
1 
 

Wei Xu and Klaus Mueller are with the Computer Science Department, 
Stony Brook University, Stony Brook, NY 11790 USA (phone: 
631-632-1524; e-mail: {wxu, mueller}@cs.sunysb.edu).  Funding was 
provided by NSF CCF-0702699, CCF-0621463 and NIH EB004099-01. 

 

Abstract—Iterative reconstruction algorithms with regularization 
can produce high-quality reconstructions from few views and even 
in the presence of significant noise. In the research presented here 
we focus on the particularities associated with the GPU 
acceleration of these. Specifically, we not only focus on 
reconstruction speed but also on reconstruction quality which 
reveals a number of important interaction effects and trade-offs.  
To obtain this insight, we use exhaustive benchmark tests to 
determine the optimal settings of the various parameters 
associated with the algorithm, here OS-SIRT. The same mindset 
we also apply in the selection of the most GPU-amenable 
regularization mechanism, where we compare the traditionally 
used TVM filter with the less frequently used bilateral filter, which 
we find to be a viable and cost-effective means for regularization.  

Index Terms—Iterative Reconstruction, Ordered Subsets, 
Computed Tomography, GPU, Bilateral Filter, Total Variation 
Minimization 

I. INTRODUCTION 
Iterative reconstruction methods have gathered significant 
interest in recent years since they can cope well with limited 
projection sets and noisy data. These scenarios occur most often 
in low-dose CT, where one seeks to either limit the dose per 
projection, or the number of projections overall, or both.  Low 
dose CT has been a response to growing concern about the high 
radiation dose delivered to a patient in multi-slice X-ray CT, but 
the noise associated with reduced radiation dose decreases SNR 
and the few-view scenario can lead to prominent streak artifacts 
in the reconstruction. Both can obliterate the features of interest 
and generally make the CT image hard to read. While exact or 
approximate exact CT reconstruction methods do not work well 
under these conditions, iterative methods can produce 
acceptable results. These methods, however, suffer from high 
computational effort, which has prevented a deployment in 
routine clinical applications so far as these computational 
demands cannot be met by reasonable CPU-based platforms. 

High-performance graphics chips (GPUs) are poised to 
provide a breakthrough in this problem. In recent work, we have 
shown that with just a single such board one can filter and 
back-project cone-beam projections faster (at 50 projections/s) 
than they can be produced by a modern flat-panel gantry, 
enabling a new paradigm we call streaming CT [8].  Further, in 
earlier work [6] we have also shown that reconstruction 
algorithms, both iterative and analytical, can typically be 
broken down into blocks, which can be accelerated individually 
on these platforms using dedicated programs (called shaders).  

In this current work we specifically address the acceleration 
of iterative optimization algorithms for the purpose of low-dose 
CT with reduced sets of noisy projections. Our framework 
alternates projection-space prediction-correction with 
object-space regularization. The former ensures adherence of 
the solution to the data, while the latter seeks to drive the former 
to a more plausible solution. Our prominent aim is to make this 
procedure amenable to GPU-acceleration.  

II. RELATED WORK  
We chose algebraic reconstruction as the predictor-corrector 
method. In expectation maximization (EM), ordered subsets 
(OS) have long been known to speed up convergence speed, 
with larger numbers of subsets converging faster.  In recent 
work [7], we have introduced the idea of using ordered subsets 
also for algebraic settings, giving rise to OS-SIRT. In this 
scheme SIRT and SART form two extremes, with SIRT having 
just one and SART having M subsets (M being the number of 
projections). We showed that while on the CPU there is little 
difference in the running time per iteration, on the GPU an 
iteration with SART is typically the slowest, due to the many 
projection-backprojection context switches which disturb 
parallelism and data flow. This has significant implications for 
the overall reconstruction wall clock time, where SART, in the 
noise-free case, is no longer the fastest method (which it is on 
the CPU). This effect has also been observed by other authors 
[2], but there the focus was solely on reconstruction speed. In 
contrast, we have found, in the present work, that once 
reconstruction quality is considered as well, these relationships 
are altered and SART becomes more competitive again. In 
addition to this insight, we also address the issue of noise, and 
revisit GPU OS-SIRT under these new circumstances.  

For few-view, limited-angle, and noisy projection scenarios, 
the application of regularization operators between 
reconstruction iterations seeks to tune the final or intermediate 
results to some a-priori model. A simple regularization scheme 
is to enforce positivity. In [4], the method of total variation (TV) 
was proposed for additional regularization (in conjunction with 
POCS reconstruction). TV minimization (TVM) has the effect 
of flattening the density profile in local neighborhoods and thus 
is well suited for noise and streak artifact reduction. Based on 
the assumption of a relatively sparse gradient object, the method 
has been shown to work quite well under a variety imperfect 
imaging situations, yet this assumption may not be realistic in 
general. In computer vision, two prominent TV models are 
frequently used, that is, the ROF model and the TV-L1 model 
[3]. A number of variational algorithms have been designed as a 
minimizer of the energy functional of the models. They are  
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mainly based on solving the associated Euler Lagrange 
differential equation with optimization techniques. These 
methods are well suited for the removal of noise and other 
unwanted fine scale details while preserving edges. However, in 
the context of high performance computing, due to its iterative 
procedure TVM is quite time-consuming, even when 
accelerated on GPUs. 

III. METHODOLOGY 
We aim to devise a method that is not iterative but has the same 
goals as TVM, that is, the reduction of local variations (noise, 
streaks) while preserving coherent local features. The bilateral 
filter [5] is such a method. It combines a range filter with a 
domain filter, giving rise to a non-linear filter designed for 
edge-preserving smoothing. When based on the Gaussian 
function, two parameters are required, σr and σd, to control the 
weight of each filter. We then compare this filter with a TVM 
method [1] to explore its performance under different scenarios. 
 An important aspect of Ordered Subsets-EM (OS-EM) is that 
it balances noise suppression with convergence speed – 
typically in the presence of noise using a smaller number of 
subsets leads to faster convergence and better results, due to the 
inherent smoothing provided by the larger projection sets. 
These issues are also relevant for our GPU-accelerated 
OS-SIRT, but with the added constraints imposed by the GPU 
hardware architecture. Finally, in contrast to EM, algebraic 
methods also offer a relaxation factor λ which has a great effect 
on convergence speed. In [7], a simple linear selection scheme 
for λ (as a function of subset size) was used, which we found 
sub-optimal in the current work. We therefore propose a scheme 
that determines the optimal setting of λ (and subset number) 
based on an exhaustive set of benchmark tests under different 
noise conditions. This framework is more detailed described in 
a companion publication [9]. 

A. OS-SIRT 
The correction update for OS-SIRT is given as follows: 
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where the weight factor wij determines the contribution of a 
voxel vj to a ray ri (starting from a projection pixel pi) and is 
given by the interpolation kernel. This equation is a 
generalization of the original SART and SIRT equations to 
support any number of subsets [7]. The pi are the pixels in the 
M/S acquired images that form a specific (ordered) subset OSs 
where 1 ≤ s ≤ S and S is the number of subsets.  

B. Bilateral Filter 
The bilateral filter non-linearly averages similar and nearby 
pixels values. To achieve effective and efficient computation, 
the averaging only occurs inside a fixed window area. It consists 
of two filter components, the domain filter and the range filter:   
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Here, W is the window centered at x, ε and x represent the 
spatial variables, f is the input image, and c and s are the 
measured closeness and pixel value similarity, respectively. The 
geometric closeness function acts as the domain filter 
controlling the contribution according to spatial distance, while 
the pixel value similarity function acts as a range filter 
generating very low weights for dissimilar pixel values. 
Normalization forces the sum of pixel weights to 1. In our work, 
we model the closeness and similarity functions as Gaussians: 
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where σr and σd control the amount of smoothing.  
The implementation of GPU-accelerated bilateral filtering is 

as follows. The rendering target is a texture of the size of the 
reconstructed image, with image texture and other parameters 
(size of image, σr, σd, etc.) passed into the GPU. We avoid the 
expensive evaluation of the exponential function by 
pre-computing both closeness and similarity functions and 
storing them into two 1-D lookup textures. We implemented 
bilateral filtering both in 2D and 3D. 

C. Total Variation Minimization (TVM) 
We also implemented a TVM algorithm [1] to compare it with 
our bilateral filter framework. The TVM solution is obtained by 
minimizing the following energy functional: 
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where Ω is the image domain, x is the spatial variable, f is the 
input image, u is the sought-after solution and λ is a parameter 
controlling the level of smoothing. The TV of u is: 
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In this equation, x and y are the horizontal and vertical 
coordinates, respectively. The minimization is transformed to 
its dual formulation, and a semi-implicit gradient descent 
algorithm is used to compute the nonlinear projection of f. The 
solution u is then obtained after convergence, with τ set to some 
value constraint: 
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Here, div is the divergence. In practice, when 4/1≤τ the 
algorithm converges. 

D. Regularized OS-SIRT 
In our new regularized OS-SIRT, bilateral filtering is applied 
after each iteration (after backprojecting all subsets). This 
removes artifacts at the very beginning when the errors are just 
generated and thus steers the reconstruction towards more 
plausible and favorable solution regions. Since the target texture 
(to be filtered) is already in GPU memory, this operation does 
not require any expensive texture upload/download operations 
between the CPU and GPU.  
 



 
 
 
 
 

Original Noise-free SNR15 
CC 0.99 0.98

Time (s) 0.045 0.035

SNR10 SNR5 SNR1
0.98 0.96 0.82
0.035 0.027 0.012

Fig. 1. Reconstructions obtained with different SNR levels for the Baby 
head test image 

Fig. 2. Best performing (both in terms of time and image quality) subset 
number and relaxation factor as a function of imaging condition, here SNR 

TABLE I 
WALL CLOCK TIME (IN S) OF GPU VS. CPU BILATERAL FILTER 

Test size Window 
size 

CPU time 
(s) 

GPU (Cg) 
time (s) 

GPU 
(CUDA) 
time (s) 

256x256 

11x11 
31x31 
61x61 
91x91 

0.622 
4.891 
18.626 
39.031 

0.007 
0.013 
0.037 
0.069 

0.005 
0.011 
0.033 
0.066 

512x512 

11x11 
31x31 
61x61 
91x91 

2.652 
19.998 
74.319 
164.065 

0.011 
0.038 
0.119 
0.253 

0.007 
0.032 
0.112 
0.241 

1024x1024 

11x11 
31x31 
61x61 
91x91 

10.811 
84.618 
> 300 
> 300 

0.033 
0.133 
0.452 
0.983 

0.017 
0.098 
0.368 
0.823 

256x256x256 
3x3x3 
7x7x7 

11x11x11 

46.831 
592.969 
> 600 

0.492 
1.535 
4.823 

N/A 
N/A 
N/A 
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Fig. 4.  Comparison of Bilateral Filtering for the noise-free, few-view case 

IV. RESULTS 
Our experiments were conducted on an NVIDIA GTX 280 GPU, 
programmed with GLSL and an Intel Core 2 Quad CPU @ 
2.66GHz and 2.67GHz. We group our results into two sections: 
(1) the OS-SIRT results showing the relationship between noise 
levels and parameters settings, and (2) the performance of our 
GPU-accelerated bilateral filter using both Cg and CUDA and 
the reconstruction results using bilateral filter and total variation 
minimization. 

A. OS-SIRT with noisy data 
We used the 2D Baby Head test image (size 2562) to evaluate 
the performance of the different reconstruction schemes. We 
obtained 180 projections at uniform angular spacing of [-90˚, 
+90˚] in a parallel projection viewing geometry. We then added 
different levels of Gaussian noise to the projection data to 
obtain SNRs of 15, 10, 5, and 1. Fig. 1 presents the best 
reconstruction results (using the correlation coefficient CC 
between original and reconstructed image), for each SNR, at the 
smallest wall-clock time. 
 The optimal settings greatly depend on the particular imaging 
situation at hand, such as SNR, total number of projections and 
their angular range, the imaged object, scanner, etc. Fig. 2 
presents results on the influence of SNR. The plot gives 
quantifying hints on how to pick the best-performing number of 
subsets and the associated λ (to obtain the best possible quality 
within the smallest time), for each expected SNR level. For 
example, we observe that low SNR requires a low number of 
subsets. As for the relaxation factor λ, it is related to both subset 
number and noise level. For each noise level, the curve of λ is 
approximately piece-wise linear with a turning point at some 
subset number. For example, the λ values for SNR 10 are 1 from 
subset number of 1 to 60, then decreasing until hitting the 
lowest value of 0.4 at subset number of 180. This is a strong 
departure from the linear model used on [7] – a higher λ will 
lead to faster convergence and confirmed by our exhaustive 
benchmark tests we know it also leads to more accurate results.  

B. Bilateral Filter Regularized OS-SIRT 
We tested the speed of both 2D and 3D bilateral filters with 
different sizes of images and windows on both CPU and GPU 
(using Cg). Table I shows that speedups of more than two orders 

of magnitude can be obtained by using the GPU. For 2D images, 
we also implemented a CUDA version of our scheme. 

To gauge the performance of the regularized reconstruction 
for both the few-view and the noise (SNR=10) scenario, we 
used the NIH Visible Human dataset at 5123 resolution. We ran 
SART with 8 iterations for the noise-free few-view case. The 
filter window size was fixed to 11. Fig. 4 shows one slice of the 
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Fig. 5. Comparing bilateral filtering for the noisy (SNR=10), few-view case. 

#proj 1-ch 1-ch w/ BF 4-ch 4-ch w/ BF

180 91.8137 94.9598 34.789 34.944 
30 21.942 25.6891 9.21 10.124 

The 1-ch and 4-ch accelerate the reconstruction with 1 (R) or 4 (RGBA) 
color channels, respectively. A NVIDIA GTX 280 GPU was used. 

TABLE II 
TIME FOR ONE GPU-ACCELERATED SART ITERATION (5123 VOLUME)

Fig. 6.  Bilateral Filtering vs. TVM: (first two rows): the noise-free 
few-view case; (last two rows): the noisy (SNR=10) few-view case. 

Bilateral Filtering Total Variation Minimization 
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Fig. 6.  Bilateral Filtering vs. TVM: (first two rows): the noise-free 
few-view case; (last two rows): the noisy (SNR=10) few-view case. 

reconstructed volume with and without filtering, respectively, 
for reconstructions from 90, 60, and 30 views. We notice that 
SART is already well suited for the few-view reconstruction. 
For the regularized reconstructions we tested a number of 
combinations of representative σr and σd and selected the best 
results. In particular the 30-view reconstruction shows 
prominent streaking artifacts, which can be avoided by 
intermediate bilateral filter regularization. 

Fig. 5 shows the results for the noisy few-view case, after 5 
iterations. Like in the noise-less case we observe that the salient 
features are well preserved in both size and shape.   

Finally, Table II lists the GPU-accelerated reconstruction time 
required for one SART iteration, for the Visible Human dataset 
at 5123 resolution for both 180 and 30 projections. The 1-ch 
time uses only the R-channel of the GPU hardware, while the 
4-ch time uses all 4 (RGBA) channels in parallel. Using 4 
channels yields a 2.5-fold speedup, while regularization with 
bilateral filtering (BF) adds only a moderate time overhead.  

C. Bilateral Filter vs. Total Variation Minimization 
We tested the same slice with identical settings for both the 
few-view (30 projections) and the noisy few-view (30 
projections and SNR=10) case and show the results in Fig. 6.  

We observe that for the noise-free case, bilateral filtering 
achieves similar results than TVM (maybe even slightly better). 
However, TVM works better for the noisy case. This is not 
surprising since for TVM the energy functional imposes a 
constraint over the image, while bilateral filtering just averages 
the neighboring values which cannot eliminate all noise for 
higher noise levels. Nevertheless, both successfully preserve 
salient features and remove noise and streaking artifacts.   

From the perspective of high performance computing, the 

bilateral filter is a better choice. Table I shows that the 
computation time is less than 1s. Although a GPU-accelerated 
version of TVM exists [3], once the parameter λ grows larger, 
which is needed for very noisy data, the computation time 
(usually >> 1s) is still far greater than with the bilateral filter. 

V. CONCLUSIONS 
We have demonstrated that careful parameter-tuning taking into 
account reconstruction quality results in better speed 
performance. This is particularly true for ordered subsets 
approaches in the presence of adverse data scenarios, such as 
noise and sparse views. We also demonstrated that bilateral 
filtering represents a viable option for regularization compared 
with Total Variation Minimization (TVM), with the added 
advantage that it accelerates very well on GPUs.  
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