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1 Introduction

Over past several years, machine learning, or more generally artificial intelligence, has generated
overwhelming research interest and attracted unprecedented public attention. As tomographic imaging
researchers, we share the excitement from our imaging perspective [1], and organized this special issue
dedicated to the theme of “Machine Learning for Image Reconstruction”. This special issue is a sister
issue of the special issue published in May 2016 of this journal with the theme “Deep Learning in
Medical Imaging” [2]. While the previous special issue targeted medical image processing/analysis,
this special issue focuses on data-driven tomographic reconstruction. These two special issues are
highly complementary, since image reconstruction and image analysis are two of the main pillars for
medical imaging. Together we cover the whole workflow of medical imaging: from tomographic raw
data/features to reconstructed images and then extracted diagnostic features/readings.

In perspective, computer vision and image analysis are great examples of machine learning, es-
pecially deep learning. While computer vision and image analysis deal with existing images and
produce features of these images (images to features), tomographic reconstruction produces images of
internal structures from measurement data which are various features (line integrals, harmonic com-
ponents, etc.) of the underlying images (features to images). Recently, machine learning, especially
deep learning, techniques are being actively developed worldwide for tomographic reconstruction,
as clearly evidenced by the high-quality papers included in this special issue. In addition to well-
established analytic and iterative methods for tomographic image reconstruction, it is now clear that
machine learning is an emerging approach for image reconstruction, and image reconstruction is a
new frontier of machine learning.

2 Papers Included in the Special Issue

We have 20 papers in this special issue. Each paper was reviewed by 3-4 experts in the area of research
and went through a rigorous revision process, composed of typically two rounds of revision. All of
the papers in this special issue apply machine learning, especially neural network techniques, for
tomographic image reconstruction. There are two major stages in the image reconstruction pipeline:
(1) during the reconstruction in the form of forward projection, backprojection, and/or regularization,
or (2) after reconstruction as a post-processing operation to mitigate noise and artifacts. Some papers
use machine learning to overcome artifacts due to insufficient data, as occurring in a limited angle or
sparse data acquisition mode, or image artifacts due to adverse object conditions such as metal in a
patient. Also, this special issue covers a number of imaging modalities, such as X-ray CT, MRI, PET,
and photoacoustic tomography. In the following, we shall give a narrative of each paper, appropriately
grouping them under the multi-pronged categories presented above.
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The papers applying data-driven methods in the reconstruction process include the work by Adler
and Öktem “Learned Primal-dual Reconstruction” [3], which learns the reconstruction operator and
combines deep learning with model-based reconstruction. Also, Chen et al. in “LEARN: Learned Ex-
perts’ Assessment-based Reconstruction Network for Sparse-data CT” [4] extend sparse coding and
learn all regularization terms and parameters in an iteration dependent manner. Würfl et al. contribute
“Deep Learning Computed Tomography: Learning Projection-Domain Weights from Image Domain
in Limited Angle Problems” [5], which is a framework for learning the weight and correction ma-
trix and performing cone-beam CT reconstruction. Zheng et al. present “PWLS-ULTRA: An Efficient
Clustering and Learning-Based Approach for Low-Dose 3D CT Image Reconstruction” [6], which
uses the penalized weighted least squares (PWLS) method based on an efficient union of learned
transforms. Gupta et al. in “CNN-Based Projected Gradient Descent for Consistent CT Image Recon-
struction” [7] replace the projector in a projected gradient descent (PGD) search with a convolutional
neural network and apply it also to the sparse-view CT problem. Chen et al. in “Statistical Iterative
CBCT Reconstruction Based on Neural Network” [8] learn the penalty function for statistical iterative
reconstruction. Finally, Shen et al. present “Intelligent Parameter Tuning in Optimization-based Iter-
ative CT Reconstruction via Deep Reinforcement Learning” [9], in which they employ reinforcement
learning on-fly to tune parameters for total variation (TV)-regularized CT image reconstruction.

The papers that apply deep learning as an image-space operator are also impressive for the post-
reconstruction improvement they were able to achieve. The work by Yang et al. “Low Dose CT
Image Denoising Using a Generative Adversarial Network with Wasserstein Distance and Perceptual
Loss” [10] demonstrates a promising combination of traditional reconstruction and network-based
denoising for low-dose CT. Independently, Kang et al. describe the “Deep Convolutional Framelet
Denoising for Low-Dose CT via Wavelet Residual Network” [11]. Zhang et al. contribute “A Sparse-
View CT Reconstruction Method Based on Combination of DenseNet and Deconvolution” [12]. Han
et al. present “Framing U-Net via Deep Convolutional Framelets: Application to Sparse-view CT”
[13]. Zhang et al. address the mitigation of metal artifacts in “Convolutional Neural Network based
Metal Artifact Reduction in X-ray Computed Tomography” [14] through ensemble learning. Finally,
Shan et al. investigate “Low-Dose CT via Transfer Learning from a 2D Trained Network” [15], using
a conveying path based convolutional encoder-decoder (CPCE) network for CT image denoising, in
which an initial 3D CPCE denoising model is initialized by extending a trained 2D CNN.

There are three papers that apply deep learning in MRI within a compressed sensing framework.
Quan et al. present “Compressed Sensing MRI Reconstruction using a Generative Adversarial Net-
work with a Cyclic Loss” [16], in which they replace the iterative solver by a faster GAN. Likewise,
Yang et al. offer “DAGAN: Deep De-Aliasing Generative Adversarial Networks for Fast Compressed
Sensing MRI Reconstruction” [17]. Gözcü et al. describe “Learning-Based Compressive MRI” [18],
which applies deep learning to optimize MRI sampling patterns. The final set of papers address two
more modalities, PET and photoacoustic tomography. Kim et al. in “Penalized PET Reconstruction
Using Deep Learning Prior and Local Linear Fitting” [19] incorporate a deep neural network pow-
ered denoising step into an iterative PET reconstruction framework. Yang et al. in “Artificial Neural
Network Enhanced Bayesian PET Image Reconstruction” [20] use a neural network to model a highly
nonlinear and spatial-varying patch-wise mapping between a reconstructed image and an enhanced
image. Allman et al. in “Photoacoustic Source Detection and Reflection Artifact Removal Enabled by
Deep Learning” [21] employ deep learning techniques to identify reflection artifact stemming from
small tips of needles, catheters, and so on for removal in experimental photoacoustic data. And last
but not least, Hauptman et al. contribute “Model Based Learning for Accelerated, Limited-View 3D
Photoacoustic Tomography” [22], which uses an iterative reconstruction scheme.

2



3 Data and Software Used for the Special Issue

A proactive goal of this special issue was to encourage authors to make their codes and data pub-
licly available for reproducible research and resource sharing. Our initiative received very positive
responses. By far the most common mechanism for sharing codes has been the development plat-
form GitHub1. This site has existed for 10 years and seems likely to persist for many years to come.
Whether any given commercial web site will endure as long as a professional organization like IEEE
is an open question. One group of authors used the IEEE DataPort repository site2 for their paper.
In terms of software infrastructure, the two most common tools used are TensorFlow with various
interfaces3, and MathWorks MatConvNet4.

Surveying the papers in this special issue, certain data collections were particularly popular for
training, testing and validating data-driven methods. For papers on X-ray CT imaging, the most
prevalent data used was that associated with the 2016 AAPM Low Dose CT Grand Challenge5 [23].
The low-dose sinograms in this collection were prepared using software noise insertion [24]. The
importance of access to such data was identified as a key need in the 2011 NIBIB Summit on Low-
dose CT [25]. Some CT papers also used the XCAT digital phantom [26, 27] and local datasets. The
MRI papers used a wide variety of data sources, including BrainWeb6 [28] as well as the IXI dataset7.
These sources seem to be largely MRI images, not k-space data. Apparently, there remains a need for
a repository of prospectively fully-sampled and under-sampled multi-coil MRI data.

4 Data-driven Reconstruction as the Third Wave

In retrospect, the field of image reconstruction has experienced three phases/waves of development.
The first phase, dating back decades to the inception of each modality, involved analytical methods
that use an idealized mathematical model of an imaging system. Classical examples are the filtered
back-projection method (FBP) for computed tomography (CT) and the inverse Fourier transform for
MRI. Typically, these analytical methods consider the sampling properties of the imaging system but
few, if any, properties of the object being imaged. These reconstruction methods are extensively used
because they are computationally very efficient. The second phase features iterative reconstruction.
The iterative methods account for the physical and statistical properties of the imaging system, despite
unavoidable mismatches between the mathematical model and numerous physical factors such as non-
ideal detector responses and inhomogeneous magnetic fields. Such methods became commercially
available for major modalities including SPECT and PET in 1990s, X-ray CT in 2012, and MRI in
2017. Many of these methods are based on statistical object models like Markov random fields or
on regularization methods like roughness penalties. In recent years, regularizers based on sparsity
and low-rank models using wavelet transforms, finite differences, nuclear norm, manifold learning,
and so on have been emphasized. To the best of our knowledge, all commercial image reconstruction
methods currently available for PET, CT and MR use regularizers that were designed mathematically,
such as the relative difference prior for PET [29, 30], finite difference for CT [31], and combination
of wavelets and total variation for MRI [32]. A third phase of image reconstruction research has
emerged in the last few years, and involves data-driven and learning-based methods. These methods

1https://github.com
2https://ieee-dataport.org
3https://www.tensorflow.org
4http://www.vlfeat.org/matconvnet
5https://www.aapm.org/GrandChallenge/LowDoseCT
6http://www.bic.mni.mcgill.ca/brainweb
7http://brain-development.org/ixi-dataset
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can supplement or replace “human-defined” signal models with counterpart networks learned from big
data. Many of the newest methods draw extensively on techniques from the field of machine learning,
and it was this wave of algorithmic development that inspired this special issue.

There are various ways to use machine learning techniques for tomographic image reconstruction
as discussed in [1]. In some modalities, there are high-quality scans available. Those scans can be
used to learn signal models. Then, the learned signal models help reconstruct images from poorer
quality data (i.e., under-sampled, photon-limited, or subject to other constraints). A representative
method in this class is to learn a dictionary that can represent patches in underlying images with sparse
coefficients. Given a set of training images, we can learn the dictionary by solving an optimization
problem [33, 34]. An alternative is to learn a sparsifying transform (instead of a dictionary) in the
training process [35]. After learning a dictionary or transform from training data, we can reconstruct
an unknown image from (low quality and often under-determined) measurements, which is often
modeled in the linear form and solved as an optimization problem; see, for example, [34]. A variation
of such methods is to learn the dictionary and transform jointly during the reconstruction process; this
is called blind or adaptive learning [33, 34, 36]. Instead of extracting patches, an alternative is to
learn convolutional models (filters) from training data [37, 38] in either a synthesis or analysis form.
After the filter learning, we can use learned filters to regularize image reconstruction. This is related to
convolutional neural networks (CNNs), because it applies a collection of filters to a candidate image.

All of the above cost functions for image reconstruction require iterative methods to perform op-
timization. One can view such an iterative algorithm as a recurrent neural network involving layers
with operations like filtering, thresholding and summing. Instead of treating those operations as fixed
components of the iterative algorithm, we can “unroll the loop” of the iterative algorithm into a se-
quence of operational layers and then optimize the layers in a data-driven fashion. The first method
of this type was LISTA (learned ISTA) [39] designed for generic use. Following this seminal work,
a number of algorithms were recently developed for image reconstruction, including some papers in
this special issue. Some such methods include the system model A in the loop, whereas others at-
tempt to reduce the computational cost by learning filters to approximate the operation A′A better.
For medical tomographic imaging, minimizing the cost function typically requires a large amount of
computation. One of the potential appeals of some “deep reconstruction” methods is that they may
require much less computation after being trained. Typically, such methods start with a crude initial
image, and then enhance (denoise, dealias, etc.) a current image using a deep network. Many papers
in this issue are in this form.

5 Theoretical Issues Relevant to Deep Reconstruction

Despite the intriguing empirical performance improvement with machine learning techniques over
classical analytic and iterative approaches, one of the major hurdles to widespread acceptance of the
deep reconstruction or deep imaging approach is that neural networks are still largely black-boxes.
The theoretical origins of the success are not well understood yet. In most laboratories worldwide,
the specific network architecture and training scheme for each image reconstruction problem is found
by trial and error, rather than derived from a governing theory or specific design guidelines. Although
a number of interesting theoretical findings and insights [40, 41, 42, 43] have been reported to open
the black-box of the neural network, the relevance to image reconstruction applications remains weak,
because the theoretical issues in those studies are often remote from specifics of inverse problems and
their solutions.

There are two major theoretical issues of machine learning in general, and for image reconstruction
in particular: (1) what network architecture should be used for optimal performance (why go deep?),
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and (2) which neural network training procedure should be applied to guarantee the convergence (how
to train?). Most of the existing theoretical results focus on the latter problem, while the design of the
network architecture is largely left to experimental exploration.

Recently, progress is being made toward the understanding of the network architecture. For exam-
ple, the deep convolutional framelets are analyzed in [44]. In this work, the encoder-decoder network
emerges from the learning-based Hankel matrix decomposition, and the left and the right bases corre-
spond to the user-defined pooling and trainable convolutional filters. The low-rank Hankel matrix has
been successfully used in compressed sensing [45, 46, 47, 48, 49]. This link between the compressed
sensing and deep learning problems can help address open network design problems by revealing the
role of the filter channels and pooling layers, and can improve the network performance [11, 13]. As
another example, the success of deep learning is attributed to not only mathematics but also physics
[50]. Although neural networks can approximate most functions in principle, the class of practical
functions often stays on a low-dimensional manifold. Fundamental properties in physics such as sym-
metry, locality, compositionality, and polynomial log-probability translate into exceptionally simple
neural networks. When the statistical process generating the data is of a hierarchical form governing
by physics, a deep neural network can be more efficient than a shallow one [50]. The “no-flattening
theorems” indicate that deep networks cannot be accurately and efficiently approximated by shallow
ones [50]. Moreover, although it is alleged that the nonlinearity of the rectified linear unit (ReLU)
allows the conical decomposition of the convolution framelet basis by enforcing the positivity of the
frame coefficients, the high dimensional geometric understanding of the multilayer conic decompo-
sition is not fully understood. In addition, the arguments behind the need to use skipped compounds
must be reviewed with more empirical evidence and mathematical analysis.

Of particular practical relevance, for a given network architecture the issue of convergence to the
global minimizer has been an extensively studied theoretical topic [40, 41, 42, 43]. The recent the-
oretical advances in non-convex optimization (see [51] and references therein) bring valuable tools,
and the so-called optimization landscape [52, 53] is a key for such studies. For example, the authors
in [41, 42, 43] showed that a well-designed neural network has no spurious local minimizers so that
the gradient descent optimizer converges to the global minimizer. In addition, the theory of infor-
mation bottleneck [40] provides an important dynamic view to explain the solution trajectory during
the training process. However, the existing theoretical results for the convergence are mainly focused
on simple network architectures for classification. Therefore, it will be an important research direc-
tion for the imaging community to investigate how this optimization landscape changes with different
neural network architectures under tomographic data constraints and domain-specific priors.

6 Research Opportunities in Data-driven Imaging

In addition to the above-mentioned theoretical research, machine learning methods are constantly
introduced to solve inverse problems, as reported in this special issue and many other papers. The
evolution has been rapid with unprecedented challenges and opportunities, in the following six distinct
but inter-related categories: (1) big data generation, (2) image domain learning [13, 54, 55, 56, 57, 58,
59, 60, 61], (3) data domain learning [5, 62, 63], (4) hybrid reconstruction schemes [3, 4, 7, 11, 16, 54,
64, 65, 66, 67, 68, 69, 70], (5) end-to-end workflows [71, 72], and (6) convergence of deep imaging
and other emerging technologies.

First, machine learning based image reconstruction demands a large amount of curated, calibrated,
and preferably annotated data for training, validation, tuning, and testing. In reference to machine
learning successes with computer vision or image processing, big data such as ImageNet [73] has
millions of images. Due to the complexity of the tomographic mapping between sinogram and image
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spaces, the big data size for CT as an example is likely comparable to or larger than that of ImageNet.
Then, a major challenge is lack of data for several reasons. Despite a huge amount of data in existence
worldwide, only a tiny fraction is available for research due to privacy, legal, and business-related
concerns. As an example, CT raw data are tightly protected by companies and generally inaccessible
to researchers. Also, a research project normally has limited resources and only targets a specific
anatomical site/disease, and it is difficult to collect sufficiently big data as compared to the well-
known benchmark such as ImageNet [73]. Furthermore, at the developmental stage, a large amount of
annotated data are not in existence at all, such as in the cases of future cardiac CT with high-resolution
and photon-counting detectors. As a consequence, data sizes of hundreds or even less are typically
seen in manuscripts submitted to this special issue. A limited data source may cause overfitting,
inaccuracy, artifacts, etc. [2], impeding the advancement and translation of data-driven tomographic
reconstruction research. Perhaps that sufficiently representative tomographic data can be obtained by
intelligent augmentation with coupling of simulation data, emulation data and transfer learning.

Second, low-hanging fruits for machine learning oriented medical imaging are to design a deep
network in the image domain. Noisy or artifact-corrupted images are generated from measurement
data. A neural network can be trained to learn the artifacts from big data. For example, the low-
dose and sparse CT neural networks [13, 56, 57, 58, 60, 61] are often in this style. Similarly, the
earlier applications of the neural networks for compressed MRI were designed to remove aliasing
artifacts after obtaining a Fourier inversion image from down-sampling k-space data [59, 74]. A key
benefit of these image domain algorithms is that off-the-shelf tools from the computer vision literature
can be adapted to enhance image quality. Interestingly, this approach also leads to skepticism as to
whether an improvement in image quality is actual or just a cosmetic change. In [1], it was suggested
that “with deep neural networks, depth and width can be combined to efficiently represent functions
with a high precision, and perform powerful multi-scale analysis, quite like wavelet analysis but in
a nonlinear manner.” Mathematically, the authors of [44] show that the architecture of the neural
network is actually a signal representation similar to the representation using wavelets or framelets
[75]. The main difference is that the bases are learned from the training data. Hence, the image-based
neural network can be understood as an image noise removal algorithm, even better than the wavelet
or framelet shrinkage widely used in the medical imaging community. This suggests that the image
enhancement from the neural network is based on the well-established signal processing principle,
and the resultant improvement is intrinsic and not just cosmetic.

Third, a more radical strategy is to make the full use of the measurement data with a deep neural
network [1]. A good example is the so-called AUTOMAP (which is an automated transform through
manifold approximation) for MRI [62]. Featured in a high profile journal, AUTOMAP directly learns
the network-based mapping between the measurement and the image. The key difference of this
architecture from other CNN setups is that the first layer is fully-connected, since k-space data are
coefficients of the Fourier transform which is a global transform. Then, MRI image reconstruction
from under-sampled k-space data can be solved by coupling a fully-connected layer with other layers
all of which are trained to invert the Fourier transform. While the idea of learning the inverse mapping
using a fully-connected layer is intriguing, a major drawback of AUTOMAP is its huge memory
requirement to store the fully-connected layer. However, for relatively small size images, AUTOMAP
gives a promising direction of research that directly related the measurement data to images through
neural network. Another potential criticism is that the neural network may not need to learn the
Fourier transformation from scratch, since a memory-efficient analytic transform is already available.
The recent efforts in training the sinogram domain filter using a neural network offers an important
clue toward that direction [5]. In this paper, similar to AUTOMAP, the neural network was realized
in the measurement domain, and trained to map from the sinogram to the image. The training goal
is to estimates the data-driven ramp-type filter by minimizing the image domain loss. However, in
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contrast to AUTOMAP, a fully-connected layer is not necessary. While the performance improvement
of this approach over the image domain neural network needs further verification, the full utilization of
measurement domain data with neither iterations nor fully-connected layers is attractive and deserves
further investigation. Another angle to do data-based learning is to improve tomographic raw data
themselves. In [76], Feng et al. develop a machine learning method to correct for the pileup effect
of photon-counting CT data. This model-free and data-driven method is a fully connected cascade
artificial neural network trainable with measurements and true counts for high fidelity energy-sensitive
data, which should be a better starting point for data-domain learning.

Fourth, hybrid reconstruction methods integrate merits of data- and image-domain learning meth-
ods. One of the earliest studies is the variational neural network designed by Hammernik et al. [54].
In that context, the image prior is modeled as a combination of unknown nonlinearites and weights
that can be estimated with training data. To find these parameters, the gradient update is performed
in multiple steps that map directly to the layers of a neural network. Similar methods were used
in ADMM-Net [64], in which the unfolded steps of the alternating directional method of multiplier
(ADMM) algorithm are mapped into layers of a neural network. For dynamic cardiac MRI, Schlem-
per et al. [66] proposed a cascaded CNN, in which the network alternates repetitions between the data
consistency layers and the image domain denoising layers. Quan et al. [16] employed the cyclic con-
sistency in the k-space and the image space to solve a compressed sensing MRI problem. Another way
is to use neural network as a prior model within a model-based iterative reconstruction (MBIR) frame-
work. The earliest form of this idea was proposed by Wang et al. [65], in which the CNN-based prior
was put in a formulation of compressed sensing MRI. Also, using the plug-and-play approach the de-
noising step of the ADMM was replaced with a neural network denoiser [69, 70]. A more sophisticated
form of such an approach is to make a neural network as a projector for a desirable functional space
[7]. Similarly, based on the observation that a neural network can be interpreted as a framelet signal
representation with its shrinkage behavior controlled by filter channels [44], a framelet-based denois-
ing algorithm was suggested that iterates between the data consistency step and the neural network
shrinkage step [11]. The main advantage of these algorithms is their provable convergence, since the
algorithms depend heavily on the proximal optimization. A recent study by Adler et al. [3] established
an elegant framework using trainable primal and dual steps that guarantees the convergence. The idea
can be further extended using the recursive neural network (RNN), in which relatively shallow neural
networks are used as a prior model for parallel MRI [68]. Thanks to the full use of the measurement
data, these algorithms offer consistent improvement over the image domain counterparts. However,
one of the drawbacks is that computational advantages of the feed-forward neural network are lost in
these iterative frameworks. For example, in CT and PET reconstructions with neural network priors
[69, 70], multiple projections and backprojections become necessary, taking substantial computational
time. However, 3D iterative methods are already available commercially for CT and PET for many
years now so reducing computing time may be less urgent than improving image quality.

Fifth, the end-to-end workflow has a significant potential that will integrate deep reconstruction
and radiomics for optimal diagnostic performance [71, 72]. Radiomics, a hot area for years, utilizes
extensive features mined from images using sophisticated algorithms including deep neural networks.
A synergistic opportunity exists between deep reconstruction and radiomics, i.e., the unification of to-
mographic reconstruction and radiomics for what we call “rawdiomics” (raw data/info+omics) so that
the space of features can be widened for better diagnostic performance. Driven by the desire to train
the deep neural network directly with tomographic data, Wu et al. proposed an end-to-end network
for lung CT nodule detection [72]. Their network is the unrolled version of an iterative reconstruction
process from low-dose CT data through images to final diagnosis. The involved reconstruction and
analysis parts of the overall network were jointly trained, yielding better sensitivity and accuracy than
what can be obtained when reconstruction and analysis were separately done [72].
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Lastly and a bit speculative, given unprecedented progresses in the engineering field over the past
decade or so, cutting-edge medical imaging, machine learning, robot, high-performance computing,
internet, and auto-driving technologies could be combined to change the landscape of the medical
imaging world. We envision a paradigm shift in medical imaging, from hospital/clinic/center-oriented
to mobile, intelligent, integrated, and cost-effective services promptly delivered wherever and when-
ever needed. This patient-oriented imaging service will be not only convenient (an analogy is tele-
phone booths versus smart phones) but also cost-effective (highly automated process consisting of an
auto-driving scanner and a robotic technician, who can come to your place as a Uber taxi can) and
even necessary in natural disaster scenes and near battle fields, which should be a good example of
what we call “Internet of Imaging Services”.

7 Tips for Interested Novice Researchers

In this section we aim to offer some advice for those peers/students in our field who are not involved
in machine learning based medical imaging yet but have read this editorial due to their interest in the
emerging area.

Machine learning, generally speaking, is a mechanism that bypasses painstaking analytical model
construction via an equation by instead learning these models from data. It identifies patterns that can
be arbitrarily complex and enables knowledge-finding and decision-making without humans in the
loop. While machine learning in principle is not new, there are two enabling developments that have
helped it to flourish, namely, (1) the widespread availability of big data which can be stored on cheap
disks and communicated over high-bandwidth networks; and (2) the tremendous advances in computer
hardware, algorithms and software which can run the compute-intensive machine learning algorithms
within practically tolerable time and generate results outperforming human experts in many cases.
Machine learning can be supervised, semi-supervised, or unsupervised. Examples for supervised
algorithms are learning a classifier or a regression model, while examples for unsupervised machine
learning are clustering or the derivation of mixture models.

Deep Learning is the currently most active branch of machine learning inspired by the structure
and function of the brain, simulated in artificial neural networks. Neural networks with backpropaga-
tion learning have been around for many years, but the realization that one can build deep networks
that go from low-level feature recognition to abstract concepts, layer by layer, has revolutionized the
field [77]. Also, deep learning has crucially benefited from the development of high performance
commodity parallel hardware such as the GPU (Graphics Processing Unit) and more recently also
custom hardware developed by major industrial players in the field, such as Google’s TPU (Tensor
Processing Units). Deep neural network architects usually make use of highly versatile open source
packages such as TensorFlow8, Theano9, Caffe10, Keras11, PyTorch12, and various others13.

Readers who seek to come up to speed with the topics of machine learning may begin with the
Wikipedia page of the same name14 and follow some of links to read on further. Then, one may
consider taking one of the quite numerous and diverse Coursera courses15. The one by Stanford
University taught by Andrew Ng was the first, and in fact one of the first Coursera courses overall.

8https://www.tensorflow.org/
9http://deeplearning.net/software/theano

10http://caffe.berkeleyvision.org/
11https://keras.io/
12https://pytorch.org/
13https://en.wikipedia.org/wiki/Comparison_of_deep_learning_software
14https://en.wikipedia.org/wiki/Machine_learning
15https://www.coursera.org/browse/data-science/machine-learning?languages=en
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For deep learning, there are quite a few online tutorials. The website “Neural networks and deep
learning” has a wealth of material and at the same time is quite intuitive to read16. The MIT Press book
[78] by Goodfellow, Bengio, and Courville is online and an excellent read17. Moreover, the source
codes and data set provided by the authors in this special issue are believed to be good starting points
to understand how deep learning algorithms can be implemented for image reconstruction purpose.
Finally, the folks from Google Brain and other groups put together a highly interactive website that
focuses on the interpretability of deep neural networks18.

8 Conclusion

We feel humbled and privileged to be given the opportunity of editing this special issue. We are
obligated to express our appreciation for the excellent jobs done by numerous reviewers, outstanding
infrastructural support by the TMI office staff especially Ms. Deborah Insana, important guidance
by the Editor-in-Chief Dr. Michael Insana, and the approval of our initiative by the TMI Steering
Committee for this special issue. Needless to say, we have learnt a great deal from all the submissions
by the authors who are among the most proactive and creative colleagues in our community. Without
any of these, it would have been impossible to finish this special issue which we hope to have a major
and lasting value.

In conclusion, big data, machine learning and artificial intelligence will fundamentally impact
the field of medical imaging. An aggressive view is that “machine learning will transform radiology
significantly within the next 5 years” [79]. Regardless the pace at which machine learning is being
translated to hospitals and clinics, the future for imaging research, development and applications seems
definitely exciting for us and younger generations.
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