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Fig. 1. The interface of our visual analytics framework for joint distribution reconstruction. (a) The features of the joint reconstruction
solution space are defined. The user selects a subset of features (highlighted in purple) and visualizes it with (b) augmented parallel
coordinates. Box plots and heat maps integrated into the axes bars show the distributions of the features. (c) Constraints can be
added by filtering the range in each axis. (d) The probability density functions of the features before and after filtering are visualized
as line charts. The bars below the line charts show the ranges of features after filtering. (e) The control panel for visualization.

Abstract—Oftentimes multivariate data are not available as sets of equally multivariate tuples, but only as sets of projections into
subspaces spanned by subsets of these attributes. For example, one may find data with five attributes stored in six tables of two
attributes each, instead of a single table of five attributes. This prohibits the visualization of these data with standard high-dimensional
methods, such as parallel coordinates or MDS, and there is hence the need to reconstruct the full multivariate (joint) distribution from
these marginal ones. Most of the existing methods designed for this purpose use an iterative procedure to estimate the joint distribu-
tion. With insufficient marginal distributions and domain knowledge, they lead to results whose joint errors can be large. Moreover,
enforcing smoothness for regularizations in the joint space is not applicable if the attributes are not numerical but categorical. We
propose a visual analytics approach that integrates both anecdotal data and human experts to iteratively narrow down a large set of
plausible solutions. The solution space is populated using a Monte Carlo procedure which uniformly samples the solution space. A
level-of-detail high dimensional visualization system helps the user understand the patterns and the uncertainties. Constraints that
narrow the solution space can then be added by the user interactively during the iterative exploration, and eventually a subset of
solutions with narrow uncertainty intervals emerges.

Index Terms—Joint Distribution Reconstruction, Solution Space, High-dimensional Data, Multivariate Data, Parallel Coordinates

1 INTRODUCTION

Fusing data from multiple sources or tables can often bring valuable
insight. However, most of the time one cannot recover the full joint
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distributions that way. Instead one often faces a multi-set of marginal
distributions which is only partially helpful in discerning the relation-
ships within the fused domain. Take, for example, Andy, a researcher
in public health who wishes to study a set of emerging diseases in the
context of patient demographics. He contacts a few hospitals in his
county and obtains two bivariate tables - diseases vs. age and dis-
eases vs. gender. However, to Andy’s great dismay knowing these
two marginal distributions is insufficient to recover the tri-variate joint
distribution: age vs. gender vs. disease. For example, while he now
knows (1) how many females have disease A and (2) how many 20-30
years olds have disease A, he cannot determine how many 20-30 years
old females have disease A. This is because the first group also con-
tains other age groups, while the second group also contains males. Or
taken another way, when visualized in a parallel coordinates plot, one
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could not create a set of polylines crossing all three axes: gender, age,
and disease. One could only display disjoint polylines connecting the
two axis pairs.

Andy’s problem is one of reconstructing a 3D array from two 2D
arrays. It is an under-constrained reconstruction problem. Assume we
have 4 age groups, 4 diseases, and 2 genders. Then we have 4×4×2=
32 unknowns but only 4×4+4×2 = 24 knowns.

This setting occurs in the reconstruction of 3D objects from their 2D
projections, such as in computed tomography where we have a set of
2D projections acquired from different viewpoints. In this case often
iterative reconstruction methods are applied. They seek to enforce an
optimization criterion that can be written as follows:

xxx = argminx||WWWxxx− yyy||2 +λ ||5 xxx||

where xxx is the array to be reconstructed, yyy is the marginal data, WWW
is the system matrix that relates xxx and yyy, and λ is a constant. The
first term is the data fidelity term, while the second is the regulariza-
tion term that imposes some domain constraint on the reconstruction,
in this case smoothness. Enforcing smoothness helps to steer the it-
erative reconstruction algorithm away from solutions with noise and
streaks. While they would all fulfill the fidelity term, they are not
plausible since the imaged object did not contain noise and streaks.
This helps in trimming down the search space for the actual solution.
As such, the smoothness constraint represents the domain knowledge.
In Andy’s setting, however, the smoothness term may not be applied
since two of the three dimensions are categorical attributes. In this case
the iterative approach will generate results with large joint distribution
error because of the large and uncertain search space.

We propose interactive solution space analysis as a more accurate
strategy for joint distribution reconstruction. It begins with a space
of all plausible solutions constructed from the marginal distributions –
we use a Monte Carlo based sampling procedure to generate a uniform
distribution of solution space samples. We then refine it automatically
by various forms of domain knowledge available as additional data.
In Andys case, this additional data could be the marginal distributions
of age and gender available per county from online census reports.
Although these data may not exactly match the marginal distributions
of the health data, they can still serve as additional constraints to refine
the solution space.

Now, with this refined solution space in place, we put the human ex-
pert into the loop of the final reconstruction process. For example, the
expert will know that females do not have prostate problems, or that
more female than male babies suffer from fever for a certain disease.
Applying these constraints will further reduce the number of possible
solutions, which in many cases will also affect the probabilities of cer-
tain values in other attributes. All this will likely inspire the expert to
apply further constraints, setting off an iterative refinement process.

To enable an effective discourse with the human expert an equally
effective visual interface and knowledge assimilation algorithm is re-
quired. Our paper describes such a visual analytics framework. At
its heart is a level-of-detail high-dimensional visualization technique
based on an augmented parallel coordinates visualization interface. It
can show a large amount of samples (e.g., 10 million) along with their
uncertainties. Guided by the visualization, the user can then trim down
the solution set by adding constraints interactively. We believe that the
visual analysis of the solution space - the first of its kind to the best of
our knowledge - can provide great value in the reconstruction of joint
distributions in many types of settings and applications.

Our paper is structured as follows. Section 2 reviews related work.
Section 3 defines the problem and gives an overview of our approach.
Section 4 and Section 5 introduce the techniques of solution space con-
struction and reduction. Solution sampling is presented in Section 6.
Our visual exploration framework is described in Section 7, and two
real world cases are used to validate our system in Section 8. Section 9
ends with conclusions and an outlook into future work.

2 RELATED WORK

The reconstruction of numerical field data from their projections has
been researched for decades and many algorithms have been proposed,
such as the algebraic reconstruction technique (ART), simultaneous

ART (SIRT) [6], multiplicative ART (MART) [19], and expectation
maximization (EM) [16], all of which have applications in CT recon-
struction. Most of these algorithms adopt an iterative framework and
allow domain knowledge to be incorporated either using a related joint
distribution as initial value or setting a regularization criterion.

However, these approaches cannot be applied to categorical data.
Unlike medical 3D reconstruction where there are usually many 2D
marginal projections, the marginal information of categorical data is
usually insufficient. For example, a 5D joint distribution can have no
more than 10 2D marginal distributions, which leaves the traditional
iterative methods with an enormous solution space. By running an iter-
ative method multiple times, we can obtain a result set with very small
marginal error but extremely large standard deviation (as shown in Ta-
ble 3). Even domain experts often cannot decide which result is better,
and this reveals the impracticability of these approaches. In addition,
because of the discreteness of categorical data, useful regularization
such as smoothing cannot be employed.

Instead of finding one solution with large joint error, our visual an-
alytics framework allows the user to explore the whole solution space
to find a set of results that not only satisfy the given marginal infor-
mation but also the applied domain knowledge requirements which
render these solutions superior.

2.1 Categorical Data Reconstruction

Some of the iterative reconstruction methods are also used in cate-
gorical datasets, such as census data. Iterative proportional fitting
(IPF) [15] revises a joint distribution which is close to the true so-
lution with a set of marginal distributions. But IPF cannot always find
a preferred solution with insufficient information as it uses a similar
process as MART. Statistical methods use GMM [28] or Bayesian
approaches [10] [26] to estimate the real joint distribution based on
a prior joint distribution from smaller subsets of data. However, the
prior distribution is unavailable in most cases. Some sampling meth-
ods [20] [17] [11] reconstruct contingency tables from the marginal
frequencies by sampling the lattice points in high dimensional space.
These techniques are not scalable to large datasets. Our method, on
the other hand, reduces the solution space of reconstructions, making
it capable of dealing with large datasets. Besides, with the assistance
of iterative visual interactions, the domain expert is asked to focus on
a specific part of the solution set in a large solution space.

To the best of our knowledge, most of the existing approaches are
not able to show the features and the uncertainties of the solutions.
In particular, no interactive approach has been described for exploring
and filtering the solution space interactively with domain knowledge.

2.2 High Dimensional Uncertainty Visualization

Numerous methods [22] have been proposed for the interactive vi-
sual exploration of uncertainties in high dimensional space. Rados et
al. [27] propose quantitative visual interaction methods which reduce
the uncertainties. Torsney-Weir et al. [33] guide the user to find princi-
pal parameters for image segmentation algorithms. Wu et al. [35] visu-
alize subjective opinions with degrees of uncertainty. Sanyal et al. [29]
propose visual exploration tools for numerical weather model ensem-
ble uncertainty. Some approaches are based on parallel coordinates.
Chad et al. [32] allow users to explore hurricane trends with an in-
teractive parallel coordinates plot. Wang et al. [34] create high dimen-
sional data by sketching. Projection-based approaches [9] [30] [12] are
also used for analyzing the uncertainties in high dimensional dataset.
Berger et al. [8] use scatter plots to explore samples with respect to
multi-target values. Correa et al. [13] incorporate uncertainty infor-
mation into PCA projections and k-means clustering.

3 PROBLEM DEFINITION AND APPROACH OVERVIEW

This paper seeks to address the following problem: Given k categori-
cal attributes A1,A2, ...,Ak, and l marginal distributions Y1,Y2, ...,Yl ,
estimate the joint probability p(t) for each tuple t = {A1 = a1,
A2 = a2, ...,Ak = ak}. For instance, we wish to estimate the joint
distribution of three attributes: A1: “Age”, A2: “Gender”, A3:
“Disease”. Suppose Yi is one marginal distribution over A1 and



A2. This can be represented as a vector yyyiii of m1 ×m2 probabili-
ties: yyyiii = {p(A1 = 1,A2 = 1), p(A1 = 1,A2 = 2), ..., p(A1 = m1,A2 =
m2)}. Here p(A1 = a1,A2 = a2) is a marginal probability. Before in-
troducing the theory, Table 1 shows some related notations.

The reconstruction of the joint distribution is accomplished by our
visual analytics approach with the following steps:

Step 1 Construction and reduction of the solution space: The
solution space P of the joint distribution is constructed from a set of
linear equalities and inequalities, which are defined by the marginal
distributions. The dimension of P is reduced by a set of additional
constraints - mainly the domain knowledge provided by the user.

Step 2 Sampling the reduced solution space: The Hit-and-Run
sampler, which is a Markov Chain Monte Carlo method, is used to
uniformly sample the solution space P.

Step 3 Visual exploration and filtering of the solution space: A
set of features are extracted from the samples. These features are vi-
sualized in our augmented parallel coordinates display. The user can
then explore and filter the solution space using a level-of-detail visual
exploration loop.

Typically, the user iteratively loops over step 3 until a satisfactory
solution subset is achieved. See Fig. 3 and Section 7 for a detailed
illustration of this visual exploration loop.

4 CONSTRUCTION OF THE SOLUTION SPACE

This section describes how the solution space of joint distribution is
constructed from a set of linear equalities and inequalities, which are
provided by the known marginal distributions.

4.1 Marginal Frequency Constraint

Each marginal probability in yyyiii(1 ≤ i ≤ l) is the sum of a set of joint
probabilities. For yyyiii, there is a system of linear equations:

m3

∑
i=1

p(A1 = 1,A2 = 1,A3 = i) = p(A1 = 1,A2 = 1)
m3

∑
i=1

p(A1 = 1,A2 = 2,A3 = i) = p(A1 = 1,A2 = 2)

... ...
m3

∑
i=1

p(A1 = 1,A2 = m2,A3 = i) = p(A1 = 1,A2 = m2)

m3

∑
i=1

p(A1 = 2,A2 = 1,A3 = i) = p(A1 = 2,A2 = 1)

... ...
m3

∑
i=1

p(A1 = m1,A2 = m2,A3 = i) = p(A1 = m1,A2 = m2)

(1)

Eq. 1 can be represented in linear matrix form:

WWW iiixxx = yyyiii, (2)

where

xxx = {p(A1 = 1,A2 = 1,A3 = 1), p(A1 = 1,A2 = 1,A3 = 2), ...,

..., p(A1 = m1,A2 = m2,A3 = m3)}

is the joint probability vector to be estimated. WWW iii is a matrix with
m1 ·m2 rows and m1 ·m2 ·m3 columns.

When there are multiple marginal distributions, Eq. 3 represents
these as a set of linear matrix functions. Usually the number of rows
in Eq. 3 is much smaller than the number of columns, rendering the
joint distribution solution as non-unique.

WWW 111 xxx=yyy111
WWW 222 xxx=yyy222

...
WWW lll xxx=yyyl

(3)

Notation Description
Ai The ith attribute in the joint distribution
k The number of attributes
ai The aith level of the ith attribute
mi The number of levels of the ith attribute

p(A1=a1, A2=a2,
..., Ak=ak)

The probability of
{A1 = a1,A2 = a2, ...,Ak = ak}

f (A1=a1, A2=a2,
..., Ak=ak)

The frequency of
{A1 = a1,A2 = a2, ...,Ak = ak}

N The sum of joint frequencies

xxx A vector of all joint probabilities
{p(1,1, ..,1), p(1,1, ..,2), ...p(m1,m2, ..,mk)}

x(i) The ith component of vector xxx
n0 The number of joint probabilities

yyyiii
A vector of the marginal probabilities

of the ith marginal distribution.

l The number of known marginal
distributions

n The number of joint probabilities to be
estimated after reduction

P⊆ Rn The polytope of the solution space in Rn

p ∈ P A point in polytope P

Table 1. Mathematical notations

4.2 Uniting Multiple Marginal Distributions
Since the marginal distributions may originate from different data
sources, inconsistent granularities of marginal information should be
considered when unifying them into a single constraint framework.
For example, if the “Age” attribute is at a finer granularity than the
granularity we design for, its levels “0-5” and “5-10” could be merged
into a coarser level “0-10”; and vice versa for the coarse granularity
case. In this way, different granularities constraints are incorporated
in Eq. 3.

Different sources may also cause marginal inconsistencies. For ex-
ample, the marginal distribution of the general census data may be in-
consistent with the patient data because the former reflects the county
level population and the latter reflects the hospital level population.
There are obviously some dependencies but the age-gender fractions
are likely not identical. Even marginal distributions from the same
sources can be slightly different due to some errors. Eq. 3 may have
no solution if the equations of different marginal probabilities conflict.

The inconsistencies are resolved by adding an error tolerance vector
εεε iii (1≤ i≤ l) to each marginal distribution, as shown in Eq. 4.

−εεε111≤WWW 111xxx−yyy111≤εεε111
−εεε222≤WWW 222xxx−yyy222≤εεε222

...
−εεε lll≤WWW lllxxx−yyylll≤εεε lll

(4)

where εεε iii is defined as a nonnegative constant vector, which is propor-
tional to the marginal distributions yyyiii or set by the user. Particularly,
when all marginal distributions match perfectly, εεε iii can be set as a zero
vector, and Eq. 4 will degenerate to Eq. 3.

5 DIMENSION REDUCTION OF THE SOLUTION SPACE

In the following, we distinguish “variable” from “attribute”. An at-
tribute Ai is a singular characteristic of an entity (e.g., A1: “Age”, A2:
“Gender”, and A3: “Disease”). A variable x(i), on the other hand, rep-
resents a joint probability, such as p({ “0-17”, “Male”, “Fever”}).

Eq. 4 defines a closed convex solution polytope in high dimensional
space Rn0 , where n0 equals the number of variables to be estimated.
This is a massive space where even a small number k of attributes can

already generate a huge number of variables n0 =
k
∏
i=1

mi. Likewise, the

number of samples needed to probe it also grows exponentially with
the dimensionality k. In the following, we propose several reduction
techniques that can reduce the number of variables to be estimated.



5.1 Lower Bound and Upper Bound Constraints
Since each joint probability is nonnegative and it is less than or equal
to any of its corresponding marginal probabilities, there exists a lower
bound b(i)l = 0 and upper bound b(i)u for x(i), where

0≤ x(i) ≤ b(i)u .

Furthermore, a marginal probability of 0 renders all of the corre-
sponding joint probabilities to 0. For instance, if the marginal proba-
bility of {A2 =“male”, A3 = “pregnancy”} is zero, then all of the joint
probabilities of tuples with A2 = “male”, A3 = “pregnancy” have to be
zero as well. This can help to reduce a large number of independent
variables because not all combinations are valid in some datasets.

5.2 Domain Knowledge Constraints
Domain knowledge adds additional constraints. In the reduction step
only linear constraints are employed since they will keep the solution
space convex. Non-linear constraints can be applied in form of fea-
tures in the later interactive part (See Section 7.1).

5.2.1 Moments
Covariance and expectation are the two main forms of domain knowl-
edge constraints. Covariance information describes the relations of
attributes. For example, if an attribute A1 is independent of the other
attributes, then the covariance is 0 and the corresponding constraint
E(A1, ...,Al)− E(A1)E(A2, ...,Al) = 0 could be employed. Condi-
tional expectation such as E(A1|A2) can be considered a constraint as
well, if the marginal distribution of A1 and A2 is not provided. These
two kinds of constraints are represented in a linear matrix form (Eq. 5).

WWW 000xxx = ddd000 (5)

5.2.2 Range of Variables
Besides the upper bound and lower bound found by the nonnegative
property of distributions, a more restricted range could be provided
with domain knowledge. For example, the user can set the probability
of the tuple t = { “female”, “0-2”, “fever” } to be larger than 0.3. To-
gether with the upper bound and lower bound described in Section 5.1,
it can be summarized as:

bbblll ≤ xxx≤ bbbuuu (6)

If b(i)l = b(i)u , the value of x(i) will be fixed and it can be removed.

5.3 Integer Constraints
For categorical datasets, marginal information is usually presented
as frequencies, we can estimate the joint frequencies f (t) and then
calculate the joint probabilities following p(t) = f (t)

N , where N is the
sum of joint frequencies. In this case, each element in xxx is a integer
joint frequency, the solution sets will consist of all the integer points
in the solution space. This will reduce the infinite solution set to a
finite number of solutions. Moreover, since x(i) has to be integer, we
can check the maximum value x(i)max and minimum value x(i)min of x(i). If

there is only one integer value x(i)integer between x(i)max and x(i)min, x(i) can

only be x(i)integer. Therefore, the solution space will be reduced further.

Eq. 4, Eq. 5, and Eq. 6 define a closed convex solution space poly-
tope in Rn0 and the proposed dimension reduction techniques are
adopted to reduce the dimensions (remove the variables with fixed
value). Following this way, the number of variables in the joint fre-
quencies is decreased to n, which can be much smaller than n0 in some
cases. The reduced solution space is then a polytope P⊆ Rn.

6 SAMPLING OF HIGH DIMENSIONAL SOLUTION SPACE

For the solution space polytope P ⊆ Rn, each point p ∈ P is a recon-
struction solution. Features such as the shape of the polytope can be
learned by uniformly sampling points in it. We use the Markov Chain
Monte Carlo based Hit-and-Run (HR) sampler [31] which is one of
the most efficient methods for sampling in a closed convex polytope.

6.1 Hit-and-Run Sampler
The standard HR sampler algorithm is presented as follows:

Step 1: Let pi ∈ P be the point in the ith iteration (Fig. 2 (a)).
Step 2: Uniformly generate a random direction di ∈ Rn, i.e. di is

uniformly distributed in the n dimensional hypersphere (Fig. 2 (b)).
Step 3: Find the chord L inside P through pi along the directions di

and -di. So any point p on L can be represented as P∩{p|p= pi+λdi}
(Fig. 2 (c)).

Step 4: Uniformly sample a point pi+1 on L as the next point, which
is used as the next starting point (Fig. 2 (d)).

Step 5: Repeat Step 1 - 4 for s steps until the sampling distribution
becomes stationary.

P

pi

P

pi
di

P

pi

L

P

pi

L

pi+1

(a) (b) (c) (d)

Fig. 2. We use an example in R2 to illustrate the Hit-and-Run (HR)
algorithm. The polygon represents the solution space, and each point
in the polygon is a solution for the reconstruction. (a) A point pi ∈ P in ith
iteration. (b) A direction di is generated uniformly. (c) Following direction
di, find the chord L through p0 inside P. (d) Select pi+1 uniformly on L
as the next point.

The HR sampler is a MCMC chain which reaches the stationary dis-
tribution (i.e. generate a uniformly distributed sample) in polynomial
time [23]. To obtain c uniformly distributed samples, c chains of HR
should be employed. Each of these chains iterates for at least s steps
and the last point of each chain is kept as one sample. With the num-
ber of dimensions n increasing, s will become extremely large for the
MCMC chain to reach a stationary distribution. Hence acceleration
methods such as starting point generation are used to cut down s.

6.2 Acceleration Methods
HR converges rapidly from any interior point of a convex body [24],
while it is slow when the initial point of iteration is on the border or in
a corner of P. So we propose a strategy to generate an interior point as
the starting point to avoid this situation.

Firstly, np random points on the boundary of P are generated and
added to a point set S. Each point p ∈ S is generated by a linear op-
timization (Eq. 7) with a random objective function (i.e., ccc and ddd are
selected randomly).

min cccT xxx−ddd
s.t. xxx ∈ P, P⊆ Rn (7)

Then the center point of S is defined as pc = 1
np

∑ p, which is used
as the starting point. pc has a very low probability on the border
since points in S can be in different regions of P. In addition, since
pc does not have to be the exact center of P, a small number np of
points is sufficient. Hence the cost of the start point generation pro-
cess is low. Other acceleration methods such as artificial centering HR
strategy [21] for direction selection can be used as well.

6.3 Lattice Point Generation
If the joint frequencies are estimated, the solution will be integer
points, i.e. lattice points in P. Existing HR-based lattice sampling
methods [7] are only applicable for hyper-rectangles. Other [20] meth-
ods need a larger convergence time than HR. Here we propose a simple
and fast rounding strategy for generating a lattice point based on a ran-
dom point p∈ P from the original HR sampler. The result will be a set
of nearly uniformly distributed lattice points in P.

Suppose p is in a unit hypercube C ⊆Rn, whose vertices are lattice
points. A straightforward way is finding the nearest vertex pl of p by



rounding. However, pl can be outside of P when p is near the border.
And since a C has 2n vertices, checking all its vertices is also imprac-
tical. Eq. 8 is used for finding a lattice point that locates between p
and pc. Since the solution space p is convex, Eq. 8 makes sure pl ∈ P.

p(i)l =

{
bp(i)c, if p(i) ≥ p(i)c

dp(i)e, otherwise
(8)

Here b•c and d•e are floor and ceiling functions. p(i)l , p(i), p(i)c are the
ith component of pl , p, and pc, separately. The complexity of HR will
not increase since the rounding process finishes in O(n) time.

6.4 Stopping Criterion
Although HR converges in polynomial time, the number of iterations
is still high when n is large. Different convergence diagnostic meth-
ods [14] for testing whether the chains are converged can help to stop
the iteration in a timely manner. We use Gelman and Rubin’s con-
vergence diagnostic [18] as the HR stopping criterion. A R̂ value for
all of the chains is computed to judge whether the sampling chains
reach stationary distributions. R̂ is mainly dominated by the ratio of
V̂ and W , where V̂ is the variance of the current last points in the c
parallel chains and W is the average of the within-chain variance. A
chain’s within-chain variance is the variance of all points it has gener-
ated so far. If R̂ is around 1, the chains are considered converged. In
this case each chain has sampled the space sufficiently and has not be-
come stuck in a local area. In practice a value of 1.2 is satisfactory for
most problems [18]. The R̂ value is tracked during the sampling and
once it is below a threshold (e.g., 1.2), we stop the sampling chains.
Section 8.4 illustrates the sampling mechanism with two case studies.

7 VISUAL EXPLORATION OF SOLUTION SPACE

The large solution space is visualized with high dimensional visual-
ization techniques enabling the user to interactively explore interesting
solution regions at different levels. Our first approach is shown with
grey edges in Fig. 3. HR is used to sample the solution space online
and update the samples when the user adds new a constraint (Fig. 3
(a)). The resulting sample set can be visualized via a parallel coordi-
nates interface (Fig. 3 (b)), where the user can interactively trim down
the solution space. After the filtering (Fig. 3 (c)), the system increases
the sampling density in the reduced solution space to allow for explo-
ration in details. The above process is repeated until the user identifies
a satisfactory subset of solutions.

Solution Space 
Interactive

Filtering

Adding Constraints

Large Sample 

Set S0 in the 

Database

Visualization

Samping

Query Query Result

Set S1

Subset S2 for 

Visualization 

Sampling

Adding Constraints

Sampling

(a) (b) (c)

(d) (e) (f)

A

B

Fig. 3. Strategies for interactive solution space refinement Loop A (grey
edges). Samples from (a) the solution space are (b) visualized and ex-
plored interactively. (c) When the user sets constraints, more samples
are generated in the reduced space. By repeating this process, the so-
lution space is trimmed down. Loop B (orange edges). The steps in
the orange boxes are added to save the time of MCMC sampling. (d)
Large amounts of samples S0 are generated and stored in the database
in advance. (e) Instead of sampling the solution space, we query the
database to get a subset of the samples S1 which meet the user’s con-
straints. (f) A smaller set S2 is sampled from S1 for visual exploration
since the capacity of the visualization is limited.

This approach works well with small solution spaces (e.g., n = 50).
However, when the dimensionality of the solution space is large,

the sampling process converges very slowly. For example, when
n = 4,505, each chain needs to iterate for more than 52,000 steps to
converge (as shown in Section 8.4). This requires the user to wait for
about 10 minutes, which is prohibitively long.

To overcome this problem, we design Loop B (orange edges). Here
a large set of samples S0 (e.g., 10M samples) is generated and stored
in a database beforehand (Fig. 3 (d)). Then, when the user sets con-
straints, a subset of S1 ∈ S0 which satisfies the user’s constraints is
retrieved from the database (Fig. 3 (e)). However, the number of sam-
ples of S1 may still be too large (e.g., 10,000) for a visually manage-
able parallel coordinates plot (or any other such display). Instead, a
smaller set S2 (e.g., 2,000 samples) is generated by sampling from S1
uniformly (Fig. 3 (f)) for visualization. At the same time, the uncer-
tainties of the samples in S1 (e.g., their ranges or distribution vari-
ances) are also shown to the user, providing more guidance for the
exploration. S and S1 are updated whenever a new constraint is added.
After multiple iterations of this visual exploration activity, the result
will be a smaller sample set S1 whose uncertainty is also small.

7.1 Defining Features of Solution Space
When the dimensionality of the solution space n is large (e.g., n =
4,000), there will be too many axes in the parallel coordinates display.
A way to solve this problem is to select or extract a small number (e.g.,
n6 10) of features and use these in place of the native attributes. How-
ever, the extracted features of most dimension reduction algorithms
(e.g., PCA or t-SNE [25]) are too complex to be interpreted, making it
hard for the user to set meaningful constraints on them.

A proper feature is expected to satisfy the following principles: 1).
Explainability. Using a representative variable as a feature is preferred.
2). Relevance to the user’s task. Some features may not be able to align
with the user’s existing questions. For example, a doctor who studies
the distribution of patients in New York City may not care about other
counties in the dataset. 3). Efficiency on reducing the solution space.
Adding constraints to features with high uncertainties can filter the
solution space to a large extent.

According to the above principles, different types of features are
computed automatically or set by the user manually.

• Variables with high uncertainties. Variables whose ranges or en-
tropies are larger than a given threshold are selected.

• Sum or expectation of a group of variables. These linear features
allow users to set constraints interactively based on provided vi-
sual hints (e.g., whiskers of a boxplot).

• Ratio or correlation of variables. Users are typically more cog-
nizant of the ratio of two variables than their exact difference.
For example, the user may not know the absolute difference of
the populations of females and males in New York, while he/she
know that ratio is about 1.0. Many other relations can also be
applied (e.g., spurious correlation).

Clusters of samples can also serve as features. However, since the
samples are continuously and uniformly distributed in the polytope P,
it is difficult to locate clusters in practice.

The predefined features are shown in the feature view (Fig. 1 (a)).
The user is also allowed to add new features interactively via the fea-
ture definition view (See Fig. 6 (a) for the commuter dataset). If the
amount of features exceeds the capacity of the visualization (e.g., lim-
its on the number of display axes), the user can select a part of them
from the feature view (purple features in Fig. 1 (a)) for visualization.

7.2 Augmented Parallel Coordinates Visualization
Initially, we use standard parallel coordinates to visualize samples in
S2. Each polyline represents a sample and each axis is a feature (Fig. 4
(a)). Although this configuration is able to visualize the general pat-
tern of polylines crossing the axes, interpreting a feature’s distribution
from the density of the polylines can be misleading. Moreover, no in-
formation about the changes of a feature’s distribution is provided after
filtering. For example, when the user decreases the upper bound of F8
in Fig. 4 (a), it is difficult to know whether there are changes in both
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Fig. 4. (a) Standard parallel coordinates. (b) Our augmented parallel coordinates visualize the distributions and the changes of features. In the
health data case, when the user reduces the range of the first axis (the sum of females under 17 years old who have “Alcohol/Drug Use”), the
distributions of F9, F10, and F11 change accordingly, and their uncertainties decrease. (c) The axes of F8 to F11 are zoomed in to fit the reduced
ranges. More samples in the reduced solution space are added to show more details.

mean value and variance of F11’s distribution, and how they change
(4th axis in Fig. 4 (a)). Information of changes, however, is critical for
understanding the effects of constraints on reducing the uncertainties
of the features.

We hence modify the parallel coordinates to encode the feature
distribution. One natural idea is to add visual representations to the
axis [32], which can be done by changing each axis line to a bar (Fig. 5
(a)). A box plot is placed inside (Fig. 5 (b)) to show the quartiles of
the feature’s distribution in S2. The band in the middle of the box is
the median, and the bottom and top are the first and third quartiles.
The ends of the whiskers can encode the bilateral standard deviation,
or the 10th and 90th percentile, or others. Similar to scale markers on
standard parallel coordinates (Fig. 4 (a)), the box plot provides helpful
hints for filtering the axis range. The user can also optionally hide the
labels of quartile values if their exact value is not important. If two la-
bels overlap, one of them will be hidden to avoid visual clutter. Since
comparing the box plot against the PDF may assist understanding, a
1D heat map is also provided to show the feature’s PDF.

The user can set a constraint by filtering the feature’s range using
a cursor (Fig. 5 (c)). Polylines whose feature values are out of range
will fade out. Since changes of each feature’s distribution or range can
also be critical to provide exploration guidance, a few auxiliary visu-
alizations are available. A line chart shows the change of a feature’s
PDF in S1 (Fig. 5 (d)). The purple and orange lines represent the PDFs
before and after the user’s last filtering. A grey line shows the PDF of a
feature in the original entire solution space. The previous distributions
can be hidden (i.e., purple and grey lines) (Fig. 1 (e)). A window on a
bar (Fig. 5 (e)) indicates the current value range of a feature. Via this
line chart and window range bar the user can obtain valuable visual
feedback on the effect the applied constraint has with regards to the
feature’s distribution. For example, when the user decreases the upper
bound of the first axis (F8) in Fig. 4 (b), the distribution of F9 (orange
line, second line chart in Fig. 4 (b)) is skewed to the left compared to
its previous distribution (purple line, second line chart in Fig. 4 (b)).
Conversely, the line chart of F10 has the opposite skewness change.
To indicate uncertainty, the entropy value of the current PDF and its
change after filtering are also shown (Fig. 5 (f)).

7.3 Level-of-detail Visual Exploration
The user can zoom in and add more samples from the reduced solution
space to explore the zoomed region in details. This is done by updating

(d) PDFs of a feature

(b) A box plot

(a) An axis bar

of a feature 

(c) Cursors for

filtering

(e) A bar with a

range window

 of a feature

PDF in the solution space 
before last filtering (optional)

PDF in the current solution
space after filtering

(f) Entropy of PDF

and its change

PDF in the original entire 
solution space (optional) 

Fig. 5. Our augmented parallel coordinates for visualizing distribution
and change of each axis. (a) Each axis bar incorporates a heat map
which represents a feature. (b) The box plot of each bar shows the
distribution of a feature. (c) The user can filter the range via cursors
provided at each axis. (d) The current and previous probability density
functions (PDFs) of features are visualized by orange, purple, and grey
lines. (e) A window shows the value range of a feature after filtering. (f)
The change of entropy and the current entropy are also indicated.

S1 with the new constraints and sampling S2 uniformly from S1. Each
parallel coordinate axis will be scaled appropriately to fit the reduced
range. The box plots and heat maps are also changed accordingly.
For example, after the user narrows the range of the first axis (F8) in
Fig. 4 (b), the axes scale to fit this new range and the covered range is
enriched with samples from the reduced solution space(Fig. 4 (c)).

By repeatedly adding constraints, the solution space will be contin-
ually reduced. A solution set is satisfied if the standard deviation of S1
is smaller than a threshold and/or the number of solutions remaining
in S1 is less than a given number (e.g., 10,000).

8 CASE STUDIES

We conducted two case studies to show the usability of our system.

8.1 Participants and Procedure



We recruited two volunteers who were interested in reconstructing
their data. The first volunteer was a graduate student from our univer-
sity’s public health department. He had been working with the public
online New York Health Data query system [4] to find relations be-
tween sociodemographics and diseases in New York State. However,
the query system only provides partial information, so our system pre-
sented him an opportunity to extract a more complete view. The other
volunteer was a computer science student with a research focus on
urban computing. He was interested in the relations of the departure
times to work and the different modes of transportation. He wanted to
learn it by reconstructing a joint distribution of commuter information
in US from multiple tables of partial information. Both of our users
were not experts in visualization and had basic statistical knowledge.

Before our study, we had several discussions with each user to learn
about the attributes of the joint distribution they wanted to recover. To-
gether, we searched online for additional data to supplement the pri-
mary sources. In discussions, we identified the constraints they wanted
to set. After the solution space was constructed and sampled, we had
another discussion to predefine a set of interesting features of the solu-
tion space. Each case study started with a 25-minute demo to introduce
our approach. We then asked each person to use the system, followed
by an interview to gather evaluations and subjective feedback.

Health Case
Attributes of joint distribution reconstruction Number of levels

A1: “County (C)” m1 = 9
A2: “Age Group (A)” m2 = 5

A3: “Major Diagnostic Category (M)” m3 = 26
A4: “Race (R)” m4 = 4

A5: “Service Category (S)” m5 = 6
A6: “Sex (G)” m6 = 3

Commuter Case
Attributes of joint distribution reconstruction Number of levels

A1: “Age Group (A)” m1 = 4
A2: “Gender (G)” m2 = 2

A3: “Occupation Category (O)” m3 = 6
A4: “Departure Time Period (D)” m4 = 8
A5: “Mode of Transportation (T)” m5 = 5

Table 2. The attributes and the levels our users sought to reconstruct,
for both the health and the commuter case.

8.2 Case Study 1: Public Health Data
The first user aimed to reconstruct the joint frequencies of six attributes
(see Table 2) from the New York Health Data query system [4]. Ten
3D marginal frequencies were returned by the query system: C-A-M,
C-A-R, C-A-S, C-A-G, C-M-R, C-M-S, C-M-G, C-R-S, C-R-G, C-S-
G. A census dataset [5] was identified and served as supplementary
data. It contained a 4D marginal distribution of C-A-S-G.

8.2.1 Construction and Sampling of the Solution Space
“Age Group” and “Race” in the census dataset had smaller granular-
ities and we aggregated them to match the granularity of the query
data. The marginal distributions from these two sources were not con-
sistent since the census data provides general demographic informa-
tion, which includes the patients but also other state residents. The
tolerance for marginal error of the census data was set to 5% in Eq. 4.

The total number of variables to be estimated was n0 =
6
∏
i=1

mi =

84,240. But not all of the combinations of attribute levels were mean-
ingful. For example, no person matched the condition “MDC” =
“Newborn”, “Age Group” = “70+”. Also, many variables could be
removed by checking their lower and upper bounds (Section 5.1). The
assumption that both “Race” and “County” were independent with
other variables was added by the user as a constraint (Section 5.2.1).
Since the patient number is an integer, the solution space could be
further reduced using the method described in Section 5.3. After all
constraints were set, n = 4,505 variables remained post-reduction –

only about 5% of the original number. 10 million samples from the
solution space P⊆ Rn were generated and stored in the database.

Then we identified some features of the solution sets. Variables
with large ranges were extracted and most of them were related
to “Newborn” or “Alcohol/Drug Use” in “Major Diagnostic Cate-
gory (M)”, such as F4 = {“NYC”, “0-17”, “Newborn”, “White”,
“Newborn”, “Male”}, F5 = {“NYC”, “0-17”, “Newborn”, “White”,
“Newborn”, “Female”}, F9 = {“NYC”, “30-49”, “Alcohol/Drug Use”,
“White”, “Psychiatric”, “Male”}, F10 = {“NYC”, “50-69”, “Alco-
hol/Drug Use”, “White”, “Psychiatric”, “Male”}. The user then went
on and defined several additional features related to this initial fea-
ture set. The new features included the sum of females under age 17
with “Alcohol/Drug Use” (F3), and the average ratio of female-to-male
newborn babies in different counties (F8).

8.2.2 Visual Exploration
The user selected 12 features from the predefined features in the fea-
ture view (Fig. 1 (a)) and visualized them with the augmented parallel
coordinates interface (Fig. 1 (b)). He found that the initial standard
deviation of the solution space was about 2.1× 105, which was sim-
ilar to the results obtained by the traditional iterative approaches (see
Table 3). The user commented that according to his knowledge, few
females under “0-17” engage in “Alcohol/Drug Use”. So he lowered
the upper bound of F8 (see first axis in Fig. 4 (b)) to the 10th percentile
(bottom whisker of the box plot). After the filtering most of the poly-
lines with high values in F9 and low values in F10 faded out. The user
then found that the original PDFs of F9 and F10 were flat, indicating
high uncertainty (purple lines, line charts of F9 and F10 in Fig. 4 (b)).
After filtering, the distribution of F9 skewed to the left, while F10 had
an opposite pattern in its distribution (orange lines, line charts of F9
and F10 in Fig. 4 (b)). This was an indication that a preferred solution
might have a low F9 value and a high F10 value. The user then zoomed
into the axes, and added more samples from the reduced solution space
to the parallel coordinates (Fig. 4 (c)).

The user noticed that the ranges of the features which related to
“Newborn” were still high, such as the number of white male and fe-
male babies (F4 and F5 in Fig. 1). From the box plots he observed
that the 80% confidence interval (between the box plot’s top/bottom
whiskers) of F4 was above 20,000, while the 80% confidence interval
of F5 was below 20,000. The user found it difficult to reduce the axes
ranges directly since he did not know the exact number of newborn
babies in NYC. He decided to use the gender ratio of newborn babies
(F3 in Fig. 1) instead. He said that the numbers of females and males
were about the same, so he shrank the ratio range to [0.9,1.1] (Fig. 1
(c)). The value range and distribution of F4 were skewed to low val-
ues, and those of F5 changed in the opposite way (orange line, range
window in Fig. 1 (d)). The user estimated from the changes in the vi-
sualization that their expectations of distributions had moved closer to
each other. He concluded that with the set ratio, the samples from the
preferred solution space had smaller differences in the number of male
and female babies.

After the exploration, the solutions in the remaining solution set
S1 met all of the marginal frequencies and domain knowledge. The
standard deviation of S1 was about 7.3×103 (See top of Fig. 1), which
was only 3% of the standard deviation of the original solution space.
A final solution could then either be a random choice from this tight
solution set or the mean of the solutions.

8.3 Case Study 2: Commuter Case
Our second user found the US Commuting Dataset [3] online. He was
interested in the joint distribution of the five attributes in the dataset
(Table 2). The dataset provides six 2D marginal distributions: A-D,
G-D, O-D, A-T, G-T, and O-T. Another census data [1] was found to
provide a demographic distribution of “Age Group (A)” and “Gender
(G)”. Especially, the user was interested in the distribution of “Depar-
ture Time Period (D)” and “Mode of Transportation (T)”.

8.3.1 Construction and Sampling of the Solution Space
The marginal distribution errors given in the dataset were used as the
tolerance of errors in Eq. 4. The number of unknown variables was



n0 =
5
∏
i=1

mi = 1920. After checking the lower and upper bounds of

the variables, n = 1800 variables remained (Section 5.1). 10 million
samples were generated and stored.

Variables with high uncertainty were computed and used as fea-
tures, such as the probabilities of carpooling in different time periods
(F5 to F7). After learning the user’s interests in “Departure Time Pe-
riod (D)” and “Mode of Transportation (T )”, we defined a set of related
features, such as expectation of D for each level in T (F1 to F4), and
Pearson’s correlation of D and T (F8).

8.3.2 Visual Exploration
At the beginning of the study, the user added the ratios of female to
male in different occupations (F9 to F12) using the feature definition
panel (Fig. 6 (a)). He explained that he was also interested in them
but they were not provided in the marginal distributions. Then a sub-
set of features was selected (Fig. 6 (b)) and visualized with the aug-
mented parallel coordinates. Because farming and constructing jobs
are mainly done by men, the user lowered the ratio of female to male
in “Farming” and “Constructing”. This operation also shrank the range
of F8 to [−0.01,0.0] (Fig. 6 (c)), which indicated there might be a sub-
tle relationship between departure time and transportation modes.

F8 F9 F10 F11 F12
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(c)
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F4
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F6
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Fig. 6. (a) The user added new features with the feature definition view.
(b) A subset of features (highlighted in purple) was selected, and visu-
alized in the parallel coordinates. (c) The user adjusted the ratios of
female to male in different occupations, such as “Constructing” (F10),
“Farming” (F11), and “Sales” (F12). The distribution of Pearson’s correla-
tions (F8) between “Departure Time Period” and “Modes of Transporta-
tion” indicated subtle relationship of them in the reduced solution space.

Then the user checked the mean departure time of different trans-
portation modes (F1 to F4 in Fig. 7). The average departure time of
walk was later than other transportation modes. He observed that
the distribution of F4 was flat, which means the expected departure
time for public transportation varied in a large range (purple line, line
chart of F4 in Fig. 7). The user thought the peak of public transporta-
tion usually happens in rush hours, so he reduced the range to about
[7 : 00,9 : 00]. He then zoomed in the axes and updated the samples in
the parallel coordinates for a detailed exploration.

The expectations of departure time in different transportation modes
changed accordingly. For example, the user checked the probabilities
of carpooling in different time periods in the morning: 12am to 6am,
6am to 10am, and 10am to 12pm (F5 to F7 in Fig. 7). The line charts
of F5 to F8 showed that their distributions were skewed into different
directions (See dashed box in Fig. 7). From the boxplot of F5, the user

observed that the 80% confidence interval of “probability of carpool-
ing from 12am to 6am” moved from a lower region [2.69%,5.78%]
to a higher region [3.36%,5.87%]. This indicated the solutions in the
preferred region have higher probabilities in earlier carpooling. Then
user did a survey online and found a related report [2]. He concluded
that this showed the carpooling pattern of people from the same house-
hold. For example, the married couples depart early to drop off a child
at school or an old person at an older adult center on their way to work.
This verified the user’s result solutions as well as his constraints.

Most of the PDFs in Fig. 7 had spike shapes after filtering. This
indicated less uncertainties of the features’ distributions in the reduced
solution set than those in the original set. The standard deviation was
reduced from 2.28 to 0.89 after the exploration. With more domain
knowledge, the user could trim down the solution space further.

8.4 Quantitative Analysis

For the solution space reduction method in Section 5, it is more ef-
ficient when the marginal distributions are sparse (i.e. there are a lot
of zeros). In this case, the joint probabilities to be estimated are also
sparse. About 90% variables are reduced in the health case, while only
a small number of variables are removed in the commuter case. Our
method is also effective in frequency reconstruction, since the integer
reduction generates a much smaller and limited solution space.

For the sampling, the R̂ values of the HR chains are tracked. Once
the R̂ of a iteration is below 1.2 (Fig. 8), the HR chains are regarded
as converged. The number of convergence iterations are about 52,000
and 14,000 for the health case and the commuter case respectively
(Fig. 8). Although the acceleration methods are applied, the converge
iterations for both cases are still large. As a result, our strategy of
generating and storing the samples in advance (Orange lines in Fig. 3)
is necessary.

The scalability of our method is mainly decided by the performance
of the HR sampler, whose complexity is polynomial [23]. However,
the variables to be estimated grows exponentially with the number of
attributes (e.g., 10 attributes may make n = 1010), which is too large
even for a polynomial sampler.

We test the traditional iterative methods and compare them with our
approach in both cases (Table 3). For each iterative method, we test
10,000 trials with random initial values. All methods have small av-
erage marginal errors, which means their solutions are consistent with
the given marginal distributions. Here the marginal error is the sum of
the Euclidean distances between a result’s marginal distributions and
the given marginal distributions (i.e., NY Health Query System [4] in
the health case and US Commuting Dataset [3] in the commuter case).
The standard deviation of the solution set of each iterative method is
large while that of our approach is small. This indicates that our ap-
proach reduces the uncertainty in the solution sets largely.

8.5 Feedback and Discussion

The user in the health case was satisfied with the result of our ap-
proach. He said, “The box plot provides markers of important po-
sitions on the axis, which gives me guidance for filtering.” He told
us that the line charts allowed him to compare different distributions.
Especially, he thought that the comparison between the orange and
purple lines (the distributions after and before each filtering operation)
was critical for knowing the change of the solution space caused by the
filtering operation. He also mentioned that the level-of-detail parallel
coordinates allowed him to view more samples in the preferred region.

The user in the commuter case thought the exploration provided
him insights into the relations of departure time and transportation
modes. He commented, “The boxplot and distribution chart are fre-
quently used in the statistics field, so they are easy to follow.” He sug-
gested that the system should give some filtering recommendations
during the exploration. He agreed that returning a set of plausible so-
lutions was better than finding only one result, whose uncertainty is
unknown.

After filtering, the solution space may be narrow and the number of
samples in S1 may be small. In this case, loop A (Fig. 3) can be used
if the following two conditions are satisfied: 1. The solution space
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Fig. 7. (a) In the commuter case, the user set the expectation of departure time of public transportation (F4) to around 7am to 9am (rush hours).
This changed the pattern of the polylines across F5 to F7, which represented the probabilities of carpooling in different departure time periods. (b)
As seen from the line charts in the dashed box, the distributions of F5 to F7 were skewed to different directions. The probability of carpooling in
early mornings increased, and the chance of carpooling in late mornings decreased. So in the solution space, solutions with high probabilities of
carpooling in earlier morning were more preferable. This case reflected the behavior of workers in the same family.
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Fig. 8. R̂ values of the HR chains at different iteration steps in the two
cases. R̂ < 1.2 indicates convergence, which is around 52,000 iterations
in the health case, and 14,000 in the commuter case, respectively.

remains convex (non-linear features may make the solution space non-
convex). 2. The convergence iteration steps of HR sampling are less
than a threshold (e.g., 1,000), which means sampling online is fast.

In some confidential datasets, such as patient records from a hos-
pital, it is necessary to guarantee that marginal information would not
reveal sensitive information. Given this situation, analysis of joint dis-
tribution reconstruction may also help to understand how to protect
sensitive information. Our method may assist in testing whether the
data can be reconstructed from marginal distributions.

9 CONCLUSION

We described a visual analytics approach to reconstruct joint distri-
butions of data from multiple marginal distributions, allowing experts
to inject domain knowledge to solve this otherwise ill-posed problem.
Using a level-of-detail high dimensional visualization technique, the
user can then trim down the solution set by adding constraints interac-
tively to arrive a vastly reduced solution set.

While our approach is effective, there are a few aspects to be im-

Health Case
Methods Iterations Standard Deviation Marginal Error

ART 20 5.25×105 10−12

MART 24 3.40×105 10−13

SIRT 91 3.79×105 22.7
EM 90 3.70×105 27.4

This paper - 7.30×103 10−13

Commuter Case
Methods Iterations Standard Deviation Marginal Error

ART 12 3.15 10−17

MART 14 2.85 10−17

SIRT 39 2.60 6.31×10−4

EM 40 2.20 2.02×10−4

This paper - 0.89 10−17

Table 3. For our method and the traditional iterative methods, we test
the average iterations, the average standard deviations in the result sets,
and the average marginal error of the results. The high standard devi-
ations of iterative methods indicate the uncertainties and joint errors of
their solutions are high. (The sum of frequencies in the health case is
2,428,667, and the sum of probabilities in the commuter case is 1.0.)

proved further. Firstly, other high dimensional visualization methods
such as scatter plot or 2D projection could be added to visualize feature
correlations and the preferred region in the solution space. Secondly,
an effective method is needed to find if there is a model for a formal
expression of the joint distribution. Finally, to test our method with
actual data, we are applying for the complete NY health dataset.
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