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Abstract—We present a comprehensive pipeline, integrated with
a visual analytics system called GapMiner, capable of exploring
and exploiting untapped opportunities within the empty regions of
high-dimensional datasets. Our approach utilizes a novel Empty-Space
Search Algorithm (ESA) to identify the center points of these
uncharted voids, which represent reservoirs for potentially valuable
new configurations. Initially, this process is guided by user interactions
through GapMiner, which visualizes Empty-Space Configurations
(ESCs) within the context of the dataset and allows domain experts
to explore and refine ESCs for subsequent validation in domain
experiments or simulations. These activities iteratively enhance the
dataset and contribute to training a connected deep neural network
(DNN). As training progresses, the DNN gradually assumes the role of
identifying and validating high-potential ESCs, reducing the need for
direct user involvement. Once the DNN achieves sufficient accuracy,
it autonomously guides the exploration of optimal configurations
by predicting performance and refining configurations through a
combination of gradient ascent and improved empty-space searches.
Domain experts were actively involved throughout the system’s
development. Our findings demonstrate that this methodology
consistently generates superior novel configurations compared to
conventional randomization-based approaches. We illustrate its
effectiveness in multiple case studies with diverse objectives.

Index Terms—High-dimensional data, multivariate data, empty
space, data augmentation, configuration space, parameter optimization

1. INTRODUCTION

HIS paper focuses on a methodology for effectively discovering
T‘empty spaces”—rtegions where data points are absent—in
multivariate and high-dimensional (high-D) datasets. Identifying
and exploring these empty spaces is both a challenge and an
opportunity. The challenge is rooted in the curse of dimensionality,
which is the exponential increase in volume and data sparsity
associated with adding dimensions [4]. It makes the search for
meaningful empty spaces increasingly complex, even for just a
moderate number of attributes parameterizing the data.

Overcoming this complexity is not merely academic. It directly
impacts the practicality of discovering and verifying new, unknown,
and yet unimagined configurations that might reside within these
empty spaces. Advocating for a configuration-discovery technique
that can explore unconventional or even radical changes brought by
unknown configurations and parameter settings offers a powerful
alternative to conventional parameter tuning and optimization. These
tasks are increasingly recognized as high priorities across diverse
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fields, including aerospace engineering [7], manufacturing [14],
computer systems [1], personalized healthcare [55], and others,
where techniques of this sort often address optimization problems
with multiple objectives.

The emergence of crossover cars and hybrid vehicles illustrates
well the high potential of exploring large parameter spaces to
discover unique and unexpected configurations. Crossovers blend
features from different vehicle types, offering drivers the versatility
of an SUV with the agility of a sedan. Similarly, hybrids integrate
gasoline engines with electric motors, improving fuel efficiency
and reducing emissions without sacrificing performance. These
examples demonstrate how investigating gaps within extensive
parameter spaces can challenge conventional design constraints and
embrace unconventional configurations. Clearly, innovation of this
sort can also occur in lesser contexts.

While ingenious configurations become obvious once discovered,
there are a multitude of them that defy practicality. Also, more often
than not, high cost and substantial effort are required to obtain or
simulate a hypothesized configuration to verify its merit. A human
expert is often the best judge to decide whether to take up the risk
of engaging in such a testing effort at all. But even with the human
in the loop, the challenge lies in ideating meritorious configurations
in the presence of this massive realm of possibilities.

To illustrate this challenge, consider a 4-dimensional parameter
space with 50 levels for each dimension. This results in 50* = 6.25
million possible configurations. Suppose we have data on the merit
of 10,000 configurations from previous experiments. This means
we have information on only 10,000/6,250,000 = 0.16% of the
parameter space. While it is impractical to expect valid data at every
location of the parameter space, the challenge lies in identifying
which configurations are most useful. This uncertainty underscores
the importance of intelligent sampling and discovery techniques
to uncover valuable and innovative solutions.

While AI holds promise for replacing human experts in this
search, it requires ample high-quality training data to be effective.
Inspired by human-in-the-loop (HITL) [38] machine learning, our
pipeline integrates the training of a deep neural network (DNN)
that evolves alongside the exploration process. This DNN aids in
evaluating identified configurations and improves with accumulated
data, enhancing search efficiency for verifying new configurations.

Conceptually, our method looks for gaps in high-D data spaces.
While in theory the pairwise distances among data points in high-D
space tend to be normally distributed with small variance, in
practice, however, data configurations aggregate into hubs—points
that occur more often in k-neighborhoods of nearby points than
others [43]. Likewise, there are also anti-hubs—points that are
unusually far away from most other points. When these points
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exist, they are referred to as outliers, hiding in gaps and sparsly
occupied pockets of the data space. Essentially, our method looks
for hypothetical outliers—thus-far unsampled configurations that
might bear promise or are adversarial.

The major contributions of our paper are hence as follows:

e A scalable, parallelizable Empty-space Search Algorithm
(ESA) that can identify empty spaces in numerical continuous
high-D datasets.

o A visual analytics system, GapMiner, by which users can fur-
ther modify the identified Empty-Space Configurations (ESC).

o A Human-in-the-Loop (HITL) to Al pipeline that trains an
Al agent (a DNN) for eventual ESC search autonomy.

« A dimension-reduction method that allows the visualization
of the neighbor distributions around empty spaces.

« Several case studies that demonstrate the effectiveness of our
methodology in diverse application domains and objectives.

e A user study that evaluates our methodology and
implementation.

In the following, Sec. II presents related work. Sec. III gives an
overview of our three-phase workflow. Sec. IV describes our empty-
space search algorithm. Sec. V introduces our visual analytics
system, GapMiner. Sec. VI explains our Human-in-the-Loop to Al
pipeline. Sec. VII showcases our method applied to the computer
systems domain and Sec. VIII presents an associated user study.
Sec. IX describes one further case study. Sec. X concludes and
discusses future work.

II. RELATED WORK

The research literature on the specific topic of empty-space
visualization is sparse; we only know of two research groups who
tackled this.

Strnad et al. [48] investigated the identification of empty spaces in
protein structures. However, their study was limited to 3D space and
did not address the concept of empty spaces in other fields. Addition-
ally, their algorithm, which relies on Delaunay Triangulation, faces
scalability issues in higher dimensions, as discussed in Sec. II-B.

Giesen et al. [21] introduced the Sclow plot for identifying and
visualizing empty spaces. They use flow lines to depict these empty
spaces and employ a scatter-plot matrix to provide a comprehensive
view of the high-D dataset along with the flow lines. A downside
of this approach, however, is that the flow lines become cluttered
and difficult to track and explain at large scales and the scatter-plot
matrix view suffers from quadratic growth with increasing data
dimensionality, which further complicates the visualization. Also,
Sclow plots focus on detecting data distribution features, while
our work concentrates on applying empty-space points for optimal
configuration search and multi-objective optimization.

We separate the remaining related research into three areas:
(1) high-D visualization, (2) identification of empty space via
computational geometry, and (3) optimal configuration search.

A. High Dimensional Space Visualization

Understanding empty spaces within high-D environments relies
on effective visualization. While various dimension-reduction
methods have been devised to project high-D datasets onto a 2D
screen, it is important to note that dimension reduction capitalizes
on the existence of empty spaces, deflating them to pack the existing

points as efficiently as possible in the 2D display. Therefore it is
best to conduct empty-space analysis in the native high-D space,
with only redundant dimensions removed.

Prominent linear techniques include Principal Component
Analysis (PCA) [24], Linear Discriminant Analysis (LDA) [15],
and classical Multidimensional Scaling (MDS) [37], all of which
project data to a lower-dimensional space while preserving global
structure and minimizing distortion. However, these methods often
struggle to capture the complexities of data manifolds. On the
other hand, manifold-learning techniques such as Locally Linear
Embedding (LLE) [44], Uniform Manifold Approximation and
Projection (UMAP) [36], and t-distributed Stochastic Neighbor
Embedding (tSNE) [50] excel at revealing nonlinear relationships
and intrinsic data geometries but the embedding process loses the
context of the attributes. The Data Context Map (DCM) [13] offers
a unified view for visualizing both variables and data items.

Parallel-Coordinate Plots (PCPs) [26] directly explore the
original data space, thus avoiding potential information loss and
distortion. PCPs arrange dimensions linearly, aiding in uncovering
data relationships and patterns. But PCPs are not without challenges,
which has inspired efforts to reduce visual clutter [17], enhance
subset tracing and correlation through bundle representation [41],
employ graphical abstraction [35], and introduce a many-to-many
axis format to reveal deeper variable relationships [32]. We combine
PCPs with PCA to visualize the essential attributes of high-D
datasets. This integrated approach synergizes the strengths of both
techniques, providing a comprehensive, user-centric exploration
of high-D spaces in a cohesive and interactive manner.

Subspace analysis is yet another technique for dimension
reduction [29]. It decomposes the high-D data space into a set of
lower-D subspaces. This can help reveal data patterns obscured by
irrelevant (e.g., noisy) data dimensions [20]. A challenge here is the
combinatorial explosion in the set of possible subspaces, and this
has been the subject of extensive research [34], [49], [53], [54]. Our
method could readily incorporate these techniques, and we plan
to study this in future work.

B. Empty-Space Identification in Computational Geometry

One way to identify empty spaces is through a geometrical
perspective. Computational-geometry techniques offer a complete
partition of the data space based on the dataset, and this can be
used to locate empty regions accurately among points. These
techniques use Delaunay Triangulation, Voronoi Diagrams, and
Convex Hulls, all of which are interconnected: the d-dimensional
Delaunay Triangulation corresponds to the (d + 1)-dimensional
convex hull; Delaunay Triangulation and Voronoi Diagrams are in
duality, i.e., the circumscribed circle centers of Delaunay triangles
serve as vertices of Voronoi Diagrams [16].

We initially studied these techniques with a specific focus on
Delaunay Triangulation. Each circumscribed circle of a Delaunay
triangle describes an empty space, facilitating a comprehensive
exploration. However, the downside is its exponential time
and space complexity, both O(n[%/21) [47]. Efforts to mitigate
time complexity constraints have explored parallel-computing
acceleration, which has shown promise in 2D and 3D spaces [5],
[40]. However, extending these methods to higher dimensions is
non-trivial and this limits their utility in analyzing empty spaces
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within multivariate datasets. Appendix D presents empirical studies
we conducted that reveals these shortcomings.

Other solutions include approximation methods. Peled et al. [23]
proposed a Voronoi Diagram replacement with linear space com-
plexity. Balestriero et al. [2] introduced Deep Hull, which employs a
deep neural network to determine points within or outside the convex
hull. Graham et al. [22] proposed a method for higher-dimensional
convex hull identification, but its unordered points impede the
transferability of Delaunay triangulation. Although these methods
reduce time or space complexity, they either approximate specific
attributes or lack a meaningful order, limiting their applicability.

C. Optimal Configuration Search

A defining goal of ours is optimal configuration search, which
involves systematically navigating through various configurations,
arrangements, or settings within a system, application, or model
to identify those that deliver the best performance based on specific
criteria or objectives.

Optimizing an algorithm or machine-learning model’s
hyperparameters is often complex. Grid search, which equally
divides the range of each variable and examines every point within
the high-D data space, is intuitive but inefficient. Alternative
strategies like Iterated Local Search (ILS) [33] and its enhancements,
such as ParamILS and Focused ILS [25], use hill climbing to
iteratively adjust and improve the current solution. Most recent
methods rely on population based optimization to explore the
hyperparameters space efficiently [27], [42]. These methods require
many evaluations to effectively explore the solution space. Our
approach, in contrast, focuses on directly identifying and probing
candidate solutions that are most distant from existing ones, aiming
to find new data instances outside the current range.

Deep neural networks (DNNs) have also been employed for op-
timal configuration search, serving as function approximators to ex-
pedite configuration optimization [12], [S1]. While powerful, DNN-
based approaches require large datasets for training to ensure reliable
results, which can be challenging when working with limited data.

III. OVERVIEW

Fig. 1 presents an overview of our methodology. It comprises
three phases centered around training an assistive deep neural
network (DNN) that becomes increasingly adept at recommending
useful empty-space configurations (ESCs) for the target (domain)
application’s possibly multiple objectives. The process begins
with a fully untrained DNN, where the user (typically a domain
expert) and our empty-space search algorithm (ESA) collaborate
to identify initial “raw” ESC candidates ( depicted in Fig. 1 (a)
). These candidates are then interactively refined by the user
using our GapMiner visual tool and applied within the target
application ( bottom arrows in Fig. 1 (a) ). The application is run
with these configurations and their performance is measured. Once
verified, these ESCs augment the dataset and are used to train
the DNN (middle arrow in Fig. 1 (a)) . As the DNN improves,
the workflow reaches the developed phasel. Although ESA and
GapMiner are still necessary in this phase, the DNN can provide
initial performance estimates for the user to take into account when
refining ESCs (arrows on the right-hand side of Fig. 1 (b)).
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Fig. 1. Our three-phase workflow. Each phase is highlighted with a unique color.
The workflows in the initial phase (a) and the developed phasel (b) are largely
similar. However, in the developed phasel, the neural network (DNN) is more
advanced and assists in filtering the raw ESCs (c) shows the fully autonomous phase
enabled by a fully trained DNN.
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Ultimately, the pipeline operates autonomously: the ESA
identifies ESC candidates, the DNN optimizes and approximates
the target application’s outcomes, and the dataset is continuously
updated with new ESCs ( depicted in Fig. 1 (c) ). In the following,
we describe the various components of this workflow.

IV. EMPTY-SPACE SEARCH ALGORITHM

The search for empty regions in a high-D data space is a main
premise in our work. The challenge here is to describe this space
effectively, without enumerating all of the points that reside within
each continuous (empty) region. A key requirement is that interior
points within an empty space should be far from known points. To lo-
cate the emptiest region within a group of data points, one could use
Delaunay Triangulation, where the circumscribed center represents
the emptiest point. However, as mentioned, computational-geometry
methods face the curse of dimensionality.

We instead propose an agent-based approach. Here, the agent
is repelled from known data points if it comes too close and is
attracted back if it strays too far. This premise is the aim of a
physics-inspired function called the Lennard-Jones Potential, which
is the principle guiding our heuristic search algorithm. A particular
advantage of this scheme is that it is easily parallelizable. Agents
can be deployed throughout the high-D data space and operate
autonomously to identify empty-space points. Next, we describe
this physics-inspired search method in detail.

A. Physics Background: The Lennard-Jones Potential

There are multiple causes of intermolecular interactions,
including Van der Waals forces, hydrogen bonds, and electrostatic
interactions. Some of the forces are repulsive and others are
attractive, so that a dynamic equilibrium of molecules is maintained.
The Lennard-Jones (L-J) Potential [30] (see Fig. 2 for an example)
is an efficient model of intermolecular interactions. Although many
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Fig. 2. An example of Lennard-Jones Potential. The x axis is the distance between
particles (r) and the y axis is the outcome V'(r). The potential is positive when
the particle distance is less than o, indicating a repulsive force, and negative for
larger distances, where there is an attractive force. The minimum potential (strongest
attraction) is —e.

modern models effectively capture complex physical phenomena,
we simplify the empty-space search by simulating agents that
interact only with neighboring data, ignoring distant points or other
empty-space agents. This led us to choose the L-J potential for its
simplicity and efficiency. It is described as:

V()= (5)2- ()] M
T T

where r and V() are the distance and potential of a pair of particles,
and e represents the depth of the potential well, correlating to the
strength of the interaction between two patrticles. o represents the
effective diameter of the particles, that is, the distance at which
the total potential energy between two particles becomes zero. At
distances less than o, the repulsive force dominates, causing the
potential energy to increase sharply. At distances greater than o, the
attractive force is stronger, pulling the particles together, but this
force diminishes with 7. The nature of intermolecular interactions
keeps a point dynamically steady in a local region. Our search
algorithm uses the L-J Potential function.

B. Our Lennard-Jones Potential Based Search Algorithm

We assume that there is a possibly small initial dataset with ver-
ified configurations, and we populate the high-D search space with
these known configurations. Then we place an agent in this space
to search for Empty-Space Configurations (ESC)—the raw ESCs
in Fig. 1. The agent starts from a randomly sampled initial position
and uses the L-J Potential function to move to a location where the
potential becomes zero. This search trajectory (we call “trajectory”
for short) is sampled along the way to form a set of raw ESCs.

The vector intermolecular force F(r) driving the agent is:

Fo- 2022 e

To adhere to physical reality, we use the resultant force SF to
determine the direction of motion d, rather than simply using V (r).
However, we will stop the agent if ||| falls below a threshold
as this indicates it has moved beyond the data manifold. Y F is the
sum of forces due to the agent’s k nearest neighbors in the dataset:

YF

=— )
1=F|

k
SF=Y uF(r) d

where £ is the number of neighbors and ; is the unit vector from
the agent to the ith neighbor.

Algorithm 1: Empty-Space Search for a Single Agent

Set the number of neighbors &, the particle effective diameter
o, the number of search steps n, the step size «, the discount
factor -y, the vanishing threshold § and the rollout interval j;

Initialize a search trajectory
7=[] and an agent 7 =c where c is a random coordinate;
set cumulative magnitude L =0, momentum 1m = 0 ;

Specify constraints on agent:

f1(7r) <=0; f2(71') <=0;..., fp(’/T) <=0

fori...ndo

if i % 7 == O then
‘ Add current coordinate of 7 to 7;

end

Find the k nearest neighbors of the agent from the dataset;

Use Eq. 3 to calculate || F|| and d;

if || SF| <6 then
| return 7

end

d=(d+||ZF||+m«L)/(L+||SF));

T=7+ Ei *Qv,

L=v+L+||ZF]|;

T——

m=m/||m||;

if  violates any constraint f then
| return 7

end

end
return 7,

Alg. 1 illustrates the details of our empty-space search (see Ap-
pendix C for a detailed explanation of the parameters and their em-
pirical values). The time complexity of ESA is O(dknp+nplogN)
where d is the dimensionality of the dataset, & is the number of
nearest neighbors, 7 is the number of search steps, p is the number
of agents and N is the size of the dataset. O(dknp) represents
the time complexity to determine the next step, while O(nplogN)
represents the time complexity to query k nearest neighbors; the
space complexity of ESA is O(dp). In contrast, the time and
space complexity of Delaunay Triangulation is O(N [d/2] ). ESA
is considerably more efficient in both time and space. Moreover, it
scales well to higher dimensions and larger datasets since it works in
local space with simple calculations. As mentioned, since each agent
operates independently, it is feasible to expedite the empty-space
search using a GPU and deploy a large batch of agents concurrently.
Delaunay Triangulation does not offer this kind of parallelism.

C. Incorporating a DNN into the Empty-Space Search

ESA returns the trajectory 7 of an agent, where each element
is a raw ESC. Since the performance of raw ESCs is unknown
and verification is typically costly, we introduce a DNN to predict
performance. However, the DNN requires sufficient data to function
effectively, so we update the dataset while training it. Users can set
two accuracy levels for the DNN, defined by the DNN’s acceptable
prediction error, which is measured by the loss function. When the
DNN performs worse than the lower accuracy level, which occurs
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Fig. 3. Given 300 random samples (blue) and 600 random agents (red) in 2D space,
we show the results of ESA (a) without and (b) with momentum.

in the initial learning phase, it cannot reliably estimate the value
of an ESC. In this case we set y=0, causing the agent 7 to simply
move in the direction of Ei; when converged it returns the end of
7 as the ESC. This strategy encourages the algorithm to identify
as many gaps as possible, fostering the development of a robust
neural network and accelerating training. However, it may also lead
to convergence on local minima.

Once the DNN has developed further (phase 2 in the workflow of
Fig. 1) and meets the lower accuracy level, we begin incorporating
a momentum m with factor v > 0 to move the agent along.
This mechanism considers historical directions alongside those
calculated by Eq. 3, resulting in a smoother update for the direction
of m. We constrain y < 1 to prevent a long-term effect; thus, the
effect of historical forces gets lower and lower with each search
step. The momentum mechanism encourages the agent 7 to explore
the space in a broader range before converging to the empty region,
leading it to discover global minima. Then, upon terminating
it returns 7 as a list of ESCs. Eventually the DNN is accurate
enough to achieve the higher accuracy level. We then improve 7
by DNN-enabled gradient ascent and pick the best result.

Fig. 3 shows our algorithm’s outcomes for a 2D dataset. Agents
tend to converge to a small region without momentum (Fig. 3(a)),
but to a larger region with momentum (Fig. 3(b)). Larger regions
are explored more thoroughly in the latter case while smaller gaps
are left alone.

Beyond the in-distribution search shown in Fig. 3, we demonstrate
in Appendix F that ESA can also explore out-of-distribution regions,
making it valuable for discovering novel configurations beyond the
dataset’s search boundaries.

V. GAPMINER

Our visual analytics system, GapMiner, combines data space
exploration and HITL to aid users in identifying promising ESCs
during the first two phases of the workflow when the DNN is not
yet fully trained.

A. Design Goals

Following the design model devised by Munzner [39], we
studied popular datasets on Kaggle, reviewed recent research in
our example domain (computer systems [52]), and interviewed
several domain experts. This study yielded the essential features
an effective visual analytics system for empty-space search should
have, formulated as five designs goals (DG):

« DGI1 : Subset/Subspace selection. Users often focus

on specific data segments; e.g., a system designer with a

limited budget might want to explore moderate options first.
Sometimes these subsets are so small that their key features
are hidden within the entire dataset. Hence, explorations
within data subspaces must be supported.

« DG2 : Data distribution visualization and cluster
highlighting. For data with categorical outcomes, each label
typically forms a distinct cluster. For continuous outcomes,
high and low values usually don’t overlap. Highlighting
clusters and visualizing distributions will help users identify
valuable empty spaces for exploration.

« DG3 : HITL ESC fine-tuning. While the ESA identifies
numerous ESCs, they are not fully refined configurations, but
only starting points for exploration. Users should be able to
define empty-space search regions and refine raw ESCs based
on their expertise.

« DG4 : ESC neighbor visualization. In order to select
promising ESCs, users need to understand the distribution of
their neighbors, i.e., the shape of the empty space (hypersphere,
paraboloid, hyperbolas, etc.), to aid informed decision making.

« DGS5 : Outcome evaluation. Users must be able to evaluate
the performance of an ESC which sometimes is gauged by
more than a single outcome variable. Additionally, the cost
of obtaining certain configurations can also be important.

B. Terms, Color Semantics, and Representations

Fig. 4 shows the GapMiner interface, visualizing a dataset related
to computer system optimization . The dataset consists of multi-tier
cache configurations, each with three devices: L1, L2, and L3.
Each cache device has three variables: size and average read/write
latencies (the size of the backend storage device L3 is fixed for
all configurations and so it is not included). The target variables
are average throughput and fotal purchase cost, used to evaluate
the performance and cost of each configuration respectively. This
dataset serves as an example case in Sec. VII and VIIL

The term existing configurations used in Fig. 4 (A) refers to
configurations in the dataset that have been verified, whereas
proposed configurations are configurations proposed by the various
available ESC search algorithms but have not been verified yet. Gap-
Miner distinguishes these two types with different colors. All gray
points and lines in the interface represent proposed configurations,
while everything related to existing configurations is colored blue,
including density contours in Fig. 4 (B), histogram bars in Fig. 4 (A)
and Fig. 4 (C), and scatter points in Fig. 4 (B). Additionally, we apply
an orange-to-red colormap in Fig. 4 (D) to encode target variables in
the Pareto front of existing configurations, and the same colormap in
Fig. 4 (C) to encode target variables of existing neighbors around the
proposed one. To clarify the color coding, we added annotations in
Fig. 4 to indicate the marks for proposed and existing configurations.

Zhang et al. [56] illustrated the benefits of contour maps in
exemplar identification while Li et al. [31] combined density
contours and scattered points for outlier examination. In the PCA
map in Fig. 4 (B), we follow their design pattern, employing density
contours to abstract existing configurations and scattered points to
denote proposed configurations. In the PCP, we visualize proposed
configurations as dashed lines and existing configurations as solid
lines shown in Fig. 4 (C).

Next we describe all of GapMiner’s components in detail,
referring to the Interface in Fig. 4 and the Design Goals they satisfy.
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Empty-space Search Algorithm (ESA) Configurator to select the ESA and a slider to set the ESC batch size. (d) Empty-Space Configuration (ESC) Range Selector to
control which target variable intervals are used for display and ESC proposals. (e) Overview Quality Monitor screeplot that shows the amount of data variance captured
by the Overview (PCA) Display. (B) Overview (PCA) Display with data distribution contours, raw or modified ESCs rendered as points, and color legend. (C) Empty-space
Configuration (ESC) Editor. From left to right: (a) Parallel Coordinate Plot Display where users can configure ESCs starting from a raw ESC or an existing configuration.
(b) Neighbor Display of the selected ESC providing a local view of the distribution of its nearest existing configurations. (D) Progress Tracker. From top to bottom: (a)
Budget/Reward Display that captures the aggregated evaluation cost and merit of the ESC exploration so far. (b) Training Status Display of the assistive DNN. (c) Pareto
Frontier plot that shows the Pareto frontiers of existing configurations (red) and ESCs (gray) with respect to two user-chosen merit (target) variables.

C. Control Panel

After loading the dataset containing the initial verified
configurations with values for all variables, the user will head to the
Target Configurator (Fig. 4 (A)) to select a target variable subject
to optimization. The target variable can either be a native outcome
variable such as performance or cost, or it can be a ratio like
performance/cost. The latter provides quick insights into efficiency,
while the former two can be optimized within our multi-objective
optimization to account for the user’s preferences. The user can
now utilize the slider below to evenly split the range ( DG1 ) of the
selected target variable. This action divides the dataset according
to the selected value interval and the histogram below visualizes
the distribution ( DG2 ). The user can now choose among one
of three empty-space search methods from the dropdown menu:
the physics-based ESA described above, random sampling, Pareto
improvement, and a baseline (see Sec. VI).

The ESC Range Selector enables users to select one or more
subsets of the data, as specified in the Target Configurator (see
above), using the checkboxes in the “existing”/*“proposed”” group
(DG1). The “Size” in the verified “existing” group indicates the
number of these configurations.

D. Overview Display

The PCA-based Overview Display (Fig. 4 (B), called “PCA
map” for convenience) linearly transforms the high-D data space
into a variance-maximizing 2D projection. It is an intuitive way to

visualize data distributions and identify clusters ( DG2 ), We chose
the linear dimension reduction provided by PCA since evaluating
results from nonlinear methods like tSNE is challenging and
connecting their embedding space to the original space is difficult.

Once a checkbox is selected in the ESC Range Selector, the
associated subset of the data will be displayed in the Overview
Display either as density contours (“existing”) or as scattered points
(“proposed” or selected via other means). The scented color legend
bars on the left map values to color: the left one represents the target
variable density of the chosen subset, while the right one shows the
value range of the entire dataset. The “Use global PCA” checkbox
in the ESC Range Selector (Fig. 4 (A)) determines whether the
PCA layout is applied to the chosen data subset ( DG2 ) or the
entire dataset; the PCA map will update accordingly. Applying the
PCA layout to the currently selected data subset will reduce the
layout loss and make the display more accurate and focused. This
improvement is quantified in the Overview Monitor scree plot.

The loading vectors in the PCA display represent the projection
of Cartesian axes from the original space, forming a biplot. Due
to the linear nature of PCA, any value change along one axis in
the original high-D space results in a proportional update along the
corresponding loading vector in the PCA map. Additionally, the
loading vector projection is translation-invariant; any point can be
chosen as an anchor to project the Cartesian basis. We derive this
mechanism in closed form in Appendix A.
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E. Empty-Space Configuration (ESC) Editor

This interface panel has two displays: a PCP (left) where an ESC
can be configured and refined and a neighborhood display (right)
that shows the topology of the ESC’s immediate point neighborhood.

PCP display. The PCP allows users to fine-tune a proposed
ESC or propose one on their own. It is the most effective display
for this task as it provides simultaneous access to all variables and
allows for easy adjustments through simple mouse interactions. For
additional insight we provide two scented bars along each PCP axis
(DG1,DG2).

The (blue) density bar next to each axis shows that variable’s value
distribution in the currently chosen data subset, with darker blue
indicating higher density in that range. This visual information com-
plements the density contours in the Overview Display (Fig. 4 (B)).
The correlation bar next to the density bar shows the relationship
between the variable and the selected target variable, calculated from
all existing configurations. Users can select the target variable for this
calculation by clicking the radio button along its corresponding axis
(e.g., in (Fig. 4 (C)) there are three such variables—two native vari-
ables and one ratio variable). For a linear relationship, the orange-red
bar along each variable axis indicates whether the correlation with
the selected target is positive or negative. For a nonlinear relationship,
it reveals which value interval corresponds to a higher target value
(darker color) and which to a lower target value (lighter orange).

Lastly, when users modify an ESC in the PCP, its 2D position in
the Overview Display is updated proportionally along the direction
of the corresponding loading vector. This is particularly useful
when there is an empty space in the Overview Display, providing
users with important feedback that they are on the right track.

Neighborhood Display. This display, located to the right of
the PCP, helps users understand the shape of an empty space as
well as the neighbor distribution of the associated ESC ( DG4
). Castermans et al. [9] proposed SolarView, which embeds
neighboring entities from a high-D space into a 2D radial layout
around a central entity. However, their method preserves only the
pairwise Euclidean distances, neglecting the topological structure
of neighboring entities in the original space and so leading to
significant distortion in the shape and integrity of local empty
spaces. To preserve the topology structure and visualize the empty
space and point distribution around an agent, we devised a dedicated
dimension-reduction method we call cos-MDS, using a layout
optimization scheme similar but not identical to MDS.

Our method embeds the agent at the center and places its
immediate high-D neighbors around it. The distance from
each neighbor to the agent reflects their true distance in the
high-dimensional space, while the pairwise cosine distance between
neighbors, as measured from the agent, approximates their true
cosine distance in the high-dimensional space. The mapping flattens
an N-dimensional hub-and-spoke arrangement into a 2D space,
where the spokes vary in both the pairwise angles and in length,
rather than being uniformly distributed. It effectively reveals the
distances and distribution of neighbors around the agent, as well
as the shape and topology of the empty space (fully enclosed,
semi-enclosed, cluster boundaries, or anti-hub outliers).

To construct the cos-MDS display, we normalize each agent-
neighbor vector to the unit hypersphere, compute a pairwise
cosine-distance matrix, perform eigenvalue decomposition, and

use the top two eigenvalues and their eigenvectors for the low-
dimensional embedding. Finally, we scale the low-D agent-neighbor
vector to the true length in the original space.

The example shown in the ESC Editor (Fig. 4 (C)) has neighbors
uniformly surrounding the configuration, and the distances to it are
almost equal. In essence, this is the special case where the empty
space is fully enclosed—a pocket in a high-D point cloud. Users
can also change the number of neighbors by clicking the +/- button
next to the Neighbors button in the control panel. This provides a
more comprehensive perspective to understand the empty space
e.g., in a hypersphere, within a paraboloid, or between hyperbolas.
Detailed examples can be found in Appendix B.

E. Progress Tracker

The Progress Tracker (Fig. 4 (D)) keeps the user abreast of the
achievements made so far (DGS ). It has three main components
(top to bottom): (a) a Budget/Reward Display that captures the
aggregated evaluation cost and merit of the ESC exploration
so far, (b) a Training Status Display of the assistive DNN, and
(c) a Pareto Frontier Plot that shows the Pareto frontiers of
existing configurations (red) and ESCs (gray) with respect to two
user-chosen merit (target) variables. We now present these three
displays in reverse order according to their use in practice.

Pareto Frontier Plot. The Pareto frontier is an effective
mechanism for evaluating a set of proposed configurations in the
presence of multiple target variables. To reduce visual complexity
we currently restrict the number of target variables to two. Our
goal is to aid users in recognizing trade-offs among the two target
variables and identify ESCs that can expand the frontier (push the
envelope) at desirable trade-off points on the curve. The choice
of target variables depends on the application scenario and can
include raw variables (i.e., configuration attributes) or aggregated
evaluations (e.g., configuration performance). In the computer
system case shown in Fig. 4, the goal is to identify configurations
that achieve higher average throughput at a lower cost, so the target
variables are average throughput and purchase cost.

We use the following color scheme in this plot: (1) existing
configurations are colored blue, with their Pareto front connected
by edges. The configurations defining these edges (and the edges
themselves) are colored by their respective target variable values
according to the red-toned color map to the left of the Overview
Display and are represented as larger nodes there; (2) proposed
configurations are colored gray, with their Pareto front connected by
gray lines. Comparing the two curves facilitates an understanding
of a candidate ESC’s merits in the context what is known already
and what the user’s trade-off preferences are.

When the user modifies an ESC (say, in the PCP) its position
in the grey Pareto plot and frontier (and Overview Display) will
update accordingly. Then, upon verification, the ESC is added to
the “existing” set, its Pareto point is colored blue, and the red Pareto
front updates.

DNN Training Status Display. As mentioned, once the user
loads the initial dataset, GapMiner trains an assistive DNN on the
backend for ESC performance prediction. The DNN evaluates the
performance of each proposed configuration before verification
takes place. The testing error of the DNN is then shown in the DNN
Training Status Display. We observe in (Fig. 4 (D)) that there is a
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fairly large error in the initial stage (first part of the curve), hence at
that stage user involvement is typically necessary to identify optimal
configurations. The DNN is retrained whenever new configurations
are added to the dataset and are verified.

The two horizontal lines in the display signify the user-specified
DNN error tolerance. The DNN can be used to filter out poor
configurations once it reaches below the first line, and it can be used
for configuration optimization once it reaches below the second line.
Details of the progressive search pipeline are introduced in Sec. VL

Budget/Reward Display. The Pareto plot provides an intuitive
way to visualize the progress of multi-objective optimization,
but it does not offer a quantitative measure of improvement. To
address this limitation, we incorporate the concept of Pareto
dominance area [8] into the Progress Tracker (Fig. 4 (D)) to
monitor the dataset’s Pareto front. The Pareto dominance area is
a well-established quality metric in multi-objective optimization
that quantifies the volume of the objective space dominated by
the Pareto front. A larger Pareto dominance area indicates a better
Pareto front. To encourage users to maximize this area during the
empty-space configuration search, we use it to quantify the reward.

On the other hand, each ESC verification incurs a cost, which
can be significant. The aggregated verification cost represents the
expense of running a selected configuration in the real world. It is
a broad concept that can correspond to price, energy, time, effort,
calories, etc. For example, in the computer system case shown
in Fig. 4, users had to purchase two tiers of cache and a backend
storage specified by the configuration , and run them for a week
to obtain the real average throughput. In our application, thanks to
CloudPhysics [52], we could quickly simulate a configuration to get
an approximate result. However, verification costs are unavoidable
in many scenarios. To address this, we provide a budget counter
in the Progress Tracker (Fig. 4 (D)) to remind users of the aggregate
cost of continued ESC verification. The cost donut chart will remain
inactive if no cost metric is defined.

We chose donut charts for both the Pareto Dominance-based
Reward Display and the Budget Display due to their compactness
and their ability to effectively convey proportional data at a glance.

VI. DNN-ASSISTED CONFIGURATION SEARCH PIPELINE

While GapMiner effectively assists users in the search for optimal
ESCs, manually identifying a large number of optimal ESCs can be
tedious. To address this challenge, we propose a pipeline that trains
an assistive DNN to eventually automate this process, positioning
the analyst as a mentor to the DNN. This section provides a
breakdown of the pipeline, as illustrated in Fig. 1. We begin by
describing the various search methods we have implemented and
then describe their role in the DNN-training process.

A. Configuration Search Methods

In addition to the physics-inspired ESA, GapMiner integrates
three more methods for investigating the empty space: random
sampling, Pareto improvement, and a blank baseline. The blank
baseline is a configuration with every variable set to 0.5, locating
it at [0,0] in the PCA map. This strategy provides no hint from
the initial position, requiring users to rely solely on GapMiner
interactions to optimize a configuration.

Pareto front of the dataset

Pareto front of the dataset

Pareto front of the dataset

0.0 600 120 180 240 300 360 420 450 540 600
purchase_cost

(b) (©

Fig. 5. An example Pareto front at the three key stages. (a) The initial stage when
the DNN has just started training. There are only few configurations in the “existing”
set, colored blue. (b) The front when the DNN has achieved ¢1. The “existing” set
has grown. (c) The front when the DNN has achieved t2. The “existing” set now
covers much of the front’s interior.

010 600 120 180 240 300 360 420 450 540 600
purchase_cost

Random sampling, as the name suggests, samples configurations
in a random manner. Pareto improvement, on the other hand,
starts from the Pareto front of the existing set, allowing users to
improve a configuration from a Pareto-optimal point. While Pareto
improvement can be a good starting point for breakthroughs, it
does not provide insights into the empty space. Empty-space search
and random sampling are likely to find configurations better than
those based on the Pareto front. Initially, we used another strategy,
random walk, but experiments showed it was statistically similar
to random sampling, so we did not include it in GapMiner.

All of these methods, including ESA, work as initial
configuration hints for users in the startup stage. Users can then
fine-tune the configurations proposed by these strategies to get
better configurations. Additionally, users can also let the algorithm
propose and verify a batch of configurations. The batch size is
determined by the slider in the ESA Configurator in Fig. 4(A).
Once new configurations have been verified, they will be added
to the “existing” configuration set and used to retrain the DNN.

B. The Assistive DNN Model

Our default DNN is a MLP (Multi-Layer Perceptron) model
with 3 hidden layers of 256 neurons each, suitable for general
scenarios, and predefined loss functions, including mean squared
error (MSE), mean absolute percentage error (MAPE), and cross
entropy (CE). Users can also load custom neural networks and
loss functions into the pipeline, as long as they are implemented
in TensorFlow/PyTorch. The training loss and selected loss function
are displayed in the DNN Training Status Display. Any DNN
compatible with regression or classification tasks on tabular datasets
can be used in our system.

C. Pipeline Throughout the DNN Training

Fig. 5 shows the Pareto front development at the three pipeline
stages. We now describe these in more detail.

Initial Stage. In the early stage, the dataset is still small and its
empty-space regions remain largely unexplored. With the data set
still being insufficient to train a usable neural network, users can
utilize GapMiner and its various exploration tools to identify empty
spaces, propose new configurations, optimize them, and verify their
effectiveness. In our studies with analysts, we found that combining
various configuration search strategies yields more diverse and
higher-quality results to grow the dataset than sticking with only
one search algorithm. Additionally, the visual feedback provided by
the Progress Tracker incorporates elements of gamification. It not
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Fig. 6. Improvement of the Pareto front by interaction in the PCP followed by DNN
estimation of the target values and subsequent verification in the domain application
which revealed a lack of DNN training. (a) PCP showing the result of some user
interactions; (b) annotated Pareto front.

only indicates progress but also challenges users to find high-quality
ESCs in a cost-effective manner.

Developed Stages. As the set of existing configurations grows,
paying attention to the error plot in Fig. 4 (D) becomes crucial. As
mentioned, it shows the average percentage error of the DNN along
with the two user-set accuracy levels ¢; and ¢5. Once the error is be-
low t1, the system will use the DNN to evaluate the proposed config-
urations, improving the quality of suggestions. Users can rely more
on the system at this stage but still apply their domain knowledge to
enhance results. Then, when the error drops below ¢5, the system will
go one step beyond, using gradient ascent of the DNN to refine con-
figurations further. The performance estimation now becomes accu-
rate enough to find optimal configurations without user supervision.
At this stage, the DNN and ESA can completely replace the user.

VII. APPLICATION EXAMPLE

To illustrate our pipeline, we present a use case in the application
area of computer system optimization. Fig. 4 shows a snapshot
taken of the interface during this session.

We used a trace of a real-world workload run on physical
machines, provided by CloudPhysics [52]. We chose trace wll,
which captures a week of virtual disk activity from a production
VMware environment. This trace file contains I/O requests recorded
over the week, which can then be replayed using either a physical
machine or a simulator of that machine. To save time and energy,
we used the simulator for all our experiments. We generated our
dataset by replaying workload w1 on simulated system with two
tiers of cache L/ and L2 and a backend storage device L3 (see Sec.
V-B for an introduction to the dataset).

Given the size of the workload, evaluating a configuration is an
expensive process. Additionally, there are a vast number of potential
multi-tier configurations. Thus, conducting an exhaustive search of
this space is infeasible, making the efficient identification of optimal
configurations highly valuable to system administrators [18], [19].

To begin, we collected a small number of configurations
with the help of system experts. We then invited a field expert
to try GapMiner, ESA, and the overall pipeline. Empirically, a
configuration with good avg_throughput is usually more expensive;
thus the expert’s goal was to find optimal configurations with good
performance at a lower price.

The expert began by loading the dataset and setting the
two DNN thresholds: ¢; = 20%, to = 10%. Next, he selected
avg_throughput/$ as the target variable since it captures a
reasonable first compromise between the two main objectives
avg_throughput and purchase_cost. After bracketing the target
variable he learned from the range histogram (Fig. 4 (A)) that there
were just a few configurations in the best and worst value intervals.
Next the expert ran the ESA algorithm and then checked the (higher)
8710 interval of the “existing” group and the 6”8 and 8710 groups
from the “proposed” configurations found by the ESA (see (Fig. 4
(A)). This action revealed the former as a density plot and the latter
as scattered points in the Overview Display (Fig. 4 (B)). A Pareto
front, computed from the “proposed” configurations, appeared in
the Pareto front display (Fig. 4 (D)) in grey, with the points defining
the front being drawn as larger nodes in the Overview Display.

The red curve in this Pareto front display shows the front of the
“existing”, verified configurations, and the configurations that define
it are colored by the selected target variable, avg_throughput/$,
according to the red-toned colormap to the left of the Overview
Display. The expert noticed that the grey front only surpassed the red
front in the high purchase_cost area but had poor avg_throughput
for low purchase_cost configurations. He decided not to evaluate or
verify any of the proposed ESCs but rather focused on the red Pareto
front in the low purchase_cost area. He found a lower-performing
configuration there, indicated by its orange, less vibrant red color
(see Fig. 6(b)). He first tried to improve it by moving it to the dense
region in the Overview Display where the high-performing “existing”
configurations reside, but this strategy failed. To investigate why, he
examined the scree plot in Fig. 4 (A) and noticed the slow growth of
the aggregate curve. This essentially means that the PCA map did
not explain much of the data variance and so moving configurations
along loading vectors that pointed directly to the dense region was
not sufficient. Some short or nearly orthogonal loading vectors like
L1_size or L1_write_latency might also matter.

Looking for an alternative approach he turned to the density
bars in the PCP to learn about the per-variable distributions. Fig.
6(a) shows the PCP with the polyline of the Pareto configuration
under consideration colored in orange, indicating its lower
performance. And indeed, despite residing in a dense PCA
region, this configuration suffered from sub-optimal L1 _size and
L1_write_latency settings (it falls in less dense and lightly colored
regions in the density and correlation bars, respectively, for both
variables). These variables minimally contributed to the PCA space
but apparently significantly impacted the target variable outcomes.

The expert adjusted the configuration to dense intervals in both
variables, as indicated by arrows in Fig. 6(a). He then asked the DNN
to estimate the value for avg_throughput and calculated other target
variables, which showed significant improvement and expanded the
Pareto front in the upper region (grey node in Fig. 6(b)). Pleased, the
expert clicked the Verify button to obtain the true performance. After
some time, the verification results showed that this configuration
was even better than the DNN prediction (red node at the top of
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I think that | would like to use this system frequently

| found the system unnecessarily complex

| thought the system was easy to use

| think that | would need the support of a technical person to be able to use this system
| found the various functions in this system were well integrated

| thought there was too much inconsistency in this system

| would imagine that most people would learn to use this system very quickly

| found the system very cumbersome to use

| felt very confident using the system

| needed to learn a lot of things before | could get going with this system

1
strongly disagree

5
strongly agree

Fig. 7. The SUS scores from 12 users regarding each question. The y-axis lists SUS questions and the x-axis is the scores to each question ranked from 1 (strongly disagree)

to 5 (strongly agree).

Fig. 6(b)), and the dominance area increased significantly.

While this was a positive development, the expert also realized
that the DNN did not perform well in the upper region of the
Pareto front (see the large prediction error in Fig. 6(b)). More
configurations in that range were needed to train the DNN
effectively. To address this, the PCP interface enables users to
select specific value intervals and run ESA exclusively within these
intervals to generate ESC batches.

As the expert created more ESC batches and verified some of the
generated ESCs, the DNN eventually reached the ¢; threshold. At
this point, the expert was able to rely more on the DNN to assess the
quality of ESCs and he started to only focus on the ESCs located
on the proposed Pareto front for verification. Finally, once the DNN
surpassed t5, the Al model completely took over the expert’s role.
As shown in Fig. 5, this three-stage pipeline increased the dominance
area from 0.27 to an impressive 0.56, more than doubling it.

VIII. USER STUDY

‘We conducted a user study to evaluate GapMiner with the same
system dataset (see Appendix E for a detailed description of this
experiment). Across two rounds of experiments, we recruited 17
graduate students with CS background for this user study and specif-
ically assessed the system-related expertise of 7 of them. Among
these, 5 had systems expertise, while 2 did not exhibit expertise
in that area. The user study task involved performing an optimal-
configuration search starting from an initial set of 200 configurations.
The users could make full use of GapMiner with all search methods:
ESA, random sampling, Pareto improvement, and the blank baseline.
The batch size for searching was fixed to 50 for all users. They could
click the search button multiple times, but they could click the verify
button only 5 times to get the true avg_throughput. Once they
believed they had a good configuration, they ran one of their alloted
verifications. We calculated the dominance area and updated it in
the reward donut chart in Fig. 4 (D) [8] as the evaluation metric.

A. Result Analysis

We compared the GapMiner-aided performance of the users with
the outcomes achieved with (1) ESA-based search only and (2)
verifying the initial random samples directly, in order to see whether

User perfomance against baselines

Zonle®e e Y0 e e o °
[
© 3
£
o <- oo am| 00 @ °
2 n
= w
£
g o4 @n)oeme
E T T T T T
0.30 035 0.40 0.45 0.50

reward

Fig. 8. Rewards achieved by users, ESA, and random sampling. Each dot represents
a search round (5 verifications). The reward is defined by dominance area in the
Pareto plot. The bar within each strip is the mean value.

GapMiner helped users with the task. Noticing that users clicked
search three times on average, we set the batch size to 150 for the two
baselines (ESA and random) to match the user behavior, calculated
the Pareto front estimated by the naive neural network, and then
verified the naive Pareto front. We ran each baseline 17 times to
match the number of participants. We did not choose the top five for
verification in the baselines because we found no difference between
verifying the top five and the entire Pareto front in the dominance
area. Our results are presented in Fig. 8, showing a clear advantage
in user performance compared to the two baselines. The average
reward for ESA is 0.320, while the average reward for random
sampling is 0.298—both significantly lower than the average reward
of 0.388 achieved by the users. Notably, 12 users achieved higher
rewards than ESA, and 15 outperformed random sampling.

We also did a between-subjects ANOVA with Tukey’s Honestly
Significant Difference (HSD) to analyze our data’s statistical
significance; the analysis is shown in Tab. Il in Appendix E. Cohen’s
f from ANOVA was 0.85, indicating a large effect size. We observe
that GapMiner is significantly better than both baselines, while the
outcomes between the two baselines do not differ statistically.

B. System Usability

We evaluated the usability of GapMiner with the popular
questionnaire System Usability Scale (SUS) [6], which has 10
carefully designed questions that evaluate the system in various
aspects. After completing the study, we distributed the SUS
questionnaire to all participants and received 12 responses. The
responses are summarized in Fig. 7, with detailed information
provided in Appendix E. The overall SUS score calculated from
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the questionnaire was 76.88. According the guidelines by Bangor et
al. [3] and Sauro et al. [46], our system is ranked B (SUS score >
72.6) and is considered good (SUS score > 71.1). Therefore, we can
state that GapMiner has shown good usability in these initial tests.

Additionally, some users provided comments on the system.
One user, who completed an M.S. in visualization and is now a
Ph.D. student in computer systems, gave very positive feedback
on GapMiner. He found that it helped him quickly understand the
problem and complete the task efficiently. He also believed that
GapMiner could be beneficial for other system analysis projects.

Another user, also a Ph.D. student in computer systems, initially
felt that GapMiner provided too much flexibility when exploring
a problem. He found the information overwhelming, which made
the learning curve steep. However, after becoming familiar with the
system, he found it highly effective and noted that it significantly
improved his analysis efficiency.

A third user who lacked background in computer systems and
visualization, found both the system and the problem challenging
to learn, expressing that mastering the system was difficult for users
with non-technical backgrounds. She noted that non-experts might
need guidance from a technical person to effectively use GapMiner.

This latter observation aligns with our expectations, as GapMiner
was developed in collaboration with domain experts rather than for
laypersons. Our study confirms that experts can effectively use the
tool. Future work will explore ways to enhance onboarding and
provide guidance to support users with less technical expertise.

C. Comparison Experiments

In addition to testing user performance against algorithms in the
initial stage of the pipeline, we also did two experiments to compare
how ESA outperforms random methods in developed stages with the
help of a neural network. These experiments did not involve users,
but employed the well-trained DNN to evaluate and fine-tune ESCs.
In the standard pipeline described in Sec. VI, there is an evolutionary
DNN working as a critic to determine promising ESCs, and a black
box to collect true values. Based on the advice of field experts, we
simplified the pipeline in the block-trace scenario by replacing the
critic and the black box with a well-trained DNN. The DNN had an
average percentage error of 7.9%, working as a surrogate model to
simultaneously determine good ESCs and verify outcome values.

We employed two baselines in this section: random sampling
(RS) and random walk (RW). Random sampling simply samples
configurations in the data space. Random walk further walks in a
random direction for each of 400 steps, which is the same number
we used in the ESA.

In the first experiment, we fast-forwarded to a developed stage
that had 1,000 configurations in the dataset instead of iterating from
an initial stage. In RS, we randomly sampled 1,500 configurations
at once. Starting from the same initial positions as used in RS, we
ran ESA and RW, and chose the best ones evaluated by the DNN
on each trajectory independently. We repeated the process 50 times
to reduce result variance. As before, we used the dominance area
as the evaluation metric. The average rewards of ESA, RS, and RW
were 0.450, 0.409, and 0.413, respectively. ESA was statistically
better than RS and RW, and there was no significant difference
between RS and RW. The effect size 72 was 0.3, indicating that
the magnitude of the difference between the averages was large.
The full statistical analysis is shown in Tab. IV in Appendix E.

In the second experiment, we fast-forwarded to a stage with 3,000
configurations, using the same surrogate DNN as before. We did the
same experiments as in the previous one, the difference being that
we used gradient ascent to optimize the best configuration for each
trajectory in ESA, RS, and RW. The average rewards were 0.453,
0.418, and 0.422 respectively. There was a statistically significant
difference between ESA and random baselines, but no difference
between RS and RW. 2 was 0.3, indicating a large level of effect
size. The full statistical analysis is given in Tab. V in Appendix E.

All of these experiments and statistical analyses clearly show that
our empty search algorithm is much better than random methods.

IX. SECOND CASE STUDY

In addition to the experiments in system research, we applied
our work to an entirely different domain, wine investigation [45]
to show generalizability to domain-agnostic scenarios.

Different from system verification, the wine dataset was collected
from the real world. It has 11 chemical properties and a quality
rating associated with each wine instance. The 11 chemical
properties include{fixed, volatile, citric} acidity, residual sugar,
chlorides,{free, fixed} sulfur dioxide, density, pH, sulphates, and
alcohol. The wine quality ranges from 3 to 8.

Imagine there is a winemaker fermenting new wine. With quality
being the primary concern in mind, the winemaker also wants to
minimize the free sulfur dioxide due to potential health issues. We
can help the winemaker with GapMiner. First, the scree plot in
GapMiner reveals that the PCA space explains about 60% of the
variance, which means that the corresponding region in the original
space is less variant given a dense region in the PCA space. Next,
the distribution of wine quality—3, 4, 7, and 8 in the PCA space
(see Fig. 9(a))—illustrates that alcohol and citric acid point to the
high-quality region while volatile acidity and density point to the
low. Thus, given a wine instance, increasing alcohol and citric
acid while reducing volatile acidity and density is more likely to
improve the quality. Moreover, the PCP scented widgets indicate
that wine quality is independent from free sulfur dioxide. Thus,
wine instances in every quality can be fine-tuned to reduce free
sulfur dioxide, fitting a wide range of customers.

Looking at the histogram of outcome variable intervals, we
noticed that the dataset is severely imbalanced: almost 85% of the
wine instances are ranked quality 5 or 6; only 1% are ranked quality
3 or 8, which results in a low prediction accuracy. Therefore, we had
to augment the imbalanced quality groups. To do so, we first referred
to the PCP scented widgets to learn the property distributions of
each quality. For example, wine in quality 4 has higher volatile
acidity but lower citric acidity, while that in quality 7 is the opposite.
After finding the distributions, we constrained the search range to a
dense interval of each property by brushing on the scented widgets
in the PCP. Thus, ESA ran in a specific quality region.

Due to the difficulty of obtaining the quality of new wine
instances by ourselves, we made it the same as the nearest existing
neighbor. This simple but effective strategy is widely used in
imbalanced learning [10]. Having identified over 6,000 ESCs, the
DNN accuracy improved from 60% to 80% on quality prediction.
On the other hand, free sulfur dioxide was integrated with other
properties during the empty-space search. Therefore, its value was
determined by ESA, which also reduced the DNN’s mean-squared
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Fig. 9. The key results of GapMiner on the wine dataset: (a) The PCA map showing
the distribution of wine instances. The dark region on top represents wine instances
with qualities 7 and 8, while the dark region below it corresponds to qualities 3 and
4; (b) ESA results in the Pareto plot. We plot the wine set as blue points and the
associated Pareto front as a red line, while ESCs are gray points and the associated
Pareto front is a gray line; (c) The full property values of the global optimal wine
instance (highlighted in green in (b)).

error from 0.018 to 0.002. During the pipeline execution, we were
able to find numerous wines with low free sulfur dioxide in each
quality. We show the results in Fig. 9 and Appendix G-B.

To summarize, our ESA, GapMiner, and the pipeline were
able to balance the dataset by augmentation, and improve DNN
performance. Though we were unable to verify these results in the
field, our work could identify numerous innovative wine instances
predicted to have good quality or low free sulfur dioxide.

X. DISCUSSION AND FUTURE WORK

Empty-space exploration for discovering innovative configura-
tions in high-dimensional parameter spaces is a promising yet long-
overlooked approach. In this paper, we introduce a novel Empty-
Space Search Algorithm (ESA) to identify such configurations.
However, because evaluating a proposed empty-space configuration
requires domain expertise or a well-trained predictor, we integrate
ESA into GapMiner , a newly designed human-in-the-loop (HITL)
visual analytics system. This integration is part of a workflow that
gradually transitions from HITL to Al-driven search.

Our user study confirms the effectiveness of GapMiner, supported
by comparison experiments demonstrating its superiority over
random and ESA-only search. Additionally, case studies highlight
its potential across various domains. As a follow-up, we plan to
explore broader applications, particularly in security fields such as
network intrusion detection in cybersecurity [11].

The current initialization strategy of ESA agents is random
sampling, which is likely to miss important regions. In future work,
we plan to integrate subspace analysis to achieve more efficient agent
deployment. Also, our ESA assumes that variables are mutually
independent. However, in real-world scenarios, complex causal
relationships might exist among the variables. A possible research
direction can be to leverage large language models to incorporate
causal information into the empty-space search process [28], [57].

Another aspect to improve is the progressive neural network train-
ing process. Currently, our empty-space search focuses on optimal
configuration search, but it never speeds up neural network training.
In future work, we plan to incorporate active learning to identify
ESCs that are both significant to network convergence and optimal.
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APPENDIX A
CONNECTION BETWEEN PCA SPACE AND ORIGINAL SPACE
Given any multivariate configuration V = [vy,vs,...vx]T in an

N —dimensional dataset, let the PCA transformation matrix be

mi1 Mi2 miN

ma1 a2 maoN
M=

Mp1 Mnp2 mnN

The corresponding position v = [v},v3,...,v]T in n—dimensional
PCA space is given by v = M V. Changing the value of V at the
kth variable by vy, can be written as 6V = [0,...duvg, ..., 0], and
Vaew=V+40V.

Notice that the th row of M is the ¢th principal component in the
data space, P; =[m;1,m;2,...,m;n], and the jth column of M is the
loading vector of variable j: L; =[m1;,maj,...,mn;] . Therefore,
the moving step jv in PCA space can be derived as follows:

Unew =M View
=M(V+6V)
=[P\,Py,...P )" V+[Ly,Ly,....LN]6V
=v+Liovg
= 0V ="Upew —0
:Lkévk

“)

From Eq. 4 we can conclude that the moving direction in PCA
space is determined only by the corresponding loading vector, and
the step size is determined by the value difference and the loading
vector’s magnitude. Thus we can connect the original space in
the Parallel Coordinate Plot with the PCA space in the PCA map:
changing the value on a PCP axis will lead to a position update in
PCA map as determined by Eq. 4.

APPENDIX B
AGENT-CENTERED DIMENSION REDUCTION

A. Examples for Basic Geometric Structures

We demonstrate the application of cos-MDS on three synthetic
datasets: a 3D hyperboloid, a 4D paraboloid, and a 4D hypersphere.
For each dataset, we approximately placed the agent at the center
of the empty space and set the number of neighbors equal to the
size of the dataset.

We generated the 3D hyperboloid dataset by uniformly sampling
the 30 coordinates from [—1,1] on the = and y axis, respectively.
We then calculated z by

22 Y2
0.04 * 0.04 +
There are 900 points in this dataset and we placed the agent at
(0,0,0). The synthetic dataset is directly plotted in Fig. 10(a). The
corresponding result of cos-MDS can be found in Fig. 10(b).

The 4D paraboloid dataset was generated by uniformly sampling
10 points from [—5,5] on z, y, and z axis independently, and the
points on the paraboloid were defined by (z,y,2,22). This dataset
includes 1000 points. We set the agent at (0,0,0,20). The cos-MDS
result on this dataset can be found in Fig. 10(c).

z=12x%

For the 4D hypersphere dataset, we first uniformly sampled
1,000 angles (1,0,¢), where 1 € [0,2x7], 6 € [0,7], and ¢ € [0,7].
Then we calculated the points (z,y,z,w) on the hypersphere by

x:cos(w)sinw)sin((é)
(¥)sin(0)sin(¢)

z=cos(0)sin(¢)
(¢

=sin

®
w=cos(®)

This synthetic dataset contains 1,000 points as well. Again, we
located the agent at (0, 0, 0, 0). The cos-MDS result can be found
in Fig. 10(d).

From the results in Fig. 10, we observe that cos-MDS visualizes
a 3D hyperboloid (a) as a 2D hyperbola (b), transforms a 4D
hypersphere into a 2D circle (d), and projects a 4D paraboloid onto
the plane such that the distribution still approximates the pattern
of a parabola (c). Our results indicate that this method successfully
extracts the intrinsic features of the high-D data distribution and
intuitively visualizes them in the 2D plane, thus highlighting its
great potential for empty-space visualization.

Algorithm 2: Dimension Reduction for Cosine Distance

Pick n nearest neighbors
[P1,Ps,...,P,] around the agent 7 in d dimensional space;
fori...ndo
Let ]5; be the vector from 7 to F;;
L= 1Pl
B=B/||P;
end
Calculate a local embedding [p1,p3,...,p,,] from cos-MDS;
fori...ndo
| pi=lixpi/ ||pill;
end
return [p3,p3,...,pn) as neighbor plot results.

APPENDIX C
PARAMETERS IN ESA

« Particle effect diameter o: A significant parameter in ESA
which have been explained in Equation (1) and the subsequent
paragraph in Section IV.A.

o Number of neighbors k: Another significant parameter
explained in Equation (3) and elaborated upon in the following
sentence.

o Discount factor ~: Discussed in the fourth and fifth
paragraphs of Section IV.B.

o Number of steps n: This parameter determines the number of
iterations the ESA algorithm runs. If n is too small, the empty-
space agent may not converge to the empty regions. Conversely,
if n is too large, the agent may oscillate within the converged
area, leading to unnecessary computational overhead.

o Step size «: It controls the magnitude of each search step,
akin to the learning rate in gradient descent. A smaller
« requires more steps to converge but offers finer search
granularity. A larger o accelerates convergence but may skip
over meaningful regions.
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Fig. 10. Examples of cos-MDS on 3 synthetic datasets. The blue points are the
synthetic dataset and the red point is the center agent. (a) The 3D hyperboloid
dataset; (b) cos-MDS result on the 3D hyperboloid dataset; (c) cos-MDS result on
the 4D paraboloid dataset; (d) cos-MDS result on the 4D hypersphere dataset

« Rollout interval j: This parameter dictates how frequently
we sample ESCs from the search process. For instance, setting
J = 10 means the algorithm selects the current position as
an ESC every 10 steps. If j is too small, the sampled ESCs
will be very similar and less informative. Conversely, if j is
too large, the algorithm might miss significant configurations.
The choice of j is related to the step size «; a smaller step size
pairs well with a larger rollout interval, and vice versa.

o Vanishing threshold ¢: This threshold evaluates the strength
of the force acting on the agent. According to the nature of
the Lennard-Jones (LJ) potential, the farther an agent is from
its neighbors, the weaker the force becomes. If the force is
too small, the agent is effectively in a nonsensical space and
would require many more steps to reach the data distribution.
Therefore, we set a vanishing threshold; if the force falls below
6, we assume the agent has vanished and discard it.

o Constraints f;: The functions fi, fa,..., f, represent dataset-
dependent constraints on the variables. For example, in a
dataset where each variable should be within [0,1], or where
the sum of the first and second variables must be greater than
the third, these constraints are encapsulated by the f; functions.

o Cumulative magnitude L: The cumulative magnitude
works in tandem with the momentum m. As discussed in the
penultimate paragraph of Section IV.B, while 777 maintains
historical directions with a discount factor -y, L keeps track
of the magnitude of 173, also discounted by ~.

Importance of £ and o: The number of neighbors & and the
particle effective diameter o are crucial parameters in our algorithm.
Based on our experiments on heuristic optimization benchmarks
(e.g., Griewank, Rastrigin, Ackley, Sphere functions), we recom-
mend setting k£ = dimensionality of the data space + 1 for lower
dimensions (dimensions < 32) so that the neighbors around the
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Fig. 11. Given 300 random samples (blue) and 600 random agents (red) in 2D space,
we show the outcomes of empty-space search using (a) our empty-space search
algorithm (ESA) and (b) Delaunay Triangulation (DT).

-1.00-0.75-0.50-0.25 0.00 025 050 0.75 100

agent form a hypersphere. We recommend o to be the mean distance
to its k neighbors, approximating the radius of the hypersphere. A
too-small k£ and o limit the agent’s ability to explore empty space,
while too-large values prevent agents from converging to local empty
spaces. For higher dimensions (dimensions > 700 in image experi-
ments), since the dataset is a manifold embedded in high-D space, &
does not need to be dimensionality + 1. Empirically, we recommend
k to be small (approximately 20) and o to be half the mean distance
to its neighbors. We acknowledge that more experiments are needed
in higher dimensions to determine the optimal parameter settings.
Empirical settings: We have empirically set the following
parameters:
o Number of steps n: 100
o Step size o: 0.01
« Rollout interval j: 10
« Vanishing threshold §: 10~
« Discount factor v: <0.5 (if momentum is used). We recom-
mend a discount factor v < 0.5 when using momentum. A
smaller vy prevents long-term effects caused by overwhelming
repulsive forces when an agent is closer to a neighbor than
o, while still retaining useful historical information.

APPENDIX D
COMPARING ESA AND DELAUNAY TRIANGULATION

Our investigation into high-D Delaunay triangulation acceleration
and approximation revealed a scarcity of research addressing the ex-
ponential complexity increase with dimensionality. Hence, we con-
ducted some experiments to study this topic further. Our empirical
findings underscore the computational and storage impracticality of
these types of approaches for our purposes, even for datasets as small
as 1,000 points, when the number of dimensions exceeds 7. Fig.
11(a) and Fig.11(b) show the empty-space search results from our
search algorithm (ESA) and from Delaunay Triangulation (DT) in
the 2D case, respectively. While both methods identify all the empty
spaces, DT requires many more triangles compared to the number of
agents used in our ESA. It is this abundance (and complexity) of ge-
ometric primitives that limits DT’s scalability to higher dimensions.

APPENDIX E
USER-STUDY RESULTS

The user-study data including user performance, ESA
performance, and random sampling performance are listed in Tab.
L. The parameters used in this study and comparison experiments
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TABLEI
REWARDS OF EACH ROUND OF OUR USER STUDY (TOP), ESA (MIDDLE) AND RANDOM SAMPLING (BELOW).

Userl User2 User3 User4 User5 User6 User7 User8 User9 Userl0  Userll  Userl2  Userl3  Userl4  Userl5  Userl6  Userl7
0.487 04323 04317 0.36 0.301 0.368 043 0.518 0.287 0.317 0.283 0.385 04 0.463 0.377 0.317 0433
ESA1 ESA2 ESA3 ESA4 ESAS ESA6 ESA7 ESA8 ESA9  ESAI0O ESAll  ESAI2 ESAI3 ESAl4 ESAIS ESAl6  ESAl7
0.288 0.329 0.295 0.306 0.283 0.334 0.293 0412 0.293 0.352 0.309 0.343 0.355 0.293 0.356 0.312 0.285
RND1 RND2 RND3 RND4 RND5 RND6 RND7 RND8 RND9 RNDIO RNDI1 RNDI2 RNDI3 RNDI4 RNDI5 RNDI6 RNDI7
0.31 0.326 0.283 0.283 0.284 0.312 0.284 0.292 0.294 0.284 0.29 0.31 0.286 0.316 0.303 0.319 0.287
TABLE II TABLE I

THE BETWEEN-SUBJECTS ANOVA (ABOVE) AND TUKEY HSD (BELOW) OF
USER PERFORMANCE WITH GAPMINER (X1) AGAINST THE TWO BASELINES
ESA-ONLY (X2) AND RANDOM SAMPLIGN-ONLY (X3).

Source  DF SS Mean Square  F Statistic P-value
Groups 2 0.075 0.037 17.288 <0.001

Error 48 0.103 0.002

Total 50 0.178 0.004

Pair Diff SE Q CI Bounds CM P-value
x1-x2  0.068  0.011 6.019 0.029 70.106 0.039  <0.001
xl-x3 009 0011 7979 0.05170.128 0.039  <0.001
x2-x3  0.022 0011 1.959  -0.01670.061  0.039 0.356

were k=9, 0 = mean distance of k neighbors, n =400, «=0.001,
j=10, 6=10"" respectively. Momentum is not used.

A. ANOVA of User Study
The ANOVA of the user study can be found in Tab. II.

B. System Usability Scale

The SUS questionnaire included the 10 questions listed below:

o [ think that I would like to use this system frequently.

« I found the system unnecessarily complex.

o I thought the system was easy to use.

o [ think that I would need the support of a technical person to
be able to use this system.

o I found the various functions in this system were well
integrated.

o I thought there was too much inconsistency in this system.

o I would imagine that most people would learn to use this
system very quickly.

« [ found the system very cumbersome to use.

« I felt very confident using the system.

o Ineeded to learn a lot of things before I could get going with
this system

Each question was ranked from 1 (strongly disagree) to 5 (strongly
agree). The final score was calculated by summing the normalized
scores and multiplying them by 2.5 to convert the original score of
0-40 to 0-100. 12 users responded to our questionnaire. The results
are given in Tab. IIL

C. Comparison Experiment Data

Fig. 12 presents detailed results achieved by ESA, random
sampling and random walk.

RESPONSES FROM 12 USERS. Q1-Q10 REFER TO 10 QUESTIONS; R1-R12
REFER TO USER RESPONSES. NS IN THE LAST ROW IS THE NORMALIZED SCORE
OVER 12 RESPONSES.

Resp QI Q2 Q3 4 Q5 Qb Q7 Q8 Q9 QI0
R1 3 2 4 2 4 2 4 2 4 3
R2 5 1 4 4 5 1 2 2 4 3
R3 5 2 3 2 3 1 4 2 5 4
R4 2 3 4 4 5 1 5 3 4 4
RS 4 1 4 2 5 1 5 1 5 3
R6 3 3 3 4 5 3 3 3 3 5
R7 5 1 5 1 5 1 5 1 5 1
R8 4 1 5 2 5 1 4 1 4 1
R9 5 1 4 2 5 1 4 2 5 1

R10 4 2 4 3 4 2 4 2 4 2
RI11 4 4 3 4 5 1 4 2 4 3
RI12 5 1 5 4 5 1 5 1 5 1
NS 3.1 32 30 22 37 37 31 32 33 24
Developed stage
< 4
;g- - ¢ omece pmes ese  ©ome
E B @ND © IS o0 P. “we o®me o o
0.36 0.38 0.40 0.42 0.44 0.46 0.48 0.50 0.52
reward
(@)
Expert stage
< -
; 2 .—*- @ e o o ®
E B [ J ~...h ®e o o ® o
0.36 ovlza 0.:10 0.:12 0.114 o.:te o.:aa o.lso 0.52

reward

(b)

Fig. 12. Comparison experiment: (a) shows the rewards found by ESA, random
walk, and random sampling at the development stage; (b) shows the rewards found
by the three methods at the expert stage. In both figures, each dot represents a search
process with 1,500 random agents involved. Each method in both stages has 50
search processes.

D. ANOVA of Comparison Experiments

The ANVOA of developed stage and expert stage can be found
in Tab. IV and Tab. V respectively.
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TABLE IV
THE WITHIN-SUBJECTS ANOVA (ABOVE) AND TUKEY HSD (BELOW) OF ESA
(x1), RS (x2), AND RW (X3) AT A DEVELOPED STAGE. SUBJECTS ARE THE
INITIAL POSITIONS OF AGENTS, TREATMENTS ARE THE EMPTY-SPACE SEARCH

METHODS.
Source DF SS MS F Statistic P-value
Between Subjects 49 0.042  0.001 1.115 (49,98) 0.320
Between Treatments 2 0.051 0.026 33.224 (2,98) <10°6
Error 98 0.075 0.001
Total 149 0.168  0.001
Pair Diff SE Q CI Bounds CM P-value
x1-x2 0041  0.004 10.250 0.02870.054 0.013 <1078
x1-x3  0.037  0.004 9.272 0.02470.050 0.013 <1078
x2-x3  0.004  0.004 0.979 -0.00970.017  0.013 0.769
TABLE V

THE WITHIN-SUBJECTS ANOVA (ABOVE) AND TUKEY HSD (BELOW) OF ESA
(X1), RS (X2), AND RW (X3) AT AN EXPERT STAGE. SUBJECTS ARE THE
INITIAL POSITIONS OF AGENTS, TREATMENTS ARE THE EMPTY-SPACE SEARCH

METHODS.
Source DF SS MS F Statistic P-value
Between Subjects 49 0.033  0.001 1.201 (49,98) 0.220
Between Treatments 2 0.037  0.019  33.233(2,98) <107¢
Error 98 0.055  0.001
Total 149  0.125  0.001
Pair Diff SE Q CI Bounds CM P-value
x1-x2  0.035  0.003 10.161 0.02470.047 0012 <10°©
x1-x3  0.031  0.003 9.082 0.02070.043 0012 <107°
x2-x3 0004  0.003 1.079 -0.00870.015  0.012 0.726
APPENDIX F

EXTRAPOLATION BEHAVIOR OF OUR ESA-BASED SEARCH

Our ESA focuses on identifying empty spaces within the data
distribution. The repulsive component prevents it from straying too
far from the existing distribution. However, empty spaces outside
the current distribution can be meaningful and essential. This
experiment demonstrates ESA’s ability to search for these empty
spaces beyond the current distribution.

We used the distribution of the wine dataset for demonstration;
we ignored the meaning of each variable and removed the target
variable to focus solely on the distribution of the dataset in each
dimension. This marked the dataset as the initial distribution. We
ran ESA for six iterations, selecting 300 data items from the dataset
with the largest average distance to their 8 nearest neighbors as the
initial agent position. ESA search was conducted, and the results
were added to the dataset. After each iteration, we measured the
distance of the ESA results from the initial distribution and created
a histogram. The histograms, shown in Fig. 13, indicate that the
configurations found by ESA progressively move further from
the initial distribution. This demonstrates ESA’s ability to explore
empty spaces beyond an initial data distribution.

APPENDIX G
DETAILS FOR THE APPLICATION CASES

In this section, we present more detail on the various application
examples shown in the paper.

Iteration 0 Iteration 1

Count

g
Count
@
g

05 10 15 20 25 30 35
Mean distance to the dataset

00 05 10 15 20 25 30 3
Mean distance to the dataset

°
°

Iteration 2 Iteration 3

100 100

. 75 o 75
g £
H 5

8 so 8 so

25 25

04 0+
00 05 10 15 20 25 30 35 00 05 10 15 20 25 30 35
Mean distance to the dataset Mean distance to the dataset
Iteration 4 Iteration 5

100 100

. 75 o 75
g g
H 5

8 so 8 so
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Mean distance to the dataset Mean distance to the dataset

Fig. 13. Histograms of the configurations identified by the ESA with regards to
the initial distribution as a function of iteration. We observe that the ESA results
progressively move further from the initial distribution, demonstrating ESA’s ability
to explore empty spaces beyond an initial data distribution.

A. Systems Dataset

Fig. 14 shows the full view of GapMiner for the application
example described in Fig. VII, the systems dataset.

B. Wine Investigation

Fig. 15 show the full view of GapMiner for the wine dataset.

C. Cheetah Direction

We demonstrate an additional application of GapMiner in a
physical-simulation scenario.

CheetahDir is an environment in MUJOCO that controls a half
cheetah robot to move forward. The reward function is composed of
two components: forward reward and control cost. Forward reward
is the velocity in the given direction, the faster the better. Control
cost is the rooted squared sum of the action, indicating the cost
to execute the action, the smaller the better. The total reward is
the forward reward minus the control cost. The action space has
6 variables: back thigh, back shin, back foot, front thigh, front shin
and front foot. All of them are numerical and continuous.

The dataset is collected by an expert agent. Given an observation,
it samples actions from its output distribution randomly. In this
scenario, we explored the ability to find better empty-space actions
than the expert agent given the observation. The visual analytics
can be found in Fig. 16.
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Fig. 14. The full view of GapMiner for the system dataset. The black arrows in the overview display, the PCP, and the Pareto frontier plot show the direction of optimization.
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Fig. 15. The full view of GapMiner for the wine dataset study. We highlight the global optimal wine instance in green in the PCA map, the PCP, and the neighbor plot.
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Fig. 16. We trained a neural network to predict forward reward and calculate the control cost; then we calculate the reward of an action as forward reward minus control
cost. We applied the dataset to GapMiner, from which we could see a distribution shift from low-reward actions to high-reward actions. It indicated that front foot and
back foot are more important to the reward. Then we ran ESA to search empty-space actions and plot the predicted forward reward and control cost in the Pareto plot.
It showed that actions from the expert agent always have high cost, but some don’t have high reward. ESA can find actions that are either cheaper while maintaining
good reward, or expensive but even higher reward. Notice that RL is a sequential decision-making problem. A high immediate reward doesn’t necessarily imply a long-term
benefit. Searching empty-space actions with higher Q values is another interesting application scenario.
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