of diameters for the sphere and the

cylindrical domain and K ¼ 0:6628þ 1:458e�0:05635Re. The

drag force acting on the sphere is

Fd ¼ cd
�U2

0

2
�
d2

4
: ð19Þ

In our simulation, we compute the force that a density of
particle exerts on the boundary by considering the change
of momentum along a link that intersects that boundary.
Suppose we have a link m that originates from a lattice site
at position xf toward a position xb inside the boundary. The
link has index i in the lattice structure, velocity ci, and link
i0 is the opposite in the lattice. Then, the force Fm exerted on
the boundary by momentum exchange on link m is

Fm ¼ �ci fi xf ; tþ�t
� �

þ fi0 xf ; t
� �� �

: ð20Þ

The total force acting on the boundary can be computed
by integrating the force over the surface, which, in our
discrete case, corresponds to finding the sum of the
individual force contributions from each link m that
intersects the boundary:

F ¼ V
X
m

Fm: ð21Þ

Note that in (20) and (21), we assume that each site
represents a unit of the simulation domain. Therefore, to
make the results consistent across different simulations, the
force must be scaled by the volume V of the unit cell in
the lattice.

We have performed LBM simulations based on the
Cartesian lattices (D3Q13, D3Q15, D3Q19, D3Q17), the BCC
lattice (D3bQ15) [1], and the FCC lattice (fD3Q13). The cubic
and BCC lattices use the single-relaxation-time model,
while the FCC lattice also employs the multiple-relaxa-
tion-time model (MRT-LBM) [8] to improve numerical
stability. The additional computational overhead of MRT-
LBM is offset by the performance advantage of using only
half of the simulation nodes compared to the Cartesian
lattices. This allows us to achieve numerical stability
comparable to D3Q19 at reduced computational cost.

We model a channel of finite length L ¼ 64 enclosed by a
solid cylindrical boundary with a cross section diameter
D ¼ 60. Inlet and outlet boundary conditions are applied
along the left and right simulation boundaries, respectively.
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Fig. 8. (a) Illustration of the Poiseuille Flow after 20,000 iterations. The simulations based on D2Q7 and D2Q9 lattices produce identical results.

(b) and (c) Simulation results for flow past a circular boundary in 2D for the D2Q9 and D2Q7 lattices, respectively. (d) Relative scale used for

visualization of the speed of the flows.

TABLE 1
Comparison of LBM Performance on the D2Q7 and D2Q9
Lattices in terms of Seconds Per Time Step (SPTS) and

Lattice Updates Per Second (LUPS)

Lattice sizes are 64� 64 for the Cartesian lattices and 59� 68 for the
hexagonal lattice. Simulations are run on an Intel Core Duo 1.86 GHz
processor.



Additional velocity boundary conditions are enforced at the
fluid interface on the pipe boundary and the sphere
boundary through the uw term in (10). The velocity of the
sphere with diameter d ¼ 15 is 0 and the velocity at the pipe
boundary is U0. The viscosity is set to � ¼ 0:0375. This setup
effectively models the steady movement of a sphere
through a viscous media in an infinitely long pipe. We
use (21) to calculate the total drag force acting on the sphere
for varying Reynolds numbers. The dimensionless drag
coefficient computed from (19) is then compared to the
analytical approximation for the system, given by (18).

Fig. 9 shows the convergence toward the steady-state
analytical approximation to the dimensionless drag coeffi-
cient. The D3Q15 and D3Q27 simulations yield results
virtually equivalent to the D3Q19 simulation and are
omitted from the graph. The simulation based on the BCC
lattice also exhibits similar convergence characteristics with
30 percent less samples. The FCC lattice further reduces the
number of samples and the fD3Q13-MRT simulation shows
marginally faster convergence rates. It can also be expected
that the MRT model will allow for greater numerical
stability when Re > 80. The performance results for our
LBM implementations with the different lattice types are
shown in Table 2.

Fig. 10 uses a dense set of streamlines to visualize the
vortices formed behind the sphere. The visualization
component creates streamlines in a single slice parallel to
the xz-plane. The slice is slightly away from the centerline
of the cylindrical domain in order to capture the three-
dimensional nature of the velocity field around the sphere.
Additional streamline seeds are placed behind the sphere to
enhance the rendering of the vortices.

5 SMOKE SIMULATION IN URBAN ENVIRONMENT

We demonstrate the high performance of LBM based on the
fD3Q13 lattice in a simulation of smoke propagation in an
urban environment. A GPU-accelerated LBM simulation
coupled with an OpenGL renderer allows for interactive
exploration of a city environment encoded by a hierarchical
definition and a texture library.

5.1 Urban Modeling

Our model captures intrinsic features of an urban environ-
ment using a hierarchical, grammar-based representation. At
the highest level, there are three basic primitives: buildings,
sidewalks, and roads. We take advantage of the regular
structure found in metropolitan areas by modeling buildings
as rectangular boxes and the roads and sidewalks as layers of
polygons. This simplicity of representation allows for
efficient storage of large data sets and rapid rendering.
Additional details are inserted into the scene by rendering
their respective subhierarchies to textures, which are then
mapped onto the primitives defined at the higher levels. For
example, our facade grammar defines features such as brick
type, storefront, window and balcony structure, etc. A
library of textures is then used to create a novel appearance
or model the facade based on real-world images.

We use a prototype OpenGL-based renderer with
render-to-texture capabilities and support for shaders
written with NVIDIA’s CgFX language. At runtime, we
traverse the grammar file and render the elements of each
facade to a texture. All textures are kept locally on the GPU
and texture resolution is based on available memory.
Certain elements in the facade grammar have associated
CgFX shaders, which are executed during the rendering
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Fig. 9. Comparison with the steady-state analytical approximation for the drag coefficient of a sphere moving through a viscous media over time.

(a) Re ¼ 40 (b) Re ¼ 80.

TABLE 2
Comparison of LBM Performance on

Different Lattice Types in terms of Seconds Per Time
Step (SPTS) and Lattice Updates Per Second (LUPS)

Lattice sizes are 64� 64� 64 for the Cartesian lattices, 32� 64� 64 for
the FCC lattice, and 45� 45� 91 for the BCC lattice. Simulations are run
on an Intel Core Duo 1.86 GHz processor.



stages. For this project, we have implemented a simple
reflection and refraction effect, which is used to model the
appearance of glass. It is associated with windows and glass
sections on doors and storefronts.

5.2 Modeling of Smoke in Urban Environment

We use the MRT-LBM [8] to simulate the airflow in the
urban environments which achieves better numerical
stability compared with the commonly used SRT-LBM
[26], [24]. The idea of the MRT-LBM is to transform the
particle distributions from phase space (i.e., the space of the
distributions fi) to the space of hydrodynamic moments
(i.e., density, momentum, energy, etc.) and to perform the
collision step in the moment space. As in the SRT-LBM
model, the effect of collisions is approximated by a
relaxation toward an equilibrium state, but in the moment
space, each moment is allowed to relax individually. The
transformations between the phase space and the moment
space are given by

jfi ¼ ðf0; f1; . . . ; fnÞT ;
jmi ¼ ðm0;m1; . . . ;mnÞT ;
jmi ¼Mjfi; fi ¼M�1jmi:

ð22Þ

Here, the Dirac notation j:i is used to denote column
vectors, T denotes the transpose, n is the number of the
distributions (n ¼ 13 for the fD3Q13 LBM), and M is an
n� n transformation matrix. In MRT-LBM, the collision
step becomes

jf x; tþ�tð Þi � jf x; tð Þi ¼ �M�1S½jm x; tð Þi � jmeq r; tð Þi
;
ð23Þ

where the components of the vector jmeqi are the local
equilibrium values of the moments. The matrix S in the
collision equation is a diagonal matrix S � diag s0; s1; . . . ; snð Þ
whose elements are the relaxation rates. Their values are
directly related to the kinematic shear and bulk viscosities [8].

The improved stability of the MRT-LBM allows thermal
effects to be coupled in, resulting in the hybrid thermal
LBM (HTLBM) [17]. Zhao et al. [30] have used the HTLBM
to model the weakly compressible thermal flow for
shimmering effects. We adopt it for smoke simulation in
an urban environments. To capture thermal effects, tem-
perature is coupled to the MRT-LBM through the energy
moment, meaning that the energy equilibrium is modified
during the calculation of equilibrium distributions at each
time step.

The row of the transformation matrix M relevant to the
computation of the energy moment is constructed as follows:

M4 ¼ h
13

2
ci � ci � 12j ¼ �12; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1ð Þ;

ð24Þ

where ci is a lattice velocity and h:j denotes a row vector.
The energy moment is computed through (23) and the
equilibrium energy moment for the HTLBM model is
defined by:

meq
4 ¼ eeqn1ðc2

s0 � n2Þ�þ n3ðn4 � �Þu � uþ q1T: ð25Þ

The new variables in (25) are the temperature T , its
constant coupling coefficient q1, and the specific heat �. The
parameters n1 to n4 are constants and their values are
determined by the linear stability analysis. The constant cs0
is the isothermal speed of sound, which is specific to the
chosen lattice velocity set. Heat transfer is modeled
separately with a standard advection-diffusion equation:

@tT þ u � rT ¼ ��T þ q2ð� � 1Þc2
s0r � u: ð26Þ

The parameter � is the thermal diffusivity of the fluid
and q2 is another constant coupling coefficient. The
advection computation executes after the streaming step
in LBM and modifies the temperature used in the
calculation of the energy moment in the following simula-
tion step. Finally, the evolution of the smoke density
volumetric data set is also modeled by an advection-
diffusion equation, which is computed by a backtracing
algorithm [23]. We use the fluid velocity computed at each
lattice site to determine a sampling position for the
backtracing density value. The monotonic cubic interpola-
tion [10] is used to compute densities at off-grid sampling
positions and we have also implemented the lower order
trilinear interpolation for cases that require higher perfor-
mance at the expense of visual fidelity. The advection-
diffusion process for the smoke density �s is described by
the following:

@t�s þ u � r�s ¼ 0: ð27Þ

Here, the flow velocity u is obtained from the HTLBM.
Based on the smoke density, a gravity force is applied to the
HTLBM:

fbody ¼ ���syþ �ðT � T0Þŷ: ð28Þ

In this equation, ŷ is the unit upward vector,� and� are the
coefficients of gravity and buoyancy, and T0 is the tempera-
ture of the surrounding air. The force is applied through the
velocity moment of the equilibrium distribution, calculated
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Fig. 10. Visualization of vortices in the flow behind the sphere at

Re ¼ 80. 
 ¼ d
D ¼ 15

60 , where d is the diameter of the sphere and D is the

diameter of the cylindrical boundary.



in (23). More details are available in the paper on HTLBM [17]
and in the work of Zhao et al. [30].

Unlike Zhao et al. [30] who have implemented the
D3Q13 HTLBM on the CC grid on the GPU, we imple-
mented the FCC HTLBM on the GPU. Half of storage
consumption and almost half of the computations are
therefore saved. As described in Section 3, the FCC lattice
can be represented as a 3D array and the indices of lattice
sites can be calculated with (15). Therefore, a natural choice
is to represent the lattice data on the GPU as a set of 3D
textures. The 13 particle distributions fi are stored in the
color channels of four 3D textures, the elements of which
have 4, 4, 4, and 1 components, respectively. The post-
collision particle distributions fið~x; tþÞ, moments mi, and
equilibrium moments meq

i are also stored in this way. The
flow velocity u and density �, and the temperature and
smoke density are stored in two additional 3D textures.

Each simulation step includes a series of computation
substeps, such as computing the macroscopic flow velocity
and density, computing the equilibrium moments, perform-
ing particle collision and streaming, applying buoyancy and
gravity body forces, and advecting the density and the
temperature fields with the LBM flow field. The substeps
involve only data from the local neighbors of a site in the
FCC lattice and the operations are explicitly parallel. They
are implemented as computation kernels in OpenGL
fragment programs, each of which operates on the lattice
in SIMD fashion and updates the corresponding lattice data.
The fragment program samples the lattice data from the 3D
textures, computes the new lattice data, and renders slices
of the output back into the 3D textures.

To handle the boundary conditions of objects in the flow,
we calculate the intersection points at which the lattice links
are cut by the object surfaces and use this information to
locally modify the particle distributions. In preprocessing,
the intersection points of the object surface and lattice links
are computed and the related boundary information is
stored as a vertex buffer object. During simulation, we
trigger the boundary condition computation kernel on the
intersected links by rendering this vertex buffer object to the
frame buffer. This operation performs the calculations
described in (10) on the particle distributions stored in
textures on the GPU.

5.3 Rendering

The fD3Q13 LBM simulation produces the smoke density
volume on an FCC lattice. Qiu et al. [22] have proposed a
framework for volumetric global illumination on the FCC
lattice volume, which is capable of capturing multiple
scattering. However, although this method is much faster
than conventional methods such as radiosity and photon
mapping, it does not achieve real-time performance.
Because the simulation is performed on the GPU at
interactive speed with results residing on the local video
memory, we would like to also use the GPU for rendering
the smoke in the urban environment. A major difficulty of
rendering FCC volumes is that a computationally intensive
filter such as Gaussian filter is necessary for reconstruction
[22], which is slow even on the GPU. Entezari has proposed
box splines for reconstruction of data sampled on the FCC
lattice [9], however, we are not aware of any GPU

implementations. Therefore, in this application, we first
convert the FCC lattice volume into a rectilinear volume.
This allows us to take advantage of the texturing unit in
current GPUs for efficient trilinear interpolation. Note that
the index of a lattice site in the fD3Q13 LBM is defined to be
the same as in the D3Q13 LBM. For a sampling point in the
regular volume with index ði; j; kÞ, if ðiþ jþ kÞ mod 2 ¼ 0,
the density value is copied from the fD3Q13 LBM lattice.
Otherwise, the density value is interpolated from neighbor-
ing even points:

dði; j; kÞ ¼ 1

6
dði� 1; j; kÞ þ dði; j� 1; kÞ þ dði; j; k� 1Þð Þ:

ð29Þ

We use ray tracing with single scattering for volume
rendering. The illumination IðP; !0Þ arriving at point P for a
directional light source in the direction �!0 is calculated
and stored in a lighting volume. As shown in Fig. 11, the
lighting volume is the minimal enclosing box of the density
volume such that slices of the lighting volume are
perpendicular to the light direction. The light intensity
LðpiÞ at point pi on slice i is computed by attenuating
Lðpi�1Þ on slice i� 1 with the dispersion opacity �ðpi�1Þ. In
our application, the objects cast shadows on the volume.
Because the objects are opaque, LðpÞ is 0 if p is occluded by
some objects from the light source. This can be accom-
plished by calculating the shadow volume of the geometric
mesh for the light source and using it in the fragment
program to modulate the light intensity.

One approach to calculating the lighting volume in-
volves a multipass algorithm using the OpenGL pipeline. In
a preprocessing pass, the polygonal mesh of the buildings is
rendered and only the surface depth is stored in the depth
buffer. This pass can be executed very efficiently since
modern GPUs double their effective pixel fill rate when
writing only to a depth buffer. In each of the following
passes, a single slice of the lighting volume is calculated and
stored in a 3D texture. For each fragment, we compare the
depth with the surface depth so that occluded fragments
have a zero lighting value. Due to hardware and OpenGL
limitations, the fragment program cannot simultaneously
read and write the 3D texture of the lighting volume.
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Fig. 11. Every slice (green lines) of the lighting volume (blue box) is
perpendicular to the light direction. The lighting volume stores light
intensity and density sampled from the density volume (black box). The
light intensity of slice i is calculated by attenuating slice i� 1 with the
current opacity values. The ray is traced through the lighting volume.
The entry point and exit point of the ray are on the bounding box of the
density volume.



Therefore, in each pass, we sample the light intensity of the
previous slice from the 3D texture and the result is used to
compute the intensities of the current slice. After this
operation, the current slice is copied from the frame buffer
to the 3D texture. This algorithm can be implemented using
only the fixed-function OpenGL pipeline [2], and can
therefore run on 3D hardware without shading capabilities.
Our initial implementation uses fragment shaders, but
suffers from some inherent limitations of the algorithm
nevertheless. During a single pass, every slice of the light
volume is rendered to the frame buffer, copied to the 3D
texture and sampled in the fragment program. A major
performance limitation is that the OpenGL pipeline is
stalled at the end of each rendering pass while waiting for
the texture copy. This memory transfer also consumes the
limited memory bandwidth of the GPU.

To address the performance issues, we have implemen-
ted a new method for calculating the lighting volume with
NVIDIA’s CUDA toolkit. CUDA is a C language environ-
ment for writing applications that execute in parallel on the
processing units of supported NVIDIA graphics hardware
[21]. The main advantage is that it alleviates some of the
limitations of the graphics pipeline in respect to general
purpose computations. In our application, it allows for
memory scatter operations or the ability of a computation
kernel to write to multiple memory addresses in a single
thread. This is the exact feature needed to compute the
lighting volume efficiently. For a volume of resolution
x� y� z, we call a CUDA kernel with x� y threads with
each thread processing one lighting ray. The kernel samples
z voxels on the path of each ray using a loop and stores the
resulting values in the lighting volume.

With a single kernel call, we obtain the entire lighting
volume, which is much more efficient than the multipass
OpenGL approach and relaxes the memory bandwidth
requirements. Currently, CUDA cannot share buffers with
OpenGL as they live in different contexts, and therefore, we
need to copy the resulting volume data from the CUDA
memory to an OpenGL pixel buffer object and then to a 3D
texture. This process is much faster than the memory copy
needed in the multipass algorithm since it only involves high-
bandwidth GPU memory and does not use the comparatively
slower PCI-Express or AGP buses for the data transfer.

Previous approaches trace rays in both the density
volume and lighting volume. Each ray needs to maintain
the current sampling position and ray direction in both
volumes, and at each sampling point, the program performs
two trilinear interpolations, which is inefficient. We propose
a method of tracing rays in a single volume only. During the
computation of the lighting volume, the CUDA kernel
samples the density volume with trilinear interpolation. For
each point p in the lighting volume, in addition to the light
intensity LðpÞ, we also store the interpolated density sðpÞ.
This reduces the number of texture sampling operation
needed during the ray-casting pass.

Krüger and Westermann [16] have implemented ray-
casting for volume rendering on the GPU with empty space
skipping and early ray termination. However, empty space
skipping requires an additional data structure (such as min-
max octree) to be calculated and stored on the GPU. Our
simulation generates different density volumes at each time
step and recalculating the data structure for empty space
skipping has a high cost compared to the rendering of a
single frame. Also, because of the phenomena we model, the
dispersion volume is highly transparent and the opacity of
most rays is not saturated. As a result, early ray termination
is not efficient in this case. Therefore, our implementation is
a single-pass ray-casting algorithm without support for
empty space skipping or early ray termination.

5.4 Results

Fig. 12 shows the result of our smoke simulation with a
region in New York City, from 6th to 7th Avenue and from
57th to 59th Street. This urban model has six blocks and tens
of buildings. An east wind blows through the urban
environment and the hot smoke is released from an upwind
position. Its motion is affected by the wind, buoyancy force
due to the temperature, gravity due to the smoke density,
and the geometry of the buildings.

The platform we use is a PC with a Geforce 8800 GTX
graphics card with 768 MB memory and two Xeon 3.6 GHz
CPUs (our CPU code is single-threaded). In Table 3, we
compare three different implementations on the GPU:
D3Q19 SRT LBM, D3Q13 MRT LBM, and our fD3Q13
MRT LBM. The simulation resolution for D3Q19 and D3Q13
is 128� 64� 64. The simulation resolution for fD3Q13 is
64� 64� 64, as only half of the lattice sites are needed for
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Fig. 12. Snapshots of smoke simulation in the urban environment.



the FCC lattice. Performance does not increase linearly with
the number on lattice sites due to fixed overhead associated
with texture and data management on the GPU. Never-
theless, the fD3Q13 LBM is shown to be much more efficient
than simulations using the two other lattice types. The
major reason for this performance improvement is that
fD3Q13 computation requires less memory access opera-
tions, while on the GPU, the memory bandwidth is the
dominant factor for computational performance. With the
fD3Q13 MRT LBM, our simulation runs at 187 FPS. With the
GPU rendering incorporated into the system, the simulation
runs at 66 FPS. This allows for real-time navigation in the
urban environment.

6 CONCLUSION

We have presented the fD3Q13 lattice for highly efficient
LBM simulations. The main advantage of the method is that
LBM on the fD3Q13 lattice can recover macroscopic fluid
properties with half the lattice sites used with D3Q13. With
a low number of lattice links, an efficient indexing scheme
and a demonstrated GPU implementation, the fD3Q13
lattice is a preferred choice for use in a GPU-based real-time
simulations and rendering pipeline.

The high performance also allows the implementation of
MRT-LBM, which improves the stability of the simulation
and allows the coupling of thermal effects. The added
computational load has a minimal effect when implemen-
ted on a GPU architecture whose performance is mainly
restricted by memory bandwidth. Simulations on FCC
lattices are faster than on D3Q19 while offering similar
stability characteristics. Savings on memory bandwidth
consumption because of the reduced number of lattice
nodes and links can dramatically improve performance on
the GPU even with increased computational load.

In addition to more advanced simulation techniques,
the efficient base simulation frees computational resources
for improved advection-diffusion and rendering techni-
ques. We can use a more advanced advection scheme than
the semi-Lagrangian method used in our current imple-
mentation, which will improve the smoke detail resolution
in our renderings. Qiu et al. [22] have proposed a
technique for volumetric lighting based on tracing photons
on an FCC lattice. We can implement this technique with
CUDA to achieve interactive photon mapping with multi-
ple scattering on a unified lattice type. Also, a CUDA-
based renderer will remove the need to copy the lighting
volume in video memory, further increasing the perfor-
mance of our framework.
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