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Abstract—An exemplar is an entity that represents a desirable instance in a multi-attribute configuration space. It offers certain strengths
in some of its attributes without unduly compromising the strengths in other attributes. Exemplars are frequently sought after in real life
applications, such as systems engineering, investment banking, drug advisory, product marketing and many others. We study a specific
method for the visualization of multi-attribute configuration spaces, the Data Context Map (DCM), for its capacity in enabling users to
identify proper exemplars. The DCM produces a 2D embedding where users can view the data objects in the context of the data attributes.
We ask whether certain graphical enhancements can aid users to gain a better understanding of the attribute-wise tradeoffs and so select
better exemplar sets. We conducted several user studies for three different graphical designs, namely iso-contour, value-shaded
topographic rendering and terrain topographic rendering, and compare these with a baseline DCM display. As a benchmark we use an
exemplar set generated via Pareto optimization which has similar goals but unlike humans can operate in the native high-dimensional
data space. Our study finds that the two topographic maps are statistically superior to both the iso-contour and the DCM baseline display.

Index Terms—High-dimensional data, multivariate data, contextual displays, exemplar generation, decision support, configuration space
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1 INTRODUCTION

W E address the task of visually selecting a set of exemplars
from a larger set of data objects with multivariate charac-

teristics. An exemplar set is a compact set of data objects where
each balances the tradeoffs that exist among the characteristics
in a unique way. To illustrate where this can be useful consider
a wine shop that has only limited shelf space but still wishes to
satisfy a broad customer base. The owner will seek to stock a set
of wines that minimizes redundancies and at the same time offers
a well-diversified spectrum that vibes well with most buyers but is
devoid of extreme selections that only appeal to niche customers.
These types of challenges occur in many application areas, such
as investment banking where balancing a stock portfolio is a key
to solid growth, in drug design where components have different
side effects that affect different patient populations, and even
in amusements parks where different attractions will appeal to
different audiences, just to name a few. All of these will want to
choose a limited set of configurations where each of these is unique
in its combination of strengths and weaknesses.

Identifying good exemplar sets can be taxing. It requires one
to recognize interactions that exist among the attributes and then
observe how these interactions are expressed in the available data
objects. When these interactions are spread over multiple bivariate
tiles, as in Scatterplot Matrices [27], or spread across multiple
axes, as in Parallel Coordinates [33], discerning them becomes a
difficult undertaking. While embeddings like MDS [38], t-SNE
[62], or UMAP [43] present a more concerted view, they do not
embed information that relates the data objects to the attributes,
prohibiting a user from appreciating the trade-offs that guide the
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selections.
What is needed is a visualization that can integrate the

data objects and the attributes that describe them into a single
display. We call these visualizations Attribute-Contextualized Data
Visualizations. A prominent visualization of this genre is the Data
Context Map [13]. It embeds the data objects as points into a map
of attribute nodes where the relative proximity of a data object
to an attribute node denotes the attribute’s strength in the data
object’s overall characteristics profile, that is, the closer a data
object is to an attribute node, the more pronounced the attribute’s
influence tends to be. Likewise, similar data objects locate in close
neighborhoods and so do the nodes of correlated attributes. Fig
3(a) shows an example for an automobile dataset.

The non-linear warp that all embedding techniques apply when
mapping the high-D data space into 2D leads to local distortions.
This has been well studied in recent years [20]. For the DCM it
means that the iso-value contours around an attribute node are
typically not concentric circles but more general iso-contours, with
their density indicating the local space warping. Fig. 3(c) shows
these contours for the HPower attribute of the automobile dataset.

1.1 Preference Sets vs. Exemplar Sets
The DCM as described in [13] was conceived for a Preference Set
Selection task. It was designed in such a way that it could tolerate
these embedding distortions. Users would begin by manipulating a
set of sliders to specify the desired value range for each attribute.
Moving a slider then changed the extent of a filled region on the
map, where each such region was bounded by the iso-contours
defined by the specified slider value (the closed contours in
Fig. 3(c)). The regions so created then contained the set of data
configurations (blue points in Fig. 3(c)) that fit the specified value
brackets set by the associated attribute slider. Finally, map areas
where the regions of several attributes overlapped contained the
configurations that fit the multiple selection criteria of interest.
Users could then further play with the sliders to fine-tune the set of
configurations that had the preferable multivariate characteristics.
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The current task of Exemplar Set Selection is fundamentally
different from the aforementioned task of Preference Set Selection.
It is a much broader task since the set of exemplars are chosen
to represent compromises for multiple preference sets. With the
method of [13] each such exemplar would first require the specifi-
cation of a contour overlap region followed by an extraction from
the covered set of configurations. Doing this for every exemplar
would be a highly laborious and likely inaccurate undertaking.

Visual exemplar identification is essentially a map localization
task. Users need to be able to look at the map and point out these
landmarks by assessing their (attribute node) surroundings. In fact,
exemplars are a good localization target since they represent the
most salient tradeoff goal posts in a configuration space. Then,
once an exemplar is localized, users can inspect its immediate
neighborhood to engage in further personal optimizations.

To make this localization task easier in the presence of
the aforementioned map distortions, we have devised several
graphical enhancements which we have studied in this paper.
While exemplars could also be found automatically via Pareto
optimization, the returned options may not always be practical or
even feasible in a specific application scenario, especially when
many variables are involved. Affording the expert more control
is thus desirable. Further, the graphical enhancements we have
designed not only enable users to locate exemplars; rather, they also
elevate the potential of endowing users with a better appreciation
of the configuration space in general.

1.2 Goals and Contributions
The goals and contributions of our paper are as follows:

• A visual interface that enables users to select a set of
representative exemplars from a high-D multi-item dataset.

• Framing this task as a high-D space localization task and
adapting for it an existing Attribute-Contextualized Data
Visualization, the Data Context Map (DCM).

• A set of graphical enhancements for the DCM purposed to
better convey the global trade-offs among the data features.

• A comparative methodology that can test if these enhance-
ments can effectively facilitate high-D localization tasks,
using exemplar set selection as a clearly defined task.

• An enhanced Pareto frontier algorithm that is aware of the
specific goal of exemplar set selection and can be used to
derive suitable benchmark data.

• A user study to test and compare the developed designs in
terms of these goals.

The structure of our paper is as follows. Section 2 presents
related work. Section 3 provides background on the DCM. Section
4 introduces the graphical enhancements we devised. Section 5
describes our user interface. Section 6 presents our enhanced Pareto
frontier algorithm used to derive benchmark data. Section 7 details
our user study and presents results. Section 8 ends with conclusions.

2 RELATED WORK

In this section we will primarily focus on two main areas related
to the visualization of multivariate data: (1) methods that produce
a single, joint display of data and attributes (the aforementioned
Attribute-Contextualized Data Visualizations), and (2) methods
that seek to facilitate Multi-Objective Optimization (MOO) since
finding a set of exemplars is related to MOO. Related to the first
set are methods that invoke visual representations commonly used
in topographic maps. We will summarize this work here as well.

Fig. 1: Attribute-Contextualized Data Visualization concept. The
red nodes are the attributes and the blue nodes are the data points.

2.1 Attribute-Contextualized Data Visualizations

We define Attribute-Contextualized Data Visualizations as methods
that display data points in relation to the data attributes in a joint
layout. When viewing such a visualization an analyst can make
three types of assessments: (1) how similar a data point is to another,
(2) how correlated an attribute is with another; and (3) how strongly
expressed an attribute is for a given data point. Fig. 1 illustrates
these three properties; the red nodes are three attributes, say the
scores for a three-subject exam testing a student’s knowledge of
English (A1), Math (A2), and Arts (A3) while the blue nodes (D1,
D2, and D3) represent three students who took this three-subject
exam. We quickly see that D1 has a strong affinity for Math, but is
weak in the other two subjects and somewhat of an outlier. We also
see that D2 and D3 are more alike, with D2 being an all-rounder
while D3’s strength is more inclined to English.

Popular multivariate visualization methods like Parallel Co-
ordinates (PC) [33] or Scatterplot Matrices (SM) [27] do not
simultaneously support all of these three assessments. For PC,
attribute correlations are difficult to discern unless the two attribute
axes are adjacent, while for SM, data object similarities are difficult
to see since each bivariate tile conveys this similarity only for two
attributes at a time. Finally, embedding methods like MDS [38],
t-SNE [62] and UMAP [43] do not maintain the attributes at all.

There are several methods that can simultaneously support
all three assessments. RadViz [29] positions the attribute nodes
on a circle and maps the data points into the circle’s interior. A
similar layout is also produced by Gravi++ [28]. The VIBE system
[51] follows a similar concept for the visualization of documents
with respect to certain keywords. Star Coordinates [34] are similar
to RadViz but they do not perform a prior normalization and so
the data points are not confined to a bounded area. Dust+Magnet
[59] generalizes these methods by allowing users to move the
attributes nodes to any position and so change the layout of the data
points. StarPlots [10] are a radial version of Parallel Coordinates.
Radar Charts [2] are similar to StarPlots but typically fill the area
within the closed contour. All of these visualizations produce very
different point arrangements when the order of attributes or their
polar spacing is changed. This variability arises since the mapping
of the multivariate data into the 2D surface is linear which might
disregard some of the data variances and so cause dissimilar data
points to be mapped close to one another. Optimization of the
attribute ordering and spacing can yield less ambiguous layouts.
This can be further improved by applying optimization techniques
gleaned from non-linear embedding techniques. RadViz Deluxe
[14] achieves this by non-linearly optimizing the visual mappings
among (1) the data points and (2) the data points and the attributes.
It also uses correlation-based attribute ordering and spacing. Recent
work that goes into a similar direction is RadViz++ [53].
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The DCM generalizes the placement of the attribute nodes
from the RadViz circle boundary into the data point layout. This
is achieved by a fusion of the data similarity matrix and the
attribute correlation matrix followed by an MDS-type embedding
optimization; see Section 3 for a more detailed discussion. The
generalization can reduce layout ambiguities further and also allows
the depiction of iso-contours around the attribute nodes to visualize
how iso-value hyperspheres around attributes are distorted when
mapped to a 2D canvas. The contours can give important visual
explanations for the relative strengths of data points with respect
to the attributes. The concept of iso-contours for the visualization
of space distortion was also exploited in DimReader [20] which
generates the iso-contours via the perturbation of input points, but
this work does not visualize the attributes as a contextualization.
Work more related to the DCM is the method by Broeksema et al.
[8] which uses Multiple Correspondence Analysis (MCA) to derive
a joint object–attribute layout and then defines topical regions from
these. But MCA only applies to categorical data while the DCM
also applies to numerical data. In some sense, their method is also
related to the correlation map by Zhang et al. [70] which tessellates
an attribute correlation network and then projects the data into
these tiles by generalized barycentric interpolation [44].

2.2 Visual Support for Multi-Objective Optimization
The identification of exemplars is related to the general field of
multi-objective/multi-criteria decision making (MCDM). MCDM
has its roots in operations research; it deals with the problem of
assessing trade-offs under multiple conflicting criteria and picking
out the set of configurations that provide a good balance [36], [66].
MCDM can get exceedingly difficult even with small configuration
spaces spanned by just a handful of parameters. Just think of the
common task of buying a car, selecting a college, or picking out
a bottle of wine. There are usually not that many criteria but it is
nevertheless often difficult to narrow down the choices to a few
hot list candidates (the exemplars) where the choice task is less
overwhelming. While the above choice tasks are more personal,
similar problems also occur in “larger” settings, such as healthcare
[52], environmental management [35], and many others.

In seminal work, Miller [46] demonstrated that humans find it
difficult to deal with more than 7 pieces of information (plus/minus
2) at the same time. It is therefore advisable to narrow down
the number of information items used in an active human-based
decision making task like exemplar identification to a manageable
subset, for example via dimension reduction or interactive semantic
steering [41]. Miller further showed that via “chunking” humans
can deal with a much larger number of items. In visualization,
clustering and grouping can be seen as a form of ”chunking”.
Our methodology assumes that such a narrowing has taken place
before the visual analytics process commences. Most papers in the
research field of visual analytics also showcase their methods with
these limited, but human-manageable information spaces.

One way to deal with MCDM tasks is to ask the user to
define weights for each of the parameters followed by a ranking
of the configurations based on the weighted sum of parameters.
The LineUp system by Gratzl et al. [23] enables users to create
these rankings interactively by simply modifying the weights
via sliders, while the WeightLifter system by Pajer et al. [54]
enables users to delve deeper into the weight space via a brushable
parallel coordinate plot. Dimara et al. [18] evaluate the capacity of
several basic visualization paradigms, such as parallel coordinates,
scatterplot matrices, and tabular visualizations to support MCDM.

A more automated way to determine exemplars and help in
MCDM is Pareto optimization [31], [45]. Pareto optimization seeks
to locate the set of configurations at which the value gauging
one of the criteria can be improved without degrading the values
tied to one or more competing criteria. There can be a potentially
large set of such Pareto optimal configurations, especially when
the configuration space has many dimensions. To aid analyst in
navigating the Pareto solution space several methods have been
devised, some of which are visual, while others are more analytical.

Lotov et al. [40] offer two approaches to visualize the Pareto
optimal set. For convex sets, they suggest a representation as convex
polyhedra which can be visualized as a decision map, while for
non-convex sets they use a point-wise approximation which can be
visualized as a heatmap [67] or a scatterplot [22]. Berezkin et al.
[5] propose an adaptive method to approximate the Pareto set in the
non-convex case. Veldhuizen et al. [65] describe an evolutionary
search algorithm and demonstrate its convergence to the Pareto
frontier, while Abbass et al. [4] describe a PDE-based algorithm
to optimize problems over continuous domains using differential
evolution. Chen et al. [11] discuss how searching the Pareto set in
a distributed manner can speed up the process. It is noteworthy that
while these methods can converge to a valid result fairly quickly, a
Pareto set can be unstable even for small parameter value changes
[57]. These variations can then result in substantially different
Pareto sets. Our method addresses this problem by enabling users
to explore what effect a change in the value ranges has on the
Pareto set, and hence observe the set’s sensitivity to these changes.

Besides these more traditional visualization methods, Blasco
et al. [6] contribute the concept of Level Diagram to analyze high
dimensional Pareto sets by layer classification and synchronize
representations of all data objects and parameters. Nasrolahzadeh
et al. [49] propose Pareto-RadVis which projects data objects to a
radial coordinate plot to show the ranks of the Pareto set, the relative
locations of data objects and the candidate solution distributions.
Yet, it remains difficult for decision makers to easily express their
own preferences and constraints on the decision variables and
obtain a solution set interactively. Trade-off decisions are also
not clearly reflected. In contrast, our system allows interactive
exemplar selection along multiple perspectives with immediate
visual feedback. It presents a multivariate Pareto frontier as a
piecewise linear path across a 2D decision map where each Pareto
optimal solution is connected in a specific similarity order. In
this way decision makers can serialize the trade-offs they make
according to the order of the path and so read them like a storybook.

The method that in spirit is closest to ours is the one by Chen
et al. [12]. They propose a semantically enhanced Self Organizing
Map (SOM) to encode Pareto sets in a 2D polygon. Decision
makers can define their preferences interactively and obtain a
candidate solution from the clustered results. However, the variables
all reside on polygon corners and as such have only limited ability
to reveal how data objects and variables influence each other. As
mentioned, our method intermingles attributes and data points into
a shared canvas which has the advantage of revealing association
between data objects and variables.

Finally, another MOO application is robot path planning. It
aims to find the best path from start to destination based on factors
like path length, time, environmental obstacles, computational
complexity, etc. A good path planning algorithm should make a
tradeoff among conflicting factors. Duchoň et al. [19] introduced
some path planning algorithms for mobile robot like the A*
algorithm [26], Phi* algorithm [48] and JPS [25]. Lavin further
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combined A* search and Pareto optimization [39] for path planning
to find a better path. Ferariu et al. [21] proposed a self-adaptive
algorithm to monitor the size of the Pareto front during path
planning. Our Pareto path was inspired by Lavin’s method.

2.3 Visualizations Inspired by Topographic Maps
While the methods discussed in Section 2.1 projected the high
dimensional data into a 2D plane, topographic methods encode
additional information, such as the density or number of data
items, into 2D contours or a 3D elevated surface. These are then
graphically represented in ways akin to a typical topographic map.
A well-known paradigm here is ThemeScapes [69] which has
found many uses for the theme-organized visualization of large
document collections, such as books, papers, and patents.

Hogräfer et al. [30] studied a set of typical map-like visu-
alization technologies. These technologies were classified from
two perspectives, imitation and schematization. Imitation describes
technologies that use features of a map in a visualization scheme
for non-spatial data (e.g. [24]) while schematization summarizes
technologies that transform geographic maps to visualize more
thematic information for spatial data (e.g. [63]). Imitation and
schematization describe a continuum of visualization and map.
Therefore, non-spatial data and spatial data were summarized in a
unified context of map-like characteristics.

Tory et al. [60], [61] compared the performance of 2D
landscape, 3D landscape and dot display. Here, non-spatial data was
visualized as a plane, additional information like special attribute
or classification tag [9], [69] was mapped to height which derived
a 2D or 3D landscape belonging to the imitation type discussed
above. They tested these visualization schemes with different tasks:
estimating the number of points of a specified color within a spatial
area or memorizing the spatial distribution of a dataset. Their
results showed that landscape visualizations did not outperform the
dot display in either of the tasks. However in more complicated
tasks, like finding Pareto optimal points or searching points that
satisfy given attribute constraints, how landscapes perform has not
been evaluated thus far.

Similar to landscapes, Kraus et al. [37] carried out an empirical
study on 2D and 3D heatmap performance. They found that in
reading and comparison tasks, 3D heatmaps were better in terms
of error rate, but well-established 2D heatmaps outperformed
3D heatmaps in overview tasks. Although 3D visualization was
not superior to 2D as one might have expected, Marriott et al.
[42] discussed some potential applications of 3D in information
visualization, including using 2.5D to show an additional data
dimension which is part of our system.

3 BACKGROUND: THE DATA CONTEXT MAP

The Data Context Map (DCM) [13] is a typical Attribute-
contextualized data visualization. We choose it to examine our
graphical enhancements. In this section we give a brief introduction
to it. The DCM achieves a composite display by fusing together
four types of matrices. Assume a rectangular data matrix DM of m
data points and n attributes which is first normalized into a [0, 1]
interval. The DCM creates four matrices that are fused together into
an (m+n)× (m+n) joint matrix. To illustrate consider Fig. 2(a)
which shows the joint space obtained by simultaneously mapping
the data points into a space spanned by the attribute vectors and
mapping the attributes into a space spanned by the data vectors.
One space is obtained from the other by transposing the DM.

(a) (b)

Fig. 2: An illustration of the DCM matrix fusion process using a
simple demographics dataset with three individuals (Bob, Cindy,
Alice) and three attributes (age, weight, height). (a) The data space
and the attribute space are fused together (b) The fused matrix.

The fused matrix is shown in Fig. 2(b). The matrix DD is the
m×m distance matrix which holds the pairwise Euclidean distances
of the m data points. The matrix VV is the n×n (1− correlation)
matrix which gauges the similarity of the attributes. The remaining
two matrices DV and VD relate each of the m data points to
each of the n attributes and vice versa. For the fused matrix to be
symmetric the only similarity metric that can fulfill this condition
is (1− value), where value is the value a data point has for a
particular attribute. The (1− value) distance can be thought of as
a significance distance. It is small for a given data point when the
value of a point’s attribute is large, encoding a notion of affinity
that the data point has for the attribute. Using this metric makes
VD a transpose of DV and vice versa.

Once the fused matrix has been obtained it can be embedded
via MDS (we use Glimmer MDS [32]). Fig. 3(a) shows such an
embedding for the car dataset [1] where the red nodes are attribute
points and the blue nodes are the data points, the cars. In this
figure we shaded each data point by its value in the horsepower
attribute. We observe that the data points fade out towards the
top of the image but that the gradient is not linear. Next adaptive
kernel density estimation (AKDE) [64] is applied to interpolate the
space between the data points and so generate a continuous value
visualization. AKDE is preferred over standard KDE since it uses
smaller kernels in dense neighborhoods and larger kernels in sparse
neighborhoods reducing blur in dense regions and gaps in sparse
regions. Fig. 3(b) shows the AKDE-filtered value field of (a).

The final step is the generation of iso-contours via the CONREC
algorithm [7] (see Fig. 3(c)). The DCM [13] enables users to
interactively select specific iso-contours, one per attribute, via an
array of value sliders. Data points that meet or exceed a selected
slider value will then fall within the region inscribed by the slider
attribute’s iso-contour. The compound visualization enables users
to visually assess the trade-offs associated with different slider
settings and eventually arrive at a set of points that meet all criteria.
We note, however, that this set of points are not exemplars; rather
they are simply points that meet all or some selection criteria.

4 GRAPHICAL ENHANCEMENTS

As mentioned, the goal of this work was to test whether a graphical
enhancement of the DCM can aid the understanding of trade-offs in
multivariate configuration spaces. For this purpose we chose to test
a more challenging task, namely, the identification of exemplars.
We studied three enhancements (and the reference visualization),
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Fig. 3: Building the contoured Data Context Map, shown here is the car dataset. (a) The basic MDS layout with nodes for data points
(blue) and attributes (red); the data points are shaded by their values in the horsepower (HPower) attribute (bottom left). (b) The map of
(a) interpolated via AKDE. (c) The continuous map of (b) with iso-contours drawn.

all of which are representative of enhancements commonly used
for maps. Fig. 4 shows all of these visualizations for the car dataset
where panel (a) is the original data context map which serves as the
reference visualization since it has no graphical enhancements at
all. In the following we describe the three enhancements we tested.

4.1 Single Iso-Contour
This enhancement, shown in Fig. 4(b) was already part of the
original DCM. In this visualization constraints are represented
by colored areas where data configurations that fall into these
areas satisfy the corresponding criteria. Each contour visualizes a
particular attribute constraint. The analyst can learn how the various
constraints distribute spatially and see for each data point which
of the constraints it fulfills by containment in a region. However,
since the contours can have irregular shapes, actual values can
not be easily discerned. A user can tighten or loosen an attribute
constraint by adjusting the iso-contours via a slider, but it can be a
tedious effort to learn about sensitivities that way, especially for
multivariate data. Furthermore, for larger sets of attributes there
will be many areas with different colors which can lead to cognitive
overload, particularly when the colored areas blend and overlap.
Hence, while the iso-contoured DCM is well suited to a determined
candidate set that fits certain constraints, it is less suited to pin
down an exemplar set that balances tradeoffs.

4.2 Value-Shaded Topographic Rendering
Fig. 3(c) shows a display that resembles a topographic map. It
shows a set of iso-contours for a specific variable (here horsepower)
making it easy to gauge local value sensitivities. But we found that
when iso-contour fields for different attributes overlapped these
sensitivities were difficult to discern, even when the iso-contours
for each attribute were assigned a different color. To address this
problem, we returned to the filled iso-contours of the original DCM.
But instead of using a constant color for the entire constraint value
range, we used progressively darker colors for each iso-contour
region and blended the filled shapes together.

The outcome is shown in Fig. 4(c). We found that this works
quite well with limited number of colors (we found the limit is 4-5
attributes by experience). The light to dark color gradients of the
filled iso-contours visualize the increasing constraint levels while
the mixing of colors from adjacent attributes aid in the recognition
of tradeoffs, but blending more than 5 colors can lead to issues of
interpretability.

4.3 Topographic Terrain Rendering

A topographic terrain rendering shows a geographic map with
additional shading to convey the height of a landscape. Terrain ren-
dering is common in geography, but in visualization 3D rendering
schemes (e.g. [55], [56]) were frequently argued not to provide
additional cognitive benefits [16], [17], although many viewers find
them more appealing. The most significant shortcomings of 3D
information displays are occlusion and perspective distortion.

Encouraged by other work that showed that terrain rendering
can be made efficient for information visualization [50], we
implemented a 2.5D terrain rendering scheme; see Fig. 4(d) for
the car dataset. We chose colormap, shading and viewing angle
to emphasize height and so avoid problems related to occlusion
and perspective. The contours are drawn similar to the topographic
map but with one major difference. While the topographic map
constructs a set of contours for each attribute individually and
then superimposes the emerging shapes, the terrain map sums all
attribute values first and then constructs the contours. In this way
only a single terrain emerges. The upside of this scheme is that
ambiguities due to blending are avoided. While this restricts visual
access to the individual strengths of the attributes in a certain map
area, it replaces it with the combined strength related to these
attributes. It affords the user a pre-computed local optimization
which they had to do mentally with the blended topographic display.

5 USER INTERFACE

We have constructed a user interface that enables users to (1)
define a desirable range of values for each attribute using data-
scented sliders [68], (2) select a set of exemplars in the graphically-
enhanced DCM visualization, and (3) observe the trade-offs within
this set of exemplars in a stacked area chart. We allow users to select
allowable value ranges first to limit the graphical enhancements to
the relevant areas of the map. This focuses the user’s attention and
so reduces cognitive load. Fig. 5 shows the user interface elements
for a dataset of Pokémon characters [3].

Fig. 5(a) shows the value sliders which are scented by a
continuous histogram to inform the user how many data instances
are within a selected interval. We automatically subtract data
instances that are culled out by other sliders. The lower value
limit for each attribute will form the outer-most contour in the
DCM for the respective attribute. We always associate the right-
most value with the most-attractive value setting. This is needed
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Fig. 4: The three graphical enhancements we studied. (a) The original data context map functioning as the reference visualization, (b) the
contour map used in the interactive data context map, (c) the value-shaded topographic map, and (d) the topographic terrain map.

to ensure that attribute values are mapped to height or shade in a
semantically consistent fashion. For example, for an attribute like
‘price’ a lower value will be more attractive. We therefore convert
‘price’ to ‘affordability’ using the transform (1-price) after the [0,
1] normalization step. Other examples are ‘time to 60 MPH’ which
one can map to ‘acceleration’ by using the reciprocal.

Fig. 5(b) shows a set of user-selected Pokémon character
exemplars in the value-shaded topographic map. After selection our
program auto-connects these instances by a graph using a shortest
path algorithm. This path is meant to be a line-up of exemplars
with smoothly changing trade-offs. The stacked area chart shown
in Fig. 5(c) visualizes this smooth path with the attribute values
mapped to width. The visualization shows how some attributes
loose in strength while others gain in strength. Most prominently,
the attack and the defense characteristics are inversely related but
it is more complicated than that if one also takes into account other
traits like ‘speed’ and ‘HP (Hit Points)’ which rates how much
damage a Pokémon can receive. In the middle, we can clearly make
out Arceus, the most powerful Pokémon who has all traits equally
well expressed, with a slight preference for ‘speed’ and ‘HP’.

6 GENERATION OF BENCHMARK PARETO PATHS

To evaluate the quality of the user-generated exemplar sets we
require a benchmark exemplar set. As mentioned, Pareto opti-

mization is a well-established method to determine configurations
that capture the preference criteria we expect from the selected
exemplars. However, while in 2D a Pareto frontier is typically
a path-like contour that covers the set of configurations, when
the dimensionality is greater than 2D this cover generalizes to
a manifold. To generate a path that orders the identified Pareto
configurations in a similar fashion than the user-generated path
shown in Fig. 5(b) we devised an algorithm that mimics the user’s
task as close as possible. First, it takes into account only the
attribute ranges selected by the scented sliders. Second, it uses
the same two extreme configurations also selected by the user;
these are the configurations at the opposite ends of the path of
exemplars in Fig. 5(b), call them terminal exemplars. Our Pareto
path algorithm then constructs a piece-wise linear path across the
configuration space using an A* search-based scheme; it starts with
one of the terminal exemplars and then iteratively searches among
evolving sets of Pareto optimal successors until the other terminal
exemplar is reached.

Our method is inspired by the algorithm devised by Lavin [39]
who formulates the task of planning an optimal path for a mobile
robot as a multi-objective optimization (MOO) problem. MOO
is appropriate since apart from just minimizing the start-to-goal
distance there are often additional objectives such as cost, safety,
and time. To solve this problem Lavin offers an approach that uses
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Fig. 5: User interface components, shown here is the Pokémon
dataset. (a) Scented slider widgets, one for each of the 6 user-
chosen attributes, (b) shaded topographic map of these 6 attributes
with the 8 user-marked exemplars auto-connected by a path, and (c)
stacked area chart with the 6 attributes and the 8 exemplars. It can
be observed that each exemplar has a unique attribute configuration.

A* search across the Pareto frontier. A robot’s path is a smooth
trajectory through the configuration space and so it quite resembles
what we are trying to achieve. Yet, since our objective differs
somewhat from robot path planning we made certain modifications
of this scheme. We present our approach next.

6.1 Our Pareto-Guided A* Search Algorithm
Our first modification is with regards to taking into account the
user-chosen slider settings in the Pareto search. In order to satisfy
this constraint we use a clone of the data matrix, DM′, where a cell
is transformed to a small value close to zero (like, divided by 20)
when the original data value for that cell’s attribute falls outside
the selected slider range. This will reduce the attractiveness for
that data point in the Pareto optimization but it will not completely
eliminate it. Our second modification is to cast a specific set of
criteria to decide on the quality of the chosen Pareto configurations.
Here we aim for points that are strong in their features but at the
same time have smooth transitions in these strengths along the
constructed Pareto path.

A* search embodies a best-first search strategy. It uses a priority
queue, called open list, to keep a set of possible successors to the
current head node Q on the evolving path. A successor is chosen
as the node X that minimizes the sum f (X) of the cost of the path
from the start node to X , g(X), and a heuristic function h(X) that
estimates the cost of the cheapest path from X to the target.

Algorithm 1 shows the pseudocode of our algorithm. The close
list will eventually contain the path instances and starts out empty;
the open list starts out with one of the two terminal exemplars. At
each step along the path construction we identify, in DM′, the K
data instances that are most similar to Q (we found that setting
K = 12 worked best) as the Q.adjacent set; similarity is measured

by cosine distance. Given these K candidate instances we run a
Pareto optimization (the criteria optimization in Algorithm 1) in
terms of the user-chosen attributes to find the Pareto set among the
K candidates.

Using the generated Pareto set we perform a second opti-
mization, a distance-based Pareto optimization. It minimizes two
distances and a magnitude: (1) the distance ||QDCM − XDCM||2
of the candidate instance X with Q on the Data Context Map
(DCM), (2) the L1 norm ||1−X ||1 to encourage candidates with
strong features, and (3) the cosine distance (1− cos < Q,X >) to
encourage candidate instances that are close to Q to enable smooth
transitions on the path. We subtracted from 1 in (2) and (3) since
we are minimizing the Pareto frontier, and we used the DCM space
in (1) since that is where the user will visualize the data. Besides,
it is also easier to force the path to make sufficient progress by
considering distances in DCM space since point distances are
mapped to data relationships in that space.

The candidate instances selected in these two consecutive
optimizations then form the list of successors in the subsequent A*
search. This search uses the following local cost function:
g0(X) = ||QDCM−XDCM||2 + ||1−X ||1 +(1−cos < Q,X >) (1)

where the terms are similar to the terms used in the first stage of
the local Pareto search explained above.

We aggregate the winning g0(x) at each step during the path
evolution and store it as an average in gn(x), where n is the number
of steps along the path so far. Combining these terms then gives
the overall cost function g(X) as follows:

g(X) =(gn ∗n+g0(X))/(n+1)+1/(30−n)

=(gn ∗n+ ||QDCM−XDCM||2
+ ||1−X ||1 +1− cos < Q,X >)/(n+1)

+1/(6.5∗ ln(N)−n)

(2)

where N stands for the size of the dataset, and 1/(6.5∗ ln(N)−n)
is a regularization term we found works well for preventing the
path from being excessively long and meandering, and henceforth
unrealistic, misleading, and confusing. The term adds a penalty to
each node on the path and the penalty grows as the path evolves.
A long path has a much larger g value than a short path with
the regularization term being applied. As a result, our algorithm
prefers shorter paths. We require this term because our g function
evaluates the overall quality of the path instead of the accumulation
of historical costs as A* search does. It keeps no knowledge how
long it has already traveled; therefore, a penalty for choosing too
many nodes is necessary to control the path length.

The heuristic function h(x) is defined as the distance of X to Q
plus the anticipated distance to the target node T :

h(X) = ||QDCM−XDCM||2 + ||XDCM−TDCM||2 (3)

Therefore, f (x) is

f (X) =h(X)+g(X)

=||QDCM−XDCM||2 + ||XDCM−TDCM||2
+(gn ∗n+ ||QDCM−XDCM||2
+ ||1−X ||1 + cos < Q,X >)/(n+1)

+1/(6.5∗ ln(N)−n)

(4)

With f (x) fully defined the search steps are similar to A* search
with several optimizations.

Fig. 6 shows some paths we generated for the three DCM
enhancements and seven attributes. The stacked area charts
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Fig. 6: Auto-generated Pareto paths for 7 attributes each. (a) The wine dataset visualized with the single iso-contour enhancement, (b) the
university dataset visualized with the value-shaded topographic rendering, and (c) the car dataset with the topographic terrain rendering.

visualize the rich diversity of these benchmark exemplars. Note that
for simplicity we only show the iso-contours and value-shading for
a subset of the attributes in Fig. 6(a, b). The terrain in Fig. 6(c) is
built based on all of them. The ability of taking a larger number of
attributes into account is a strength of the terrain-based DCM.

Algorithm 1: Pareto based A* search

Obtain the data matrix DM′;
Initialize an open list [Xsource] and a close list [];
while open list is not empty do

Q← element from open list with the smallest f (x);
Remove Q from open list;
Push Q to close list;
Qc← results from criterion optimization for
Q.ad jacent;

successors← results from distance optimization for
Qc;

for succ in successors do
if succ is the target then

stop
else

succ.g← g(x);
succ.h← h(x);
succ. f ← f (x);

end
if succ found in open list with smaller f or succ
found in close list with smaller f then

skip
else

push or update succ to open list
end

end
end

7 USER STUDY

We recruited 32 participants to test the four DCM designs. The
subjects were divided into four groups and each tested one of
the DCM variations with four datasets presented in random order:
Pokémon, university, car and wine. We chose this between-subject
design to prevent learning effects from occurring. Learning effects
are plausible since all of our designs are derived from the DCM.
An early pilot study in fact suggested that this might be the case.

Each dataset had a specific real-life application scenario that
called for a quite well defined set of exemplars to be selected. The
domain constraints, such as slider settings and the two terminal
exemplars were held the same for each dataset to ensure users
tested on the same conditions. Hence, the Pareto benchmark set
was also constant for each dataset. The two terminal exemplars
were spaced far apart in the layout and were very different. Thus
we expected exemplars with good diversity in each set.

At the beginning of the user study, the participants were
introduced to the DCM, one of the four graphical designs and
the application scenarios for all four datasets. Following they were
encouraged to learn about the two terminal exemplars and the
attribute constraints from the UI. They could ask questions to make
sure they fully understood the task. Once this introductory step
was concluded, they were asked to find 7-10 good exemplars that
represented a tradeoff between the two terminal exemplars as well
as the ones selected thus far while keeping aware of the constraints.

The participants were recruited from different occupations, such
as software engineer, company employee, hardware developer and
PhD student. There were 18 males and 14 females; 2 participants
were aged between 8-21, 14 between 22-25 and the rest between 26-
29. Half of the participants had no visualization background while
2 had specific visualization expertise. Gender, age and visualization
expertise were uniformly distributed within each group.
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Fig. 7: The four scenarios for the user study, each rendered with one of the DCM graphical enhancements with the two terminal
exemplars shown at the ends of the auto-computed Pareto path. (a) Party Host using the wine dataset, (b) College Counselor using the
university dataset, (c) Pokémon Player using the Pokémon dataset, and (d) Rental Car Agency Manager using the car dataset.

7.1 Application Scenarios

Pokémon Player: In this scenario the participants were asked to
slip into the role of a Pokémon player who was seeking to capture
a lineup of complementary Pokémon characters. The Pokémon
set consists of 65 Pokémon and six numerical attributes; the
participants were told that the player thinks highly of four attributes,
namely, Attack, Defense, HP and Speed. From the given DCM a
participant would typically observe that no Pokémon could fit the
constraints simultaneously and that compromise was unavoidable.
While one Pokémon would perform well on Attack, the other was
better on Defense with HP and Speed also playing a role. The
participants were asked to help the player find further Pokémon
characters that would make for a well-balanced lineup. In addition
they were told that the player’s budget was limited to 12 characters
including the two pre-specified extremes; 12 was the number of
characters identified by our benchmark analysis (see Fig. 7(c)).

College Counselor: Here a college counselor was looking to
compile a well balanced portfolio of colleges to contract with. We
used a university data set of 45 schools and 15 parameters [47].
To keep things simple in conversations with students and parents,
the counselor selects four criteria she feels play a dominant role:
Academics, Athletics, Nightlife and Affordability. The participants
were asked to predict which colleges the counselor might choose.
They were given an upper limit of 9 colleges, the number chosen
by the benchmark Pareto scheme (see Fig. 7(b)).

Rental Car Agency Manager: The participants were told of a
fictitious rental car agency with a capacity of up to 12 cars and were
asked to come up with a set of cars that would please most potential
renters. There were 100 cars to choose from and the participants
had the following four criteria at their disposal: Acceleration,
Horsepower (HP), MPG and Weight. The DCM reveals that HP is
inversely related to MPG leaving the two attributes on opposite ends
on the DCM and making them mutually exclusive. Acceleration
and Weight are positively correlated with HP and so end up mapped
in a close DCM neighborhood. The Pareto path algorithm’s results
are displayed in Fig. 7(d).

Party Host: In this last scenario the participants were to
imagine hosting a large party and having to select a well-diversified
selection of wines. They were told that the bar had the capacity to
keep up to 9 variants of wines ready for consumption. The wine

data set has 100 variants of wine and 12 criteria for evaluation. The
host picked 4 of these 12 criteria for the DCM which is plotted in
Fig. 7(a) for the path returned by the Pareto optimization algorithm.

7.2 Results

Fig. 8 shows a sample of the exemplar sets selected by our
participants, one set for each of the four DCM designs we studied.
We evaluated each of these collected sets via this score function:

score =
∑

np
i=1 max

0< j≤nu
(dot product < ep,eu( j) >)

np
(5)

where np and nu are the number of Pareto and user-chosen
exemplars, respectively, for a given dataset and design. The score
compares each Pareto exemplar with the closest exemplar chosen
by the user. We obtain eight user scores per design and dataset,
128 scores in total. The strip plot in Fig. 9 shows these scores in
detail. It is immediately obvious that the native DCM which acts
as a baseline has a far lower median score than the three enhanced
designs. It also appears that the iso-contour design performs lower
than either of the two graphically more sophisticated designs. On
the other hand, the performance is similar for these latter methods.

As mentioned, we chose a between-subject experiment where
each group only tested one graphical design with four different
datasets in random order. Considering Fig. 9 we can observe that
there are wide score deviations across the four datasets, but less so
within. It appears that our participants did exceedingly well with
the university dataset. While the deviation among the other three
datasets is less pronounced, a slight differentiation is still evident,
with the car dataset performing worst. Nevertheless, the median
performances of the four designs seems fairly consistent for each
dataset which is encouraging.

The strip plots in Fig. 9 also reveal that the scores for each
design and dataset are not normally distributed, calling for the
use of a non-parametric statistical test. We first considered the
Mann–Whitney U test taken over all four datasets, but this was
not possible since the data sets varied about different median
(as discussed above). We therefore applied the Aligned Rank
Transform ANOVA (ART ANOVA) which aligns the data first
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Fig. 8: 4/128 exemplar sets marked by 4/16 participants in our user study. In each figure the two red dots represent the two terminal
exemplars while the blue dots are user selections. Each of these scenarios (a-b) corresponds to the respective scenario shown in Fig. 7.

Fig. 9: Evaluation results. Each dataset has four strips with different
colors that indicate the designs (see legend top right). Each bar in
the strip represents the median score for that dataset and design.

before the ranks are calculated. The results are captured in Table 1.
We observe a significant effect of the designs on evaluation score,
and we also observe a significant effect of the datasets. There is,
however, no interaction effect (des*dat) between the datasets and
the designs. All of these quantitative outcomes are also directly
observable in the strip plots of Fig. 9, as discussed above.

To study the effects of the individual designs we conducted a
post-hoc test and the results are shown in Table 2. We observe that
the lower performance of the baseline design (the original DCM)
with regards to all designs proposed in this paper is statistically
significant (p� 0.05). The difference among the three new designs,
however, is more nuanced. While the terrain outperforms the
iso-line design at p < 0.05, the significance of the value-shaded
design is just below that level, at p = 0.058. This somewhat subtle
difference in performance of the two designs with regards to the
iso-line design is also evident by their statistically insignificant
p = 0.8705 when directly compared.

8 DISCUSSION

It is encouraging to see that any of the three graphical enhancements
we proposed can provide users with a significantly better appreci-
ation of the attribute-contextualized data visualization generated
by the DCM than the original DCM. Furthermore, there is also
statistical evidence that the topographic terrain map is superior to

df df.res F P
Designs 3 112 9.35 < 0.0001
Datasets 3 112 107.76 < 0.0001
Des*Dat 9 112 0.49 0.88

TABLE 1: The result of the two-way ART ANOVA test. The p-
values show whether there is a statistically significant effect. We
regard it statistically significant if p < 0.05.

design pairwise estimate SE df t.ratio p.value
baseline - iso-contour -22.56 8.8 112 -2.57 0.0117

baseline - terrain -40.81 8.8 112 -4.64 < 0.0001
baseline - value-shaded -39.38 8.8 112 -4.48 < 0.0001

iso-contour - terrain -18.25 8.8 112 -2.07 0.0403
iso-contour - value-shaded -16.81 8.8 112 -1.91 0.0586

terrain - value-shaded 1.44 8.8 112 0.163 0.8705

TABLE 2: Post-hoc results of the 6 possible design pairings. We
consider a difference statistically significant if the p-value < 0.05.

the colored iso-contour map which can be fairly easily derived from
the DCM. Yet, there is no statistically significant difference between
the topographic terrain map and the value-shaded topographic map.
This is a positive outcome since the terrain map is more scalable
than the value-shaded map and thus more general.

The iso-contour and value-shaded maps can get confusing when
a large number of contour lines or colored areas end up crowding
the space. By comparison, the terrain map is more scalable since it
aggregates the various sets of iso-contour regions and creates the
terrain from them. Higher elevations then denote regions where
either one attribute highly dominates or where multiple attributes
have favorable values. Looking at the proximity of attributes to
these elevated regions can help users distinguish among these
two cases. Data objects on a peak with one attribute sitting on
top are likely dominated by that attribute and are more extreme
in nature. Conversely, data objects on an elevated plateau or a
saddle region with several attribute nodes in proximity are likely
to be data objects that are strong in multiple attributes but not
extreme in any of them. These are good candidates for exemplars.
Additional attributes would then either give rise to individual peaks,
if uncorrelated to any existing attribute, or else harden existing
saddles or plateaus. This behavior makes the terrain preferable for
larger numbers of attributes.

An inherent limitation of our evaluation is that our Pareto
frontier-based algorithm, which generated the benchmark data, had
access to much more comprehensive spatial information, namely
the high-D data, than a human user who could observe the DCM
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embedding of the data only. Despite this advantage we were
still able to observe clear patterns in the user performance for
different graphical enhancements, as described in the previous
section. Making these determinations was the goal of this work.

Going forward, we believe there could be an opportunity to
integrate the algorithmically generated Pareto frontier, or segments
of it, into the DCM as initial suggestions which the user might then
refine as desired. This has high potential for making the search
for good exemplars more efficient and accurate, and at the same
time still affords the user to make preferential choices, yet better
informed. New research would be needed to determine how these
suggestions are integrated into the display and to what extent,
to avoid biasing the user to the algorithm’s choices. It might be
advisable to choose a denser set of suggested exemplars, possibly
colored by their quality, as extracted from the algorithm.

It was interesting to see that the terrain display was significantly
better than the iso-contour display but the value-shaded display was
not. To boost the performance of the latter one might make use of
textures such that overlapping regions could be better differentiated
and visualized [58]. Yet another option could be to assign specific
colors to certain multivariate value configurations [15].

Shortcomings of our method are similar to embedding systems
in general: as the number of variables increases the mapping
becomes increasingly inaccurate. This gets even worse when the
attribute context needs to be preserved as well. Scalability to larger
number of attributes can be achieved by clustering, followed by a
multi-scale semantic zooming approach as described in [70]. There,
a set of correlated attributes is replaced by the most dominant
attribute, as determined by its interaction with other attributes, or
by a specific hypernym attribute [41]. This in essence is similar
to “chunking” which Miller [46] describes as the method used
by humans to deal with a greater amount of information, such as
grouping single letters into words or grouping single-digit numbers
into blocks of multi-digit numbers. Prior dimension reduction or
an interactive dimension selection interface to reduce the number
of variables a manageable number can also be a viable option.

9 CONCLUSION

Our paper presented a novel visual interface not only for exemplar
selection but also for multi-criteria decision making in general.
It enables the decision maker to constrain criteria and then
evaluate the existing trade-offs and the data objects that realize
them. Traditional Pareto optimization methods typically work
outside the user’s control and are somewhat disconnected from
a user’s penchant to express personal preferences and intuition.
Our approach puts the user into the loop by way of a dedicated
visualization interface. It features a graphically enhanced map-
like layout and a set of scented widgets which an analyst can
use to express personal preferences and explore the available
choices. Once expressed, these choices are then visualized as
a path in the map display. The path can subsequently be utilized
to populate a stacked area chart which conveys the trade-offs as
smooth transitions. Our user study revealed that the graphical
enhancements we designed help users in this task. In the future we
hope to expand the user study further to gain more insight into the
scalability of our method. Finally, we believe that these graphical
enhancements might also be helpful to address similar tasks in
other Attribute-Contextualized Data Visualizations, such as RadViz
and Dust+Magnet. We plan to study this capacity in the future.
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L. Jurišica. Path planning with modified a star algorithm for a mobile
robot. Procedia Engineering, 96:59–69, 2014.

[20] R. Faust, D. Glickenstein, and C. Scheidegger. Dimreader: Axis lines that
explain non-linear projections. IEEE Transactions on Visualization and
Computer Graphics, 25(1):481–490, 2018.

[21] L. Ferariu and C. Cı̂mpanu. Multiobjective hybrid evolutionary path
planning with adaptive pareto ranking of variable-length chromosomes. In
2014 IEEE 12th international symposium on applied machine intelligence
and informatics (SAMI), pp. 73–78. IEEE, 2014.

[22] M. Friendly and D. Denis. The early origins and development of
the scatterplot. Journal of the History of the Behavioral Sciences,
41(2):103—130, 2005.

[23] S. Gratzl, A. Lex, N. Gehlenborg, H. Pfister, and M. Streit. Lineup: Visual
analysis of multi-attribute rankings. IEEE Transactions on Visualization
and Computer Graphics, 19(12):2277–2286, 2013.
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[30] M. Hogräfer, M. Heitzler, and H.-J. Schulz. The state of the art in map-like
visualization. In Computer Graphics Forum, vol. 39, pp. 647–674, 2020.

[31] C.-L. Hwang and A. S. M. Masud. Multiple objective decision
making—methods and applications: a state-of-the-art survey, vol. 164.
Springer Science and Business Media, 2012.

[32] S. Ingram, T. Munzner, and M. Olano. Glimmer: Multilevel mds on
the gpu. IEEE Transactions on Visualization and Computer Graphics,
15(2):249–261, 2008.

[33] A. Inselberg and B. Dimsdale. Parallel coordinates for visualizing multi-
dimensional geometry. In Computer Graphics, pp. 25–44, 1987.

[34] E. Kandogan. Star coordinates: A multi-dimensional visualization tech-
nique with uniform treatment of dimensions. In Proc. IEEE Information
Visualization Symposium, vol. 650, p. 22, 2000.

[35] G. A. Kiker, T. S. Bridges, A. Varghese, T. P. Seager, and I. Linkov.
Application of multicriteria decision analysis in environmental decision
making. Integrated Environmental Assessment and Management: An
International Journal, 1(2):95–108, 2005.
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