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Abstract
Objective. The training of AI models for medical image diagnostics requires highly accurate,
diverse, and large training datasets with annotations and pathologies. Unfortunately, due to
privacy and other constraints the amount of medical image data available for AI training remains
limited, and this scarcity is exacerbated by the high overhead required for annotation. We address
this challenge by introducing a new controlled framework for the generation of synthetic images
complete with annotations, incorporating multiple conditional specifications as inputs. Approach.
Using lung CT as a case study, we employ a denoising diffusion probabilistic model to train an
unconditional large-scale generative model. We extend this with a classifier-free sampling strategy
to develop a robust generation framework. This approach enables the generation of constrained
and annotated lung CT images that accurately depict anatomy, successfully deceiving experts into
perceiving them as real. Most notably, we demonstrate the generalizability of our
multi-conditioned sampling approach by producing images with specific pathologies, such as lung
nodules at designated locations, within the constrained anatomy.Main results. Our experiments
reveal that our proposed approach can effectively produce constrained, annotated and diverse lung
CT images that maintain anatomical consistency and fidelity, even for annotations not present in
the training datasets. Moreover, our results highlight the superior performance of controlled
generative frameworks of this nature compared to nearly every state-of-the-art image generative
model when trained on comparable large medical datasets. Finally, we highlight how our approach
can be extended to other medical imaging domains, further underscoring the versatility of our
method. Significance. The significance of our work lies in its robust approach for generating
synthetic images with annotations, facilitating the creation of highly accurate and diverse training
datasets for AI applications and its wider applicability to other imaging modalities in medical
domains. Our demonstrated capability to faithfully represent anatomy and pathology in generated
medical images holds significant potential for various medical imaging applications, with high
promise to lead to improved diagnostic accuracy and patient care.

1. Introduction

Data scarcity and imbalance present significant challenges to developing robust AI models for medical
imaging. Unlike large-scale natural image collections such as ImageNet, medical imaging datasets are
typically much smaller, and privacy regulations often limit data sharing or public release. These datasets also
frequently suffer from severe imbalances, with rare pathologies underrepresented compared to common
conditions or healthy cases. The lack of high-resolution images and detailed annotations further exacerbates
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these challenges. All these shortcomings complicate the training and evaluation of AI models and increases
the risk of systemic performance biases (Obermeyer et al 2019, Oakden-Rayner et al 2020),

To address these challenges, researchers have increasingly turned to generative AI for creating synthetic
medical images (Khosravi et al 2023). A key advantage of synthetic data generation is the ability to
incorporate pixel-level annotations from the outset, reducing the burden of manual labeling while
maintaining or even improving model accuracy (Gao et al 2022, Krishna et al 2023b). Furthermore, synthetic
data can help enrich underrepresented populations, addressing the scarcity of certain patient groups, rare
diseases, or protected communities. For instance, inserting rare abnormal tumors into MRI images has been
shown to improve model performance on real patient cases (Shin et al 2018), while synthetically generated
CT images have been used to complement patient x-ray data for TB classification, enhancing the reliability of
AI models by addressing dataset imbalances and supporting more accurate diagnoses, particularly in
resource-constrained settings (Lewis et al 2021).

Yet, these approaches face notable limitations. They often struggle to generate high-resolution, diverse
outputs with sufficient generalizability. Generating images with full resolution and precise anatomical detail
remains a substantial challenge, particularly when annotations—such as those marking tumors or other
pathologies—with intricate spatial features are to be modeled. (Krishna and Mueller 2019, Han et al 2023,
Krishna et al 2023b). In this paper, we present a novel approach to conditional image generation that
addresses this shortcoming.

Our method is based on a general-purpose, condition-free trained denoising diffusion probabilistic
model (DDPM) (Ho et al 2020). While DDPMs generate images through a denoising process, existing
methods have primarily focused on iteratively guiding sampling toward specific regions of the image
distribution (Choi et al 2021, Ho and Salimans 2021, Chung et al 2023). Such single-conditioning
approaches can produce unsatisfactory results, particularly in generating image features faithfully across
multiple scales, such as detailed annotations within the broader anatomical context. Building on Choi et al
(2021), we propose a significant extension that incorporates multiple conditions dynamically throughout the
image generation process. By separately conditioning on anatomy and annotations, our approach achieves a
substantially higher level of detail in the generated annotations, surpassing the limitations of
single-conditioning methods.

Our approach generates high-quality, full-resolution annotated CT images that successfully pass the
Visual Turing Test (Krishna et al 2023a). Moreover, it can dynamically produce new annotations with their
corresponding images, even when such annotation types were not initially present in the training pipeline.
We demonstrate our method in an application that synthesizes lung pathology within anatomy-constrained
lung CT images, using additional inputs for pathology within an anatomical context. The new capability
enhances the model’s versatility, enabling it to handle unseen scenarios and generate meaningful annotations,
broadening its applicability and potential use cases. To the best of our knowledge, this is the first work to
achieve this degree of flexibility—an ability to produce full-resolution images with accurate annotations
while maintaining anatomical consistency across all clinically relevant Hounsfield unit (HU) windows.

2. Related work

Image synthesis has a rich history, beginning with the breakthrough innovation of generative adversarial
networks (GANs) which has found widespread applications. Aside from discussing prior work in image
synthesis, we also focus on the modeling of pathologies, the main motivation for the development of our
multi-conditioned DDPM.

2.1. GANs
GANs (Goodfellow et al 2014) have established themselves as a pivotal class of generative models. They have
provided fast methods for synthesizing varied, high-quality medical images (Prezja et al 2022) and they
currently represent the state-of-the-art in certain applications, such as brain image generation (Xing et al
2021). However, challenges persist in terms of controlling output diversity and ensuring stable training.
Despite their success, classical GANs are unconditioned generative models that offer no direct control over
the attributes of the generated data. Their reliance on an implicit prior learned through the adversarial
training interplay can lead to training instabilities that negatively affect image fidelity. Conditional GANs
(cGANs), such as P2PGAN (Isola et al 2017) and CycleGAN (Zhu et al 2017), incorporate conditioning
signals to guide the generation process, and they have found several applications in medical
imaging (Popescu et al 2021, Sun et al 2022). However, even cGANs have limitations. One key issue is that
their conditioning codes are often too coarse, capturing only high-level class information but failing to
adequately represent the full spectrum of morphological nuances within a class.
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In another line of research, Atli et al (2024) explored GAN-based selective state space modeling
combined with a novel attention mechanism to address the attention-related challenges in transformers and
CNNs for multi-modality image translation. While such specialized frameworks represent valuable advances
in tackling complex tasks, they do not match the background of our application, which focuses on a more
general-purpose scenario. Specifically, we aim to enrich rare or missing annotations within a single modality,
ensuring that the resulting synthetic data directly addresses imbalances in annotated and non-annotated
medical imaging datasets.

2.2. cGANs in pathology
cGANs have been extensively used for pathology synthesis. Ghorbani et al (2020) utilized cGANs to enhance
the diversity of skin lesion images, while Waheed et al (2020) and Jiang et al (2020) developed cGAN-based
generators for chest x-ray and CT data augmentation. Other studies (Shin et al 2018, Thambawita et al 2021)
employed cGANs to produce synthetic polyp images with masks. However, most of these approaches rely on
the availability of well-labeled data, limiting their applicability when labels are scarce or incomplete.

In Shaham et al (2019), Shaham et al introduced SinGAN, a model architecture that enables
multi-conditioning across different scales. While this approach bears some resemblance to our own, SinGAN
is designed to learn from single-image statistics rather than addressing rare pathological cases. This reliance
on internal statistics inherently limits semantic diversity, often causing the model to replicate common tissue
patterns rather than capturing the subtle traits of pathology. In related work, Thambawita et al (2022)
tackled these limitations for polyp images by training a separate model for each image, but this approach is
highly resource-intensive.

We propose a more direct and versatile approach, employing multi-image guidance to manage the
synthesis of both pathology and its associated anatomical context. Our method aims for simplicity and can
leverage any pre-trained diffusion model.

2.3. Diffusionmodels and controlled generation
Recently, diffusion models such as DDPMs (Ho et al 2020, Nichol and Dhariwal 2021) have emerged as
powerful alternatives to GAN architectures. Although they can be slower, their output is often
superior (Dhariwal and Nichol 2021, Khader et al 2023) and offers improved image diversity and quality.
DDPMs also allow for conditioning on medically relevant attributes (Rouzrokh et al 2023, Sizikova et al
2023), enabling the generation of images that meet specific clinical criteria.

To enable more precise and controllable medical image generation through image-based inputs,
numerous studies have explored integrating explicit controls, such as segmentation masks, into text-to-image
diffusion frameworks (Mou et al 2023, Qin et al 2023, Ye et al 2023, Zhang et al 2023). Alternatively, diffusion
models can be trained from scratch with carefully designed conditions (Rombach et al 2022, Qin et al 2023);
however, this approach is often limited by the scarcity of large public datasets. A persistent challenge lies in
achieving both highly precise and finely grained control. Existing guided generation frameworks, such as
ControlNet (Zhang et al 2023) and T2I-Adapter (Mou et al 2023), still struggle to produce images that fully
align with the given image conditions. This limitation becomes particularly critical when generating rare or
diverse pathological cases within medical datasets for balancing or augmentation purposes.

To address these limitations, recent research has begun modeling image-based controllable generation as
an image translation task. Özbey et al (2023) introduced a diffusion-based equivalent of cycle-consistent
adversarial translation, while Arslan et al (2024) proposed a supervised approach that combines the strengths
of GANs and DDPMs. In contrast, our approach focuses exclusively on a single modality and targets specific
conditions, such as pathology or demographic attributes. This focus ensures that the image generation
process is optimized for addressing data imbalance and scarcity, particularly in scenarios where existing
methods fall short in these tasks.

Another line of research (Khader et al 2023, Pan et al 2023, Tudosiu et al 2024) has explored the
integration of vector-quantized latent spaces and transformer architectures with diffusion models. By
leveraging transformer-based architectures, these methods aim to capture complex spatial dependencies in
medical images more effectively than traditional CNN-based approaches. However, these transformer-based
methods often face fidelity challenges in 2D images and typically require large annotated datasets spanning
multiple categories to ensure consistent performance within the same category.

2.4. Decoupling pathology/labels, anatomy and background image
The scarcity of annotated data is particularly critical for rare and underrepresented pathologies. Studies
examining pathology-specific performance (Khosravi et al 2024) have shown that the most substantial
improvements from synthetic data augmentation occur in pathologies representing less than 5% of the
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population. This highlights the potential of generative AI to address data imbalance by focusing on
infrequent and underrepresented cases.

Generative approaches have been proposed to synthesize various types of lesions (Salem et al 2019, Kadia
et al 2022, Liu et al 2023), aiming to integrate realistic pathological appearances into existing anatomical
structures. However, many of these methods face limitations in terms of resolution, diversity, and the
complexity of the datasets required. For instance, techniques like partial convolutions (Liu et al 2023) focus
on refining local patches but struggle to generalize to larger contexts. Similarly, other approaches (Shin et al
2018, Salem et al 2019) often produce low-resolution images, rely heavily on extensive labeled datasets, or
lack applicability across varied anatomical contexts. In some specialized scenarios, domain-specific
simulation frameworks (Amirrajab et al 2022, Al Khalil et al 2023) have been developed to generate
anatomically plausible cardiac MRI (CMR) labels. While effective for their specific applications, these
frameworks are limited by their domain dependency.

Our approach addresses these challenges by decoupling pathology from anatomy through the use of
compressed B-spline curve representations to model anatomical structures. This methodology provides
greater flexibility and adaptability, as the curves are not tied to any specific medical domain. By enabling a
modular and generalizable framework, our approach facilitates broader applications in generating
anatomically accurate and diverse pathological images.

3. Contributions

Our approach builds on the prior work through a design that enables comprehensive control over all aspects
of medical image generation. We demonstrate its capabilities and use cases using lung CT data, utilizing two
datasets: a small annotated dataset and a large non-annotated dataset. Notably, our method requires only the
large non-annotated dataset for effective performance. The top-left corner of figure 1 highlights these
datasets (marked in red boxes).

The small dataset consists of 512× 512 high-dose chest CT images with segmentation maps from 30
patients, publicly available via TCIA (Yang et al 2017). It includes annotations for lungs, heart, spinal cord,
esophagus, surrounding tissue, and bones, as illustrated in the first two images of figure 2. Such small
annotated datasets are commonly available from repositories like TCIA, NIH, and OpenNeuro. In contrast.
the large dataset comprises non-annotated low-dose chest CT images of similar resolution from
approximately 14 000 patients, collected using various scanners across multiple locations (provided by NIH
but not publicly available).

Our contributions are as follows:

• We propose a novel set of pre-processing steps to generate annotations and anatomymaps for large medical
datasets, facilitating structured and scalable data preparation.

• We enhance a diffusion model-based framework to generate diverse, multi-conditioned CT images with
precise annotations spanning the full HU range, achieving a quality virtually indistinguishable from real
images.

• We extend the model to handle multiple constraints, enabling the generation of medical images with high
fidelity annotated pathology without requiring the annotations to be present in any of the training datasets.

• By leveraging a novel diffusion-based strategy that allows precise manipulation of generated imagery, we
provide an effective means to augment datasets with rare or highly specific pathological and anatomical
instances.

The last contribution ensures that synthetic data not only increase the training volume but also enrich it
with nuanced examples critical for improving model robustness. We demonstrate the effectiveness of our
approach by generating images with anatomy outlines and annotated pathology, integrated seamlessly within
the generated anatomy, using lung CT and mammograms as test cases.

4. Methods

In the following sections we describe all of these contributions in detail. We begin with annotation modeling
and then describe our multi-conditioned DDPMmethodology.

4.1. Annotations modeling and augmentation using controlled diffusion
As shown in figure 1(a), we extract annotations from a small dataset of 12 patients’ annotated lung CT scans.
Subsequently, we generate new images corresponding to these annotations by leveraging the images from a
larger, non-annotated dataset. This is achieved by training a DDPM on the large dataset.
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Figure 1. Our synthesis pipeline consists of two main phases. The first phase is divided into three sub-phases that transform a
small annotated dataset into a large annotated dataset, with the capability to generate an infinite number of additional
annotations using a large non-annotated dataset. These sub-phases use the strategies of modeling and sampling annotations
through B-Spline/PCA-based sampling as suggested by Krishna et al (2023a). The second phase focuses on our primary
multi-conditioning sampling step. Blue arrows indicate outputs such as images, data, or models, while red arrows represent the
consumption of inputs or data.

Figure 2. The first two images are from our small dataset. The last two images demonstrate that, in the absence of annotations,
anatomy maps can be generated using a simple thresholding technique, which is applicable to most medical imaging domains.

Figure 3. (a) Generated images (5122) corresponding to the sampled anatomy maps (top row) defined by B-Spline
curves (Krishna et al 2021) (b) Multi-Conditioned Guided Sampling. The blue area represents the image space for all CT lung
images; the yellow, green and red circle represent the spaces closer to the three guidance images y1, y2 and y3, the size of the circles
depends on the downsampling factors n1, n2, n3 of the filter used corresponding to these images.

1) Annotations sampling (figure 1(a)): Annotations or anatomy maps extracted from the small dataset are
encoded using B-Spline curves, following the approach by Krishna et al (2021). As illustrated in figure 2,
in cases where annotations are unavailable, simpler anatomy maps can be generated through
thresholding. The control points of these B-Spline curves are projected into a variance-maximizing
principal component analysis (PCA) space, which enables sampling to create new anatomy maps. This
process is reused to sample diverse annotations (figure 1(c)) after annotating the large dataset of
previously non-annotated images.

2) Diffusion models with guided sampling (figure 1(a)): We train an unconditional DDPM on the large
dataset, comprising low-dose CT images and incorporating refinements suggested by Nichol and
Dhariwal (2021). We use extracted annotations or anatomy maps as conditioning image inputs (Choi
et al 2021) to the DDPM trained on the large dataset. Figure 3(a) highlights some of the results.
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Alternative guidance architectures, such as classifier-free guidance (Ho and Salimans 2021) or
ControlNet (Zhang and Agrawala 2023), can also be employed for this step. All generated images
maintain a resolution of 512× 512.

3) Generated annotations via U-net and PCA space (figures 1(b) and (c)): Combining the previously
generated annotated images, we train a U-Net (Ronneberger et al 2015) to predict annotations from an
image, enabling annotation generation for the entire large dataset as the augmented dataset’s textures
align with those in the large dataset. However, training a U-Net is not required if the small dataset lacks
annotations and anatomy maps are instead extracted via thresholding. The resulting increased
annotations / anatomy maps create a richer PCA space for B-spline control points, significantly
enhancing the ability to generate diverse anatomy maps.

4.2. Multi-conditioned DDPM
We investigate the sampling strategies of our trained DDPM suggested by Choi et al (ILVR) (2021), and
extend it to incorporate multiple conditional or guidance images. Our findings highlight the significance of
this strategy for the purpose of synthesizing medical imaging datasets that are not only highly accurate but
also annotated. Moreover, as these guidance techniques are not bound by annotations, they can be effectively
employed to enhance annotated images featuring rare anatomies and pathology, thereby fostering the
development of a more comprehensive and diversified dataset.

4.2.1. Preliminaries
Our DDPM iteratively transforms an isotropic Gaussian distribution into a full HU window lung CT image
distribution. The Markov Chain model learns the reverse of the forward diffusion process which is

q(xt|xt−1) := N
(
xt;

√
1−βtxt−1,βtI

)
(1)

with xt as the latents with added noise and βt as a fixed variance schedule.
Equation (1) can be decomposed by the reparameterization trick and xt can be further derived in terms

of the image x0 as:

xt =
√
αtx0 +

√
1−αtϵ (2)

with αt := 1−βt and αt :=
∏t

i=1αi. The added noise ϵ∼ N(0, I) has the same dimensionality as the image
and the sampled latents during training.

The reverse diffusion process is learned via a neural network pθ and is expressed in terms of µθ (Ho et al
2020):

pθ (xt−1|xt) = N
(
xt−1;µθ (xt, t) ,σ

2
t I
)

(3)

µθ is further decomposed (Ho et al 2020) in terms of noise approximator ϵθ:

µθ =
1

√
αt

(
xt −

βt√
1−αt

ϵθ (xt, t)

)
. (4)

By formulating the loss function (Ho et al 2020) as the log likelihood of x0 and computing a variational
lower bound (similar to the case of variational auto-encoders) as the KL divergence between q and p, Ho et al
(2020) framed the loss function as the L2 distance between the actual mean of the image (µ) and µθ which
can be further simplified to as the L2 distance between the predicted noise ϵθ and added noise ϵ at any given
time t:

Loss= ∥ϵ− ϵθ (xt, t)∥2 = ∥ϵ− ϵθ
(√

αtx0 +
√
1−αtϵ, t

)
∥2. (5)

Equations (2) and (5) are used to train our DDPM, incorporating refinements from Nichol and Dhariwal
(2021). Our DDPM was trained on a large dataset of 5000 lung CT scans, with images extracted at full HU
width of 2000. This ensures that the generated images span the entire HU width during sampling and can be
visualized at other clinically relevant windows, including lung, bone, and soft-tissue. Utilizing equation (3)
and the reparameterization trick, xt−1 can be sampled as:

xt−1 =
1

√
αt

(
xt −

βt√
1−αt

ϵθ (xt, t)

)
+
√
βtϵ. (6)

Using the above equation repeatedly, we can sample lung CT images starting from random noise after
training a DDPM on our large dataset. Both training and sampling steps are outlined in prior works related
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Algorithm 1. Sampling.

1 Input: Conditional / guidance images y1, ....yM
2 Output: Generated image x
3 Filter-scales: ϕn1 , ....ϕnM

4 Time-steps (T, a): a1, ....aM
5 xT ∼ N(0, I)
6 for t=T to 1 do
7 z∼ N(0, I)
8 if t= 1 then
9 z= 0
10 xt−1 =

1√
αt
(xt− 1−αt√

1−αt
ϵθ(xt, t))+σtz

11 X= 0
12 for s= 1 toM do
13 yst−1 ∼ q(yst−1 |ys)
14 if t⩾ as then
15 X= X+ϕns(yst−1)−ϕns(xt−1)
16 xt−1← xt−1 +X
17 return x0

to DDPMs (Ho et al 2020). Next, we will focus on the sampling algorithm of our DDPM to facilitate
multi-annotation guidance during our lung CT image generation.

4.2.2. Multi-condition guidance (figure 1(d))
As previously discussed, there are diverse approaches available to steer the sampling procedure of a trained
DDPM. Here, we explore the guidance techniques introduced by Choi et al (2021) and utilize them to exert
precise control over the generation of lung CT images within all HU windows. Choi et al propose the
feasibility of directing the sampling process towards a subset of image distributions surrounding a reference
image y, provided that we can establish similarity between the downsampled reference image y and the
downsampled generated image x0.

To approximate this condition in each Markov transition during the sampling process, Choi et al
consistently enhance the downsampled latent variable xt within steps (T, a) to resemble the corresponding
downsampled noisy version of the reference image yt (yt =

√
αty+

√
1−αtϵ). This ensures that both xt and

yt exhibit shared low-frequency contents. Specifically:

pθ (xt−1|xt, c)≈ pθ (xt−1|xt,ϕN (xt−1) = ϕN (yt−1)) (7)

where ϕN(. . .) is a low-pass linear filter with N as the downsampling factor. The term is approximated by
ensuring the latent xt−1 captures the missing low-frequency contents of yt−1 after sampling from the
unconditional DDPM,

xt−1 = xt−1 +ϕN (yt−1)−ϕN (xt−1) . (8)

We argue that by manipulating the degree of downsampling and the number of steps a linear filter ϕ is
used, for a given set ofM conditional images y1,y2, . . . ,yM, we can fine-tune the sampling using sets of
integers n1,n2, . . . ,nM and a1,a2, . . . ,aM. Here, nm denotes the downsampling extent for a linear filter
corresponding to each conditional image during the steps [T, am > 1). This allows for valid image generation
through a trained DDPM that shares low-level features (or similarity) with each of the conditional images.
We modify equation (8) as:

xt−1 = xt−1 +
M∑
s=1

{(
ϕns

(
yst−1

)
−ϕns (xt−1)

)
, if t⩾ as

0, otherwise.
(9)

The integers ns, as for a conditional image will depend on the purpose and the nature of the conditional
image in the generation of the final images. In practice, the above strategy may only work well for a
maximum of three conditional images. Figure 3(b) visualizes our multi-conditional guidance and the steps
in sampling where with each step the generated image gets closer to the desired super-subset of the image
distribution. As is evident from the visualization; if above sets of integers are not chosen carefully, there may
not be a significant overlap between the subset distributions of conditional images in which case the image
samplings may start generating inaccuracies. Steps 11–16 in algorithm 1 illustrate the above process in the
sampling of the synthetic lung CT images.
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Figure 4. Three generated lung CT images, each with two conditional images (top and left). The images generated are for three
different anatomy maps for the same conditional CT image (marked with red outline). The generated images follow the anatomy
of the top row but texture features such as the heart follow the CT image. The results are displayed in the soft-tissue window to
highlight the similarity and accuracy of the generated anatomy w.r.t. the guidance images.

Figure 5. (a) The leftmost column of the figure highlights some of our sampled images in the full HU window range. The next
three columns show the same sampled images in the Bone, Soft-Tissue and Lung windows. (b) Confusion matrices for the
responses of the 3 radiologists. The overall accuracy of the responses is 45.56% which is close to 50%; a requirement for passing
our Visual Turing Test. (c) Confusion matrices for the responses of the 3 radiologists (a different group) for the images with
pathologies. The overall accuracy of the responses is 55.56% which is again close to 50%.

5. Experiments and results

As outlined in figures 1(a)–(c), aside from pre-processing steps that produce custom annotations, we train a
DDPM (Nichol and Dhariwal 2021) on our large dataset which consists of low-dose lung CT-scans of 5000
patients. The images from the scans were extracted from the mid-abdomen regions, clearly showing the
lungs along with the heart. The images are extracted in the entire relevant width of 2000 HU (−1000 HU to
1000 HU) for training our model; it enables the generation of images in the same HU range during the
sampling process post training. That way, the images can be viewed at any HU window during their
evaluation in the Visual Turing Test.

5.1. Visual and quantitative evaluation
Figures 4, 5(a) and 6 present images generated using our sampling strategy. Figure 4 illustrates sets of
guidance images, each consisting of an anatomy map and a CT image, which are used as conditional inputs
for generating the images shown (see the caption for more details). Figure 5(a) displays generated images in
bone, soft-tissue, and lung windows, allowing for visual inspection of anatomical consistency across clinically
relevant windows. Figure 6 provides additional examples where both an anatomy map and a real CT image
serve as guidance inputs for each generated image.

5.1.1. Visual turing test
We began by verifying the anatomical accuracy and fidelity of the generated images through a Visual Turing
Test (Krishna et al 2023a). With the assistance of three radiologists, we evaluated the realism of our generated
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Figure 6. Another example of multi-conditioned sampling; The figure shows multiple generations of the same reference CT image
(leftmost red column) in soft-tissue and lung windows based on different input reference anatomy maps (top red row). All the
anatomy maps shown in the figures are new anatomy maps generated via PCA-sampled B-Splines (Krishna et al 2023b).

lung CT images. The radiologists were asked to label 30 randomly selected lung CT images as ‘Real’ or ‘Fake’,
with the images chosen from bone, lung, and soft-tissue windows.

The purpose of this test is to assess whether our model can generate medically accurate images. If the
experts are unable to correctly distinguish between real and fake images at least 50% of the time (chance
baseline), the model is considered to have passed the Visual Turing Test. The results, compiled in figure 5(b)
and table 1(a), demonstrate that our generative framework successfully passed the test. Expert radiologists
were unable to identify most of the synthesized lung CT images, with many of their ‘Fake’ labels incorrectly
assigned to real images. This indicates that our guidance-based DDPM sampling scheme produces images
that are indistinguishable from real ones (see the caption for more details).

5.1.2. Comparisons with unconditional generative models
Table 2(a) presents a quantitative comparison of approximately 10 000 generated full HU window lung CT
images against state-of-the-art generative models, including StyleGAN (Karras et al 2018),
StyleGAN2 (Karras et al 2020), DDPM (Unguided Sampling) (Ho et al 2020), and diffusion-transformers
(DiT) (Peebles and Xie 2023), all trained on the large dataset. We also evaluated images sampled without
guidance from the same trained DDPM to assess the impact of our sampling strategy on image fidelity. As
shown in the table, the FID and the MMD scores indicate that our model performs at least as well as the
state-of-the-art unconditional models, if not better. Moreover, our approach uniquely focuses on generating
both raw data and their corresponding annotations, setting it apart from these methods. Inception scores
(IS) are less reliable for medical image synthesis as they rely on unrelated ImageNet classifications and do not
compare against real medical image distributions. Nonetheless, our model performs comparably to
state-of-the-art fidelity models.

In addition, we conducted a set-level comparison of structural similarity index (SSIM) scores with the
training data, finding that our guided-sampling approach outperformed StyleGANs and DiT. While
unconditional models generate accurate images, they often lack anatomical consistency due to the lack of an
anatomy-controlled generation framework. Visual inspection confirms our method produces more
anatomically coherent results. We also calculated the Diversity Score (DS), the average pairwise L2 distance
among feature embeddings from a pre-trained InceptionV3, and found our model performs comparably to
the state-of-the-art fidelity models.

5.1.3. Comparisons with unconditional generative models in medical imaging
In recent years, researchers have adapted models from the Computer Vision literature for synthetic medical
image generation, modifying and integrating some for improved performance. For evaluation, we selected
three state-of-the-art pipelines and compared their outputs against ours. The first pipeline (Khader et al
2023) employs a latent diffusion model (LDM) with VQ-GAN quantized latent space; the second (Tudosiu
et al 2024) utilizes VQ-VAE’s compressed latent space as input to a transformer for image generation; and the
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Table 1. Summary of Three Radiologists’ Feedback on Lung CT Images and Lung CT Images with Pathology.

(a) Visual Turing Test

Accuracy Real→ Fake (FN) Fake→ Real (FP)

Radiologist 1 46.7% 6.7% 100%
Radiologist 2 53.3% 6.7% 86.7%
Radiologist 3 36.7% 33.3% 93.3%
Averages 45.6% 15.6% 93.3%

(b) Visual Turing Test (Pathology)

Accuracy Real→ Fake (FN) Fake→ Real (FP)

Radiologist 1 50% 40.0% 60.0%
Radiologist 2 56.7% 40.0% 46.7%
Radiologist 3 60% 26.7% 53.3%
Averages 55.6% 35.6% 53.3%

Figure 7. Images are generated at a resolution of 512× 512, with each row showcasing images in either a soft-tissue window (first
and third rows) or a full-HU window (third row), best suited to highlight anatomical inconsistencies and fidelity issues in
different frameworks. Row 1: The framework by Khader et al (2023) demonstrates background noise in several cases, particularly
visible in the last two images. Row 2: A latent-space-based framework (Tudosiu et al 2024) with a transformer proposed by
another study displays inconsistencies across key areas, including bones, lungs, and hearts, as indicated by red dotted ovals. Row
3: A DDPM-based framework (Pan et al 2023) with intermediate swin-transformer layers generates excessive ground-glass
opacity artifacts, particularly evident in the lung region.

third (Pan et al 2023) integrates swin-transformer layers with convolutional layers in a DDPM framework
(MT-DDPM). While these models were primarily designed to generate lower-resolution images, some could
create consecutive 2D slices. We modified them to generate higher-resolution 512× 512 images for
comparative analysis. Table 2(b) illustrates that our model performs equally well or outperforms these
pipelines across various metrics, while figure 7 showcases sample outputs.

Enhancing the latent size of the VQ-GAN+LDM pipeline improved image quality but introduced
residual noise in some outputs, visible in the last two columns of row 1. The second row displays results from
the VQ-VAE+transformer, which showed inconsistencies in generating anatomical structures such as bones,
tissue, hearts, lungs, spinal cords, and esophagi, especially in the full HU window. The MT-DDPM,
combining transformer and convolutional layers, consistently produced clear, high-resolution images but
occasionally exhibited ground-glass opacity-like artifacts. These artifacts, prominent in soft-tissue windows
within the lung region, are highlighted with red circles in the third row of figure 7.
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Table 2. Comparing generative models with multi-guided sampling (best scores are highlighted in bold).

(a) Unconditional Generative Models

FID IS MMD DS Set-level SSIM

PGGAN 146.09 2.21 0.141 15.71 0.33
DiT 82.83 1.87 0.156 14.49 0.38
StyleGAN 81.57 2.09 0.135 13.78 0.31
StyleGAN2 72.31 2.28 0.135 14.88 0.30
Unguided Sampling (DDPM) 83.24 2.12 0.143 14.11 0.27
Guided Sampling (Ours) 69.85 2.22 0.129 14.40 0.45

(b) Unconditional Generative Models in Med. Imaging

VQ-GAN+ LDM 160.94 2.18 0.150 15.81 0.13
VQ-VAE+ Transformer 196.34 2.00 0.160 13.64 0.18
MT-DDPM (Swin-Trans.) 85.33 2.14 0.143 14.57 0.32
Guided Sampling (Ours) 69.85 2.22 0.129 14.40 0.45

(c) Conditional Generative Models

P2P+ CycleGAN 81.96 2.12 0.133 14.69 0.46
Cross-Att. DDPM 79.02 2.26 0.131 14.83 0.26
ControlNet (Multi-Cond.) 106.74 2.01 0.140 14.03 0.35
Guided Sampling (Ours) 69.85 2.22 0.129 14.40 0.45

5.1.4. Comparisons with conditional generative models
We also compared our approach with some popular conditional generation methods. While quantitative
metrics for these methods are presented in table 2(c), our primary focus was on evaluating how well the
generated images adhered to conditional inputs while maintaining anatomical accuracy and fidelity-crucial
for generating rare and diverse pathology and anatomy. Figure 8 illustrates this comparison.

Given our access to CT images with and without anatomy maps, and the ability to generate a large
number of these maps by sampling our B-Spline space, we benchmarked our method against
Image-Factory (Krishna et al 2023b). This state-of-the-art approach employs a combination of paired and
unpaired training in a GAN setting for CT image generation. The results in the second and third columns of
figure 8(top three rows) highlight that our method significantly outperforms Image-Factory in maintaining
anatomical accuracy, particularly in the heart region, as seen in the soft-tissue window, while still adhering
closely to the input anatomy maps, even at a high downsampling factor of 64. The fourth column presents
the same generated images in the full-HU window, reinforcing this observation.

Next, we modified a multi-view diffusion framework to train a conditional-DDPM (Watson et al 2023)
using cross-attention U-Nets and stochastic conditional sampling. However, as shown in the last three
columns, conditionally trained DDPMs struggled to accurately follow conditional maps, performing less
effectively compared to our method, even under high downsampling factors of 64 and 128.

Next, we trained a ControlNet (Zhang and Agrawala 2023), which enables multi-conditional sampling by
concatenating conditional images as inputs during the sampling process. The results of conditional sampling
via ControlNet are shown in the last two rows. While ControlNet performs well for single-conditional
sampling using anatomy outlines, it tends to generate anatomically inconsistent results when handling
multiple conditional images, as highlighted in the last row. One significant limitation of ControlNet is its
inability to fine-tune the extent of conditioning for each conditional image. Unlike our approach, which
allows nuanced control, ControlNet lacks mechanisms to resolve conflicts arising from multiple conditions.
Consequently, it struggles to balance competing conditional inputs, leading to inaccuracies in anatomy
generation under complex scenarios.

5.2. Anatomy features/pathology generation
For our next multi-conditional sampling experiments, we selected lung CT images from our training dataset
that exhibit unique anatomical features and pathologies. For instance, figure 6 demonstrates multiple
generations where the diaphragm of a reference CT image is distinctly visible, integrated into various lung
CT anatomies through additional guidance provided by anatomy images used as inputs.

We extended our experiments to generate CT images featuring lung pathologies, including both benign
and malignant tumors and nodules. With the assistance of our radiologists, we handpicked specific CT
images from our training dataset that exhibited these pathologies and manually annotated them to serve as
guidance image patches. Figure 9 displays generated images for five different pathologies across three
different anatomies, guided by anatomy maps. We observed that in many cases, the generated lesions
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Figure 8. Top Three Rows: 2nd Column: Conditional generation via the P2PGAN+ CycleGAN framework corresponds to the
anatomy maps in the first column. 3rd Column Multi-guided sampling generation with a downsampling factor (N) of 64 on the
anatomy maps; shown in soft-tissue window with accurate generation of the hearts unlike the 2nd column images. 4th column:
Same images as the 3rd in the full-HU window. 5th column: Higher N but still adhere to the anatomy maps better than the
conditionally trained DDPMs with cross-attention U-Nets whose generations are shown in the 6th Column. Bottom two rows:
ControlNet generations with the top row conditioned on an anatomy map or a CT image and the bottom row conditioned on an
anatomy map and a CT image. The results from the bottom row reveal that ControlNet struggles to consistently satisfy two
conditional inputs, leading to inconsistent generations.

realistically adhered to lung walls or surrounding tissues when in close proximity, effectively mimicking the
behavior of tumors in these regions.

In figure 10, we demonstrate that with a single pair of guidance images-a pathology-annotated CT image
and an anatomy map-we can generate multiple CT images displaying the same pathology with slight
variations in the spiculation patterns of the generated lesions. This variation can be achieved by adjusting the
downsampling factor N of the linear filter or modifying the number of refining steps [T, A] corresponding to
the conditioning pathology shown in the leftmost column of the figure.

5.2.1. Visual turing test (pathology)
We conducted a Visual Turing Test to evaluate the fidelity of pathology images generated via our
multi-guided sampling approach. The goal was to assess whether the anatomical integration of pathology
within the simultaneously generated anatomical context affected the overall fidelity of the images. The
radiologists (a different group) were informed that half of the images were synthetic to encourage them to
classify more images as fake. Each radiologist spent approximately thirty minutes on the test, averaging one
minute per image.

The results, presented in figure 5(c) and table 1(b), show that while the radiologists performed slightly
better than chance in distinguishing real from fake images, they still misclassified fake images as real more
than half the time. This resulted in an average accuracy only slightly above 50%, further demonstrating that
our generative framework effectively produces realistic images, even for rare pathological cases within the
training dataset.
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Figure 9. Examples of generated lung-CT images with pathology using multi-conditioned sampling. These images follow the
anatomy of the conditional images in the left column (generated with B-Spline curves) and the pathology of the real CT images in
the top row.

Figure 10. Examples of generated lung-CT images with pathology using multi-conditioned sampling; which follows the anatomy
of the conditional images (generated using B-Spline curves) on the right and pathology of the real CT images on the left. By
varying N for the conditional pathology images, we can generate different versions of the same tumor/nodule having varying
spiculation patterns.
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Figure 11. Examples of CT images with pathology generation using only one conditional anatomy map shown in the red boxes;
for the first case (first two rows) we were partially successful in generating circular nodules along with diversified generation; for
the second case (last two rows), we were unable to generate a spiculated tumor corresponding to the one shown in the anatomy
map, when generating diverse images.

5.3. Ablation
To assess whether our multi-conditioned framework outperforms a conventional single-conditioned
framework, such as that by Choi et al (2021), we conducted an ablation study. In this study, we reduced our
condition image set to a single reference image containing both anatomy and pathology, as shown in
figure 11 for two tumor cases. The red-boxed reference image in the top row (first case) depicts a reference
anatomy with a simple, blob-shaped tumor. In contrast, the red-boxed reference image in the third row
(second case) shows a reference anatomy with a more complex, spiculated tumor.

The remaining columns of figure 11 show the results of this experiment. The top two rows display the
soft-tissue and lung windows, respectively, for the first case with a simple tumor. We observe that the
generated tumors fairly closely resemble the reference tumor, with the intended variations. However,
challenges arise when the nodules are positioned near surrounding organs (e.g. the heart), causing them to
blend with the connecting tissues, as seen in the red-boxed result image (row 2, column 5).

While the generated tumors in the first case have a similar general appearance than the tumor in the
reference image, for the second case with a complex tumor (bottom two rows), this general resemblance is
not observed. In most generated images, the spiculated reference tumor degrades into a large, shapeless blob.
This suggests that the ablated, single-conditioned approach struggles to capture more challenging
pathologies, reducing them to simpler forms. Our multi-conditioned approach, on the other hand, is able to
generate complex-shaped tumors and without unwanted tissue connectivity, as demonstrated in previous
figures.

5.4. Showcasing versatility
We tested the versatility of our framework by generating cancerous tumors on mammography images. Using
a trained DDPM on non-annotated mammograms, we applied our multi-conditioned sampling method,
similar to the setup used for lung-CT pathology generation. Figure 12 presents preliminary results of
generated mammograms containing tumors. To mitigate texture discrepancies between the two guidance
images for a generated image, we pre-processed the tumor images using style transfer techniques. The
preliminary results suggest that our framework can be effectively applied across multiple domains of medical
imaging, enabling the generation of large, annotated, and balanced datasets from a minimal number of
annotated images.
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Figure 12.Multi-conditioned sampling in mammograms; the figure shows two generated images corresponding to their
conditional images (left and top) highlighted in red. The images show the successful generation of the cancerous tumors of the
top images embedded in the generated images along with its surrounding structures and textures similar to the left images.

6. Discussion

Despite significant advancements, generating high-resolution chest CTs with precise anatomical details, such
as small nodules or subtle tissue boundaries, remains a major challenge. Existing diffusion and Vision
Transformer-based models often fail the Visual Turing Test for chest CTs, even when successful in other
domains (Khader et al 2023), highlighting their limitations in capturing fine-grained anatomical structures.
While transformer-based guidance can enhance contextual coherence, it does not consistently ensure fine
boundary accuracy or morphological fidelity-both of which are essential for reliable pathological assessment.

Our proposed method can be seen as complementary to other recent approaches, such as
swin-transformer layers, ControlNet-augmented diffusion or classifier-guided strategies, which excel at
preserving certain spatial or semantic properties. Specifically, ControlNet is well suited to tasks that depend
on precise boundary delineations-like segmentation maps or contour constraints-while our
ILVR-inspired (Choi et al 2021) guidance is more flexible for tissue-structure nuances and subtle
morphological variation. Combining our multi-guidance with boundary-focused modules (e.g. ControlNet)
may further improve the consistency of boundaries without sacrificing the natural variability of soft tissue.
Similarly, techniques like classifier-free guidance may be integrated to further shape the sampling process
toward clinically relevant features, possibly outperforming earlier approaches in terms of image realism and
diversity balance.

A natural extension of our work involves integrating with text-based conditioning to improve control
over pathological features. Text-guided approaches-such as those leveraging large language models-could
enable more nuanced or multi-faceted constraints on the synthesis process (e.g. ‘generate a lung CT with two
small nodules in the upper lobe’). By combining text embeddings with image-based control, one might guide
the synthesis toward specific pathologies or demographic profiles more effectively.

Despite these benefits, our method still operates entirely in image space rather than a latent space,
making sampling relatively slower and more computationally expensive. This cost grows significantly in 3D,
where the dimensionality is high and each diffusion step becomes more time-consuming. Such constraints
can limit the practicality of generating large-scale synthetic datasets intended for broad data augmentation.
For smaller datasets, or for specific subsets of rare pathologies requiring more diversity, our approach still
offers important benefits in capturing subtle morphological nuances. However, future research should
explore latent-space sampling methods tailored for 3D volumes-potentially by integrating our
multi-conditioning approach with a latent diffusion framework. These enhancements could deliver
comparable fidelity while alleviating the computational overhead. For now; although our model excels at
capturing subtle pathologies, it is tested primarily on 2D slices; full 3D volumetric sampling remains
computationally intensive and hence limit large-scale quantitative evaluations.
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7. Conclusion and future work

Our results demonstrate that diverse and anatomically accurate lung-CT images, complete with annotated
pathology or anatomy, can be generated even from small datasets. Remarkably, our approach was able to
simulate pathology without relying on any pre-existing annotations for that pathology in the training
datasets. Both visual inspections and quantitative assessments confirm the anatomical accuracy of the
generated images across all clinically relevant HU windows, underscoring the effectiveness of DDPMs
enhanced by guidance images in capturing the intricacies of anatomical structures in lung CT images.
Beyond boundary-level precision, we emphasize multi-condition sampling that can scale up conditional
diversity (e.g. multiple pathology types, style variations, or demographic attributes). Although conditional
guidance can sometimes reduce variation in the generated samples, our results suggest that proper sampling
strategies-particularly with an ILVR-like formulation-can maintain or even increase diversity while still
improving fidelity and resolution.

Looking ahead, we plan to extend our framework to cover a broader range of medical domains and
pathologies. Building on our success with mammograms, we aim to explore a combination of conditioning
strategies beyond ILVR, such as ILVR paired with style-transfer techniques. Additionally, we are interested in
expanding our work to 3D image generation, such as creating entire lung-CT scan slices with annotated
pathology.

Finally, while the above discussion has focused largely on fidelity and morphological correctness, future
investigations should examine the diagnostic utility of such synthetic data. For instance, one can
systematically measure whether generated CT scans improve downstream pathology classification or
segmentation across a broader range of diseases. Likewise, user studies with radiologists could assess realism
and detectability of subtle lesions. In that vein, combining multiple generative paradigms-such as our
ILVR-based multi-conditioning, boundary-aware ControlNet modules, or classifier guidance may yield more
anatomically precise, high-resolution CT data for both research and clinical applications. Furthermore, we
intend to evaluate whether models trained on our synthetic images can match or even surpass the
performance of those trained on real data. This will help us assess the potential for synthetic images to
completely replace real data in training deep learning models for various medical applications.
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