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ABSTRACT 

 
Iterative reconstruction algorithms augmented with 
regularization can produce high-quality reconstructions 
from few views and even in the presence of significant 
noise. In this paper we focus on the particularities 
associated with the GPU acceleration of these. First, we 
introduce the idea of using exhaustive benchmark tests to 
determine the optimal settings of various parameters in 
iterative algorithm, here OS-SIRT, which proofs decisive 
for obtaining optimal GPU performance. Then we introduce 
bilateral filtering as a viable and cost-effective means for 
regularization, and we show that GPU-acceleration reduces 
its overhead to very moderate levels.    

Index Terms— Iterative Reconstruction, Computed 
Tomography, Ordered Subsets, GPU, Bilateral Filter 
 

1. INTRODUCTION 
 
The high radiation dose delivered to a patient in multi-slice 
X-ray CT has become a source of growing concern, 
especially in pediatrics. Therefore, optimizing the dose to 
obtain the lowest quality acceptable for a given diagnostic 
purpose (the ALARA principle) is the overall theme in 
many efforts to lower these exposures. Effective methods 
here include limiting either the dose per projection, or the 
number of projections overall, or both. However, while the 
former decreases SNR, the latter can lead to prominent 
streak artifacts in the reconstruction. Both can obliterate the 
features of interest and generally make the CT image hard to 
read. Exact or approximate exact CT reconstruction 
methods do not work well under these conditions. Iterative 
optimization methods, on the other hand, can produce 
acceptable results but they suffer from high computational 
effort. This has prevented a deployment in routine clinical 
applications so far since these computational demands 
cannot be met by reasonable CPU-based platforms.  

Fortunately, the maturing of high-performance graphics 
chips (GPUs) into commodity massively parallel processors 
has now begun to enable a wide variety of computationally 
challenging tasks to be performed inexpensively on the 
desktop. In the context of medical imaging, we have shown 
that with just a single such board one can filter and back-
project cone-beam projections faster (at 50 projections/s) 

than they can be produced by a modern flat-panel gantry, 
enabling streaming CT [5].  Further, in earlier work [3] we 
have also shown that reconstruction algorithms, both 
iterative and analytical, can typically be broken down into 
blocks, which can be accelerated individually on these 
platforms using dedicated programs (called shaders).  

In this current work we specifically address the 
acceleration of iterative optimization algorithms for the 
purpose of low-dose CT with reduced sets of noisy 
projections. Our framework alternates projection-space 
prediction-correction with object-space regularization. The 
former ensures adherence of the solution to the data, while 
the latter seeks to drive the former to a more plausible 
solution. Our prominent aim is to make this procedure 
amenable to GPU-acceleration. 

Our paper is structured as follows. Section 2 discusses 
related work. Section 3 describes our framework. Section 4 
present results, and Section 5 ends with conclusions. 
 

2. RELATED WORK 
 
We chose algebraic reconstruction as the predictor-corrector 
method. In expectation maximization (EM), ordered subsets 
(OS) have long been known to speed up convergence speed, 
with larger numbers of subsets converging faster.  In recent 
work, we have introduced the idea of using ordered subsets 
also for algebraic settings, giving rise to OS-SIRT. In this 
scheme SIRT and SART form two extremes, with SIRT 
having just one and SART having M subsets (M being the 
number of projections). While on the CPU there is little 
difference in the running time per iteration, on the GPU an 
iteration with SART is typically the slowest, due to the 
many projection-backprojection context switches, disturbing 
parallelism and data flow [4]. This has significant 
implications for the overall reconstruction wall clock time, 
where SART, in the noise-free case, is no longer the fastest 
method (which it is on the CPU) [4]. In contrast, in our 
current work we address the issue of noise, and thus revisit 
GPU OS-SIRT under these new circumstances.  

For few-view, limited-angle, and noisy projection 
scenarios, the application of regularization operators 
between reconstruction iterations seeks to tune the final or 
intermediate results to some a-priori model. A simple 
regularization scheme is to enforce positivity. In [1] the 
method of total variation (TV) was proposed for additional 
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regularization (in conjunction with POCS reconstruction). 
TV minimization (TVM) has the effect of flattening the 
density profile in neighborhoods and thus is well suited for 
noise and streak artifact reduction. Based on the assumption 
of a relatively sparse gradient object, the method worked 
quite well under a variety imperfect imaging situations [1]. 
This assumption may not be realistic in general, but more 
importantly in the context of high performance computing, 
the iterative procedure of TVM is quite time-consuming, 
even when accelerated on GPUs. 

 
3. METHODOLOGY 

 
We aim to devise a method that is not iterative but has the 
same goals than TVM, that is, the reduction of local 
variations (noise, streaks) while preserving coherent 
features. The bilateral filter [2] is such a method. It 
combines both a range filter and a domain filter, constituting 
a non-linear filter designed for edge-preserving smoothing. 
When based on the Gaussian function, two parameters are 
required, r and d, to control the weight of each filter.  

A second important aspect of OS-EM is that it balances 
noise suppression with convergence speed – typically in the 
presence of noise using a smaller number of subsets leads to 
faster convergence and better results, due to the inherent 
smoothing provided by the larger projection sets. These 
issues are also relevant for our GPU-accelerated OS-SIRT, 
but with the added constraints imposed by the GPU 
hardware architecture. Finally, in contrast to EM, algebraic 
methods also offer a relaxation factor λ which has a great 
effect on convergence speed. In [5], a simple linear 
selection scheme for λ (as a function of subset size) was 
used, which we found sub-optimal in the current work. We 
therefore propose a scheme that determines the optimal 
setting of λ (and subset number) based on an exhaustive set 
of benchmark tests under different noise conditions.  
 
3.1. OS-SIRT 
 

The correction update for projection-based algebraic 
methods is computed by the following equation: 
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where the weight factor wij determines the contribution of a 
voxel vj to a ray ri starting from a projection pixel pi and is 
given by the interpolation kernel. This equation is a 
generalization of the original SART and SIRT equations to 
support any number of subsets [4]. The pi are the pixels in 
the M/S acquired images that form a specific (ordered) 
subset OSs where 1 ≤ s ≤ S and S is the number of subsets.  
 
3.2. Bilateral Filter 
 

The bilateral filter non-linearly averages similar and nearby 

pixels values. It consists of two filter components: the 
domain filter and the range filter:   
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Here, ε and x represent the spatial variables, f is the input 
image, and c and s are the measured closeness and pixel 
value similarity, respectively. The geometric closeness 
function acts as the domain filter controlling the 
contribution according to spatial distance. Conversely, the 
pixel value similarity function acts as a range filter, 
generating very low weights for dissimilar pixel values. 
Normalization forces the sum of pixel weights to 1. In our 
work, we model the closeness and similarity functions as 
Gaussians: 
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where r and d control the amount of smoothing. Each 
pixel collects contributions from all image pixels. This is 
quite expensive and also not effective since the 
contributions of remote pixels are very subtle. A mask 
window (centered about an updated pixel) improves 
performance by restricting operations only to pixels inside 
the window.  

The implementation of GPU-accelerated bilateral 
filtering is as follows. The rendering target is a texture of 
the size of the reconstructed image, with image texture and 
other parameters (size of image, r, d, etc.) passed into the 
GPU. We avoid the expensive evaluation of the exponential 
function by pre-computing both closeness and similarity 
functions, and store them into two 1-D lookup textures. We 
implemented bilateral filtering both in 2D and 3D. 

 
3.3. OS-SIRT with Bilateral Filter regularization 
 
In our regularized OS-SIRT bilateral filtering is applied 
after each iteration (after the backprojection of all subsets). 
This removes artifacts at the very beginning when the errors 
are just generated and thus steers the reconstruction towards 
more plausible and favorable solution regions. Since the 
target texture (to be filtered) is already in GPU memory, this 
operation does not require any expensive texture uploading 
or downloading operations between the CPU and GPU.   
 

4. RESULTS 
 
Our experiments were conducted on a NVIDIA 8800GT 
GPU, programmed with GLSL. We group the results into 
two sections: (1) the OS-SIRT results showing the 
relationship between noise levels and parameters settings, 
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and (2) the performance of our GPU-accelerated bilateral 
filter and the corresponding reconstruction results. 
 
4.1. OS-SIRT with noisy data 
 
We used the 2D Barbara test image (size 2562) to evaluate 
the performance of the different reconstruction schemes. 
We obtained 180 projections at uniform angular spacing of 
[-90 , +90 ] in a parallel projection viewing geometry. We 
then added different levels of Gaussian noise to the 
projection data, to obtain SNRs of 15, 10, 5, and 1. Figure 1 
presents the best reconstruction results obtained (using the 
correlation coefficient CC between original and 
reconstructed image), for each SNR, at the smallest wall-
clock time. 
 
   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Since the Barbara test image has a high level of fine 
detail, which cannot be recovered at a high level of noise, 
the CC’s upper bound is limited. For small SNR, 
convergence to the optimal CC is quickly followed by 
divergence, which explains the reduced wall-clock time at 
these SNR levels. In this context we also observed that a 
sequential ordering of the projections in the subsets 
improved the CC that could be obtained (over a random 
arrangement).  

The optimal settings greatly depend on the particular 
imaging situation at hand, such as SNR, total number of 
projections and their angular range, the imaged object, 
scanner, etc. Figure 2 presents results on the influence of 
SNR. The plots give quantifying hints on how to pick the 
best-performing λ and number of subsets (to obtain the best 
possible quality within the smallest time), for each expected 
SNR level. For example, we observe that low SNR requires 
a low numbers of subsets. The figure also indicates that for 
the noise-free case SART is the best method – even though 
a single iteration takes the longest, the time performance is 
dominated by the fast convergence speed. On the other hand, 
for increasing levels of noise, where SART converges 

slowly, the optimal number of subsets decreases, favoring 
OS-SIRT with its better de-noising properties. Also, at the 
same time, with growing subset sizes, the relaxation factor 
increases in a non-linear fashion. This is a strong departure 
from the linear model used on [4] – a higher λ will lead to 
faster convergence and via our exhaustive benchmark tests 
we are safe that it also leads to more accurate results. It 
shows that damping via relaxation is replaced by damping 
via intra-subset averaging.   

 

 
 

 
 
Figure 2: Best time and optimal relaxation factor as a function of 
imaging condition, here SNR. 
 
4.2. Performance with Bilateral Filter 
 
We tested the speed of both 2D and 3D bilateral filters with 
different sizes of images and windows on both CPU and 
GPU. Table 1 shows that speedups of more than two orders 
of magnitude can be obtained by using the GPU: 
 

Test size Window size CPU time GPU time 
256×256 91×91 67.626 0.109 

 61×61 32.219 0.047 
 31×31 8.829 0.015 

512×512 41×41 59.313 0.093 
 21×21 15.875 0.032 
 11×11 4.453 0.016 

256×256×256 9×9×9 > 100 3.953 
 7×7×7 > 100 1.984 
 3×3×3 75.563 0.469 

Table 1: Wall clock time (in s) of GPU vs. CPU bilateral filter 

    
Original SNR1 rand SNR1 seq SNR5 rand SNR5 seq 

CC 0.6 0.7 0.85 0.85 
Time (s) 0.069 0.068 0.08 0.09 

  
  
  
  
  
  

  
SNR 10 SNR 15 Noise-free Noise-free 

0.88 0.9 0.95 0.97 
0.081 0.094 0.244 0.725 

 
Figure 1: Reconstructions obtained with different SNR levels 
for the Barbara image 
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To gauge the performance of regularized reconstruction 

for both the few-view and the noise (SNR=10) scenario, we 
used the Visible Human dataset at 5123 resolution. Here we 
employed SART with 8 iterations for the noise-free few-
view case. The filter window size filter was fixed to 11. 
Figure 3 shows one slice of the reconstructed volume before 
and after filtering, respectively. No streaking artifacts are 
present, which would have dominated the reconstructions 
otherwise, and the features are well preserved. We tested a 
number of combinations of representative r and d and 
selected the best results.  
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  Figure 3: Comparison of the noise-free, few-view case. 
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Figure 4: Comparison for the noisy (SNR=10), few-view case. 

 
#proj 1-ch 1-ch w/ BF 4-ch 4-ch w/ BF 
180 121.159 133.105 47.97 50.686 
30 30.896 39.598 12.429 15.908 

Table 2: Wall clock time for one GPU-accelerated SART iteration 
of the 5123 volume. The timings for 1-ch and 4-ch are results 
obtained when accelerating the reconstruction with 1 (R) or 4 
RTGBA) color channels, respectively. BF is the bilateral filter. 
 

Figure 4 shows the results for the noisy few-view case, 
after 5 iterations. Like in noise-less case we observe that the 
salient features are well preserved in both size and shape.   

Finally, Table 2 lists the GPU-accelerated 
reconstruction time required for one SART iteration, for the 
Visible Human dataset at 5123 resolution for 180 and 30 
projections. The 1-ch time uses only the R-channel of the 
GPU hardware, while the 4-ch time uses all 4 (RGBA) 
channels in parallel. We observe a 2.5-fold speedup. We 
further observe that the regularization via bilateral filtering 
adds only a moderate time overhead (about 30%).   
 

5. CONCLUSIONS 
 
We have shown that benchmark-based parameter selection 
in GPU-accelerated iterative reconstruction can make 
iterative reconstruction a clear option for CT for noisy 
and/or few-view scenarios. We also showed that bilateral 
filtering represents a viable option for regularization, with 
the added advantage that it accelerates very well on GPUs. 
Further study is clearly needed to thoroughly compare the 
bilateral filter with TVM in terms of accuracy. Future work 
will consider local adaptive parameter tuning to better 
preserve local features and to study the acceleration 
performance using CUDA. For OS-SIRT we are currently 
working on an extended study to determine if the optimal 
benchmark-tested parameters generalize to certain object 
classes and scanning scenarios.     
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