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Abstract—Statistical iterative reconstruction (SIR) algorithms
have shown great potential for improving image quality in
reduced and low dose X-Ray Computed Tomography (CT).
However, high computational cost and long reconstruction times
have so far prevented the use of SIR in practical applications.
Various optimization algorithms have been proposed to make
SIR parallelizable for execution on multi-core computational
platforms, while others have sought to improve its convergence
rate. Parallelizing on a set of decoupled voxels within an iterative
coordinate descent (ICD) optimization framework has shown
good promise to achieve both of these premises. However, so
far these types of frameworks come at the price of additional
complexities or are limited to parallel beam geometry only.
We improve on this prior research and present a framework
which also achieves parallelism by processing sets of independent
voxels, but does not introduce additional complexities and has no
restrictions on beam geometry. Our method uses a novel multi-
voxel update (MVU) scheme within a general ICD framework
fully optimized for acceleration on commodity GPUs. We also
investigate different GPU memory access patterns to increase
cache hit-rates that result in improved time performance in
the ICD framework. Experiments demonstrate speedups of two
orders of magnitude for clinical datasets in cone-beam CT
geometry, compared to the single-voxel update (SVU) scheme
native to conventional ICD-based SIR. Finally, since our MVU
scheme operates on fully independent voxels it maintains the
fast convergence properties of ICD-based SIR. Consequently, the
speedups achieved by parallel computing are not diminished by
slower convergence of the iterative updates or by any additional
overhead to decouple conflicting voxels.

Index Terms—statistical iterative CT reconstruction, SIR, iter-
ative coordinate descent optimization, ICD, multi-voxel update,
GPU, CUDA

I. INTRODUCTION

THE statistical iterative reconstruction (SIR) algorithm for
computed tomography (CT) has shown great potential

to generate high quality images with less artifacts and noise
even in reduced X-ray settings. This capability mainly results
from the statistical noise modeling that puts higher weight on
reliable measurements while deemphasizing noisy measure-
ments. It solves the following weighted least-squares (WLS)
cost function:

x̂ = arg min
x≥0

{
1

2
(y −Ax)TW(y −Ax) +R(x)

}
, (1)
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where y = (y1, . . . , yM )T is the vector of CT measurements
and x = (x1, . . . , xN )T is the vector representing the un-
known object subject to reconstruction. M is the total number
of CT measurements computed by multiplying the number of
detector bins with the number of projection views, while N
is the number of voxels in the 3D volumetric object. A is
the system matrix of size M × N in which each element,
aij , represents the contribution of the j-th voxel to the i-th
CT measurement [1]–[4]. W is a M × M diagonal matrix
of (λ1, . . . , λM ) in which λi represents the photon count for
the i-th measurement [5]. The first term in Eq.(1) is the data-
fidelity term where the simulated forward projections of the
estimated object, Ax, is compared with the CT measurement.
The squared difference term is weighted by W to put more
weights on the data less affected by Compton scattering and
photoelectric absorption of the associated X-ray. R(x) is
the regularizing prior function [6]. It only depends on the
object and controls noise while attempting to preserve spatial
resolution [6]–[10]. We use q-generalized Gaussian Markov
random fields (q-GGMRF) for the prior function throughout
this work (see [11] for mathematical details), but mainly focus
on parallelizing the data-fidelity term using modern parallel
processors, such as the GPU.

Broadly speaking, there are two approaches to solve the
WLS minimization problems in Eq.(1). The first approach is
updating the entire volume simultaneously and it includes con-
jugate gradient (CG) methods [12], and ordered-subsets (OS)
algorithms based on separable quadratic surrogates (SQS) [13].
Although these approaches can readily take advantage of the
massive compute resources on the GPU [14], [15], it usually
requires tens to hundreds of iterations to converge [16]. To gain
a better convergence rate, preconditioning methods [12], [17]
that are necessary customized for the given CT image system
and geometry are utilized for CG methods. For OS-SQS, Kim
et al. [18], [19] explored non-uniform update scheme [18] and
momentum techniques [19] for the convergence acceleration.
Recently, Nien et al. [20], [21] proposed OS algorithms based
on a linearized augmented Lagrangian method (LALM) that
can converge even in a few iterations.

The second approach is based on iterative coordinate de-
scent (ICD) optimization which greedily optimizes a single
voxel at a time [6], [22]. Due to the tight feedback from each
voxel during the optimization, this approach converges to a
robust solution quite fast, within 10 to 20 iterations [16]. Even
faster are non-homogeneous ICD update algorithms which use
selective voxel update schemes where convergence can be
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achieved in less than 5 iterations [11]. However, the inherent
single voxel update requirement makes ICD-based SIR much
more difficult to parallelize than its counter parts.

The strive to find a middle ground between two extreme
cases, updating one voxel versus entire ones, led to the
development of the group coordinate descent (GCD) [23] and
the block-iterative coordinate descent (B-ICD) [24] algorithms.
Both aim at finding parallel voxels within a transaxial (xy)
plane where, however, in most cases the coupling among
those voxels remains high. And so, due to this lack of voxel
independence the net acceleration tends to be not overly
dramatic. Another challenge in GCD and B-ICD is to strike
a good balance between cache locality and parallelism. More
parallelism can be found when the number of blocks increases
(i.e. the size of the each block becomes smaller). However,
with smaller blocks the number of cache faults increases due
to the sinusoidal in-plane memory access pattern inherent to
CT. Recently, Wang et al. proposed the concept of super-voxel
(SV) and super-voxel buffer (SVB) to find this balance. They
were able to achieve speed-ups of two levels of magnitude on
multi-core CPUs (x187 on 20 cores vs. single core) [25]. The
concept was successfully extended to a single GPU imple-
mentation for further speed-ups (x4) [26] and was applied to
synchrotron based X-ray CT reconstruction [27]. However, this
work was still limited to parallel beam geometry. Conversely,
the axial block coordinate descent (ABCD) algorithm by
Fessler and Kim [28] looks for parallel voxels along the
axial (z) direction where the amount of coupling is relatively
small, compared to the transaxial plane. Their study, however,
only compared the SQS-based and conventional ICD-based
approaches in terms of convergence.

In our own recent work [29] we attempted to algorith-
mically find maximal groups of parallelizable voxels that
were fully decoupled from each other. This approach revealed
some rather complex patterns very different from the regular
groupings presented in other work [23]–[28]. The patterns
we found offered a theoretical speed-up of two orders of
magnitude (compared to conventional ICD-based SIR) for
any view geometry. However, while the voxels groups were
quite large, which would favor parallelism, the voxels were
distributed throughout the volume slices in pseudo-random
arrangements leading to unfavorable cache behavior. For this
reason, we abandoned this approach in favor of a more
regular arrangement of parallelizable voxels along the axial
(z) direction which we obtain via a dedicated algorithm.

Our work differs from the ABCD algorithm [28] in that
in our case the parallelizable voxels are fully decoupled from
each other and so no additional computational overhead is
needed to undo any overlap effects among voxels processed
in parallel. In addition, most of existing research [23]–[25],
[28] has focused on multi-core high-end CPUs systems, while
our work uses a single GPU which is significantly more
economical. For example, Wang et al. [25] used two high-
end Intel processors at a combined cost of $3,239, while the
single GPU we use in our work costs a mere $509 which is less
than 1/6 of that. Finally, compared to the recent GPU-based
ICD-SIR approach by Sabne et al. [26] which was focused on
parallel beam geometry, our work finds the parallelism across

the axial direction which is more amenable to cone-beam or
helical CT.

The contributions in this work are in two folders. First,
we propose multi-voxel update (MVU) scheme by finding an
optimal set of fully decoupled voxels along the axial direction.
The full independence of these parallel voxels ensures that the
rapid convergence rate of the conventional single-voxel update
(SVU) scheme is preserved, and so is image quality. Second,
we provide details of an effective CUDA implementation
strategy for the three core functions, forward- and back-
projections and ICD update. We find that this implementation
gives excellent GPU utilization even with relatively small
number of voxels that can be processed concurrently compared
to CG- or OS-based algorithms.

The remainder of this paper is organized as follows. Section
II reviews the single-voxel update scheme of conventional
ICD-based SIR and explains the proposed multi-voxel update
schemes. Section III presents our framework and implemen-
tation details. Section IV reports on experimental results we
obtained with our ICD-based SIR with the new multi-voxel
update scheme. Section V concludes this paper with discussion
and future works.

II. METHODOLOGY

A. Single-voxel update in ICD-SIR

The conventional ICD-based statistical iterative CT recon-
struction (ICD-SIR) algorithm operates in a sequential fashion
and updates a single voxel at a time. This minimizes the cost
function of Eq.(1) for the chosen voxel xj while keeping all
remaining voxels fixed. Formally, the update is:

xj = arg min
xj≥0

{
1

2
(y −Ax)TW(y −Ax) +R(xj)

}
. (2)

This update can be computed efficiently by tracking the
residual projections defined by e = Ax − y. To do this, the
first (θ1) and second (θ2) derivatives of the data-fidelity term
in Eq.(2) are computed as follows:

θ1 =

M∑
i=1

λiAijei (3)

θ2 =

M∑
i=1

λiA
2
ij , (4)

where ei is the i-th residual projection value; and λi is the
i-th element of the diagonal weight matrix, W. Then, the
minimization of the 1D objective function for xj is derived
from Eq.(2) as follows [30]:

xj ← arg min
r≥0

{
θ1r +

θ2(r − x̄j)
2

2
+ f(r,x∂j)

}
, (5)

where x̄j is the attenuation of the j-th voxel before the update
and f(r,x∂j) is a prior model that typically takes 26 neighbors
of the j-th voxel into account. The residual projections are
updated by forward projecting the voxel update amount, xj −
x̄j . The overall procedure of the single voxel update (SVU)
scheme is listed in Algorithm.1. Note that we explicitly follow
the mathematical details of the SVU scheme outlined in [22].
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Algorithm 1: Single Voxel Update (SVU)
1 Function SVU(A,W,x,e,j)
2 x̄j ← xj ;
3 θ1 ← Eq.(3) ;
4 θ2 ← Eq.(4) ;
5 xj ← Eq.(5) ;
6 e← e + A∗j(xj − x̄j) ;
7 end

In the SVU scheme each selected voxel, xj , first back-
projects the error terms corresponding to this voxel into image
space, and after solving the 1-D object function for this voxel
the error terms corresponding to this voxel are updated by
forward projecting the updated amount. In the following, we
will describe our proposed multi-voxel update (MVU) scheme.
It is different from SVU in that it identifies not one voxel, but
a set of voxels, which however like sequential SUV have non-
overlapped correspondences with the error terms. This enables
a parallelized sequential SVU without adverse side effects.

B. Multi-voxel update in ICD-SIR

The multi-voxel update (MVU) scheme is achieved by first
identifying voxels that do not have shared correspondences
with projection data. More specifically, we say that two voxels,
i and j, are parallelizable if the correlation is zero (cor(i, j) =
0). We define the correlation as follows [25], [29]:

cor(i, j) =

M∑
k=1

|aki| · |akj | . (6)

For example, in Fig.1, voxel C has a non-zero correlation with
both voxel A and B due to several shared (detector bin) data
correspondences and hence cannot be simultaneously updated
with others. On the other hand, voxel A and B do not have
shared data correspondences (i.e. zero correlation), and hence
they are good candidates for parallel updates. Essentially, with
these voxels having zero correlation, the MVU is simply a
parallel execution of traditional SVU.

Another important aspect to consider when choosing the set
of parallelizable voxels is the memory access patterns for the
CT projection data. This pattern changes per given viewing
geometry, such as cone beam, helical beam, and so on. Let
us denote the s- and t-axis the local coordinate system of a
flat X-ray detector in which the t-axis is parallel to the z-
axis. Also, let us assume that the X-ray source-detector pair
is rotating about the rotation axis, which is aligned with the

Fig. 1. Example of correlation among voxels in CT system matrix view

z-axis, following a helical path. At a projection angle (β), the
central positions of the X-ray source (Psrc) and the detector
(Pdet) can be formulated as follows:

Psrc = [dsad · sinβ, −dsad · cosβ, hβ] , (7)

Pdet = [−dadd · sinβ, dadd · cosβ, hβ] , (8)

where dsad and dadd are srouce-axis and axis-detector dis-
tance, respectively. Its pitch is defined as 2πh where h ∈ R
and h > 0 for a helical path and h = 0 for a circular path.
Then, the projected position, (s, t), of a point, P(x, y, z), onto
the detector is computed as follows:

s = κ× (ŝ ·P) , (9)

t = κ× (z − hβ) , (10)

where κ is computed as

κ =
dsad + dadd
dsad + r̂ ·P

. (11)

Here, ŝ is the direction unit vector of the s-axis and r̂ is
the orthogonal unit vector connecting the X-ray source to the
detector plane at a projection view, β. For a path rotating in
counter clockwise direction, they are computed as

ŝ = [cosβ, sinβ, 0] (12)

r̂ = [− sinβ, cosβ, 0] . (13)

For a circular path (h = 0), projected positions of voxels
located within the same slice exhibit a large amount of
variation in the s-axis, resulting in a sinusoidal pattern over
different views (see Eq.(9)). Not only does this pattern make it
difficult to find fully decoupled voxels within the same slice,
it also results in poor cache locality since it requires a voxel to
access different entries of the CT projection data for different
views [25]. On the other hand, voxels in different slices but
at the same xy-position typically are only loosely coupled
or even fully decoupled. In addition, their projected positions
have less variations along the t-axis (see Eq.(10)). Hence, it
seems better to find parallelizable voxels along the z-direction,
as this results in better cache locality when fetching the CT
projection data (provided they are stored with the leading
dimension being the t-axis). Fig.2 illustrates voxel correlations
and memory access patterns when voxels are in the same
slice but at different xy positions (Fig. 2a), or in different
slices but at the same xy position (Fig.2b). Similar patterns
are also observed in a helical path (h > 0). For example, in
Fig.2c, there are two sets of voxels sampled in two different z-
positions. While voxels in a set have zero-correlation and thus
can be processed concurrently, voxels in a same slice interfere
with each other in the corresponding projection space (along
s- and t-axis).

We modified the algorithm we presented in [29] to find
sets of fully decoupled (and therefore parallelizable) voxels
along the z-direction, for a given CT geometry and set of
projection views. Let us assume a 3D volume object of size
Nx × Ny × Nz with voxel size ∆x × ∆y × ∆z mm3 which
we wish to reconstruct. Then, due to the sinusoidal projection
pattern there are Nx×Ny SVUs which cannot be parallelized
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Fig. 2. Voxel correlations and memory access patterns. For a circular path, (a) when voxels are in the same slice, there are at least one or two intersections
that give rise to non-zero correlations among the voxels. Also, memory access patterns for CT projection data widely varies along the s-axis. (b) For the
well grouped voxels along the z-direction, zero correlations can occur already with small variation along the t-axis, resulting in better cache locality along
the t-direction as well as good parallelism along the z-direction. Similarly in a helical path, (c) for voxels sampled along the z-direction (either red or blue),
they have zero correlations as they do not interfere with each other in (d) s-axis and (e) t-axis over all views.

when Nz is equal to 1. On the other hand, for Nz > 1
and for each voxel in the xy-plane, a group of parallelizable
voxels can be found by looping over all voxels at that slice
position along the z-direction. For each such voxel and view
we compute the range [tmin,β , tmax,β] of projected positions.
Given a view, β, for example, tmin,β is the minimum value of
t computed using Eq.(10) over the 4 projected voxel corners,
(x ± ∆x/2, y ± ∆y/2, z − ∆z/2); in similar way, tmax,β is
the maximum value of t using the 4 projected voxel corners,
(x ± ∆x/2, y ± ∆y/2, z + ∆z/2). Next, these ranges are
compared with the union of all ranges of the parallelizable
voxels aggregated in the group so far. If and only if there are no
overlaps in all views, the voxel is added to the current group.
These two steps are repeated until all voxels are checked for
the current group. We then repeat this process until all voxels
along the z-direction have been assigned to any group. For
example, in Fig.2b, the five voxels along the z-direction are
updated simultaneously because there are no overlaps in all
projection views, and same for voxels colored in either blue
or red in Fig.2c.

III. CUDA IMPLEMENTATION

For the ICD-SIR framework we seek to accelerate, the back
projection’s task is to compute θ1 in Eq.(3) and θ2 in Eq.(4)
while the forward projection operation updates the error terms,
e, for each voxel, as x̄j − xj . The 1D minimization problem
in Eq.(5) can vary according to the prior model, R(x).

Our proposed multi-voxel update (MVU) scheme for ICD-
SIR (see section.II-B) aims to parallelize both the forward-
and back-projection via dedicated CUDA kernels over K
parallelizable voxels within a group, g, and Nβ projection
views. Both kernels are built on top of the separable footprint
(SF) projector where we use the trapezoid-rectangle function
for and the A1 amplitude method [3] for efficiency. Algorithm
2 presents an overview of our MVU-based ICD-SIR method.

In the following, Section III-A describes an efficient im-
plementation of the SF projection kernel, while Section III-B

Algorithm 2: MVU-accelerated ICD-SIR
G : parallelizable voxel groups (See Section.II-B)
g : a group of parallelizable voxels (See Section.II-B)
K: the number of voxels in a group

1 Procedure MVU ICD SIR
2 Initialize transaxial footprint (Section. III-A) ;
3 for g ∈ G do
4 K ← length(g) ;

/* compute θ1s and θ2s for all K voxels */
5 BP(g,K) ;

/* solve 1D minimization object function of Eq.(5) */
6 VoxelUpdate(g,K) ;

/* update projection error with the new voxel value */
7 FP(g,K) ;
8 end
9 end

discusses our GPU memory management. The actual GPU
implementation of the forward- and back-projection operations
is covered in Sections III-C and III-D. We also describe an
efficient CUDA implementation strategy for Eq.(5) with a
prior model including a 26 neighborhood for each of the
K voxels. It is worth mentioning that the efficient CUDA
implementation of the three core functions, FP, BP, and
VoxelUpdate in Algorithm 2 is accomplished by maximizing
GPU utilization in terms of CUDA occupancy [31] along with
efficient CUDA memory utilization to handle relatively small
number of voxels that can be processed in parallel compared
to conjugate gradient-based approach [12], [32], [33].

A. Separable Footprint CT projector

We used the separable footprint (SF) projector with the
trapezoid-rectangle function and the A1 amplitude method [3].
A convenient property of the SF is that it is separable into
a transaxial- and an axial-footprint as well as the amplitude
term. Hence, for an efficient GPU implementation we can pre-
compute the transaxial footprint for the given CT geometry to
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avoid redundant computations during the forward- and back-
projections. To do this, we define the transaxial footprint size
of a voxel at a given view as follows:

footxy = 2 · max
i=1...4

|sc − si| , (14)

where sc is the projected location of a voxel center in the
center slice, (x, y, 0), onto the s-axis, using Eq.(9). In a similar
fashion, with ∆x and ∆y denoting the voxel’s size in the
x- and y-directions, si is one of the four projected voxel
corner locations, (x±∆x/2, y±∆y/2, 0), on the s-axis. The
maximum transaxial footprint size, footmaxxy , encompassing
the transaxial footprint sizes of all voxels is then determined
by applying Eq.(14) for the four corner voxels in the field-of-
view for all projection views.

Having fixed the size of the transaxial footprint as footmaxxy

for each voxel, we allocate (Nβ×Nf )× (Nx×Ny) of global
memory to store all of the precomputed transaxial footprint
information. Here, Nβ is the number of projection views,
Nx ×Ny is the number of voxels in a volume slice, and Nf
is the length of the footprint information array dedicated for
each voxel in the slice. Note that we only need to store the
information for one slice since the other slices have identical
information. Nf (= footxy+3) is the size of a vector array that
contains the transaxial footprint values and three additional
pieces of information required for the efficient execution in
the projection kernels. This information includes (1) the start
index of the transaxial footprint, (2) the value for κ in Eq.(11)
that is used for computing the detector bin index along the
t-direction, and (3) the part of the A1 amplitude term related
to the azimuthal (projection) angle, β (see Eq.(37) in [3]).
Note that one can easily adapt this part, and the forward- and
back-projection kernels listed in Algorithm 3 and 4 to support
distance-driven projector [2] as it also utilizes the separable
properties for the efficient GPU implementation [34].

B. GPU memory management

We store the Nx × Ny × Nz volume data in z-major
order, that is, the leading dimension is the z-direction. This is
advantageous for two reasons: (1) the K voxels in a group (see
Algorithm 2) are aligned along the z-axis, and (2) there is less
indexing variation in the t-direction (which is aligned with the
z-axis) than in the s-direction. Since the volume data are stored
in global memory, this storage order will ensure a coalesced
memory access pattern and also increase the probability that
accesses of voxels in the same group will hit the L2 cache
when their values are read or written. For similar reasons, the
Ns×Nt×Nβ CT projection data are stored in global memory
along the t-direction.

C. Back projection kernel

Let us denote Blkx and Blky as the number of voxels and
views, respectively, considered in a certain thread block. Hence
there are Blkx×Blky threads in such a block. Note that voxels
in each thread block are chosen at appropriate locations along
the z-direction since they are independent and have good as
cache coherency, as discussed earlier.

Algorithm 3: BP kernel to compute θ1 and θ2
gFxy : transaxial footprint at (x, y) position (Nβ ×Nf )
idx : voxel index to be updated (K × 1)

Result: K × 1 of gθ1 and gθ2 in Eq.(3) and Eq.(4)

1 global void BP kernel(. . .)
2 shared sF [Blky ×Nf ] ;
3 shared sθ1[Blkx ×Blky] ;
4 shared sθ2[Blkx ×Blky] ;

5 tx← threadIdx.x ;
6 ty← threadIdx.y ;
7 ivox← blockIdx.x ·Blkx + tx ;
8 iview← blockIdx.y ·Blky + ty ;

/* Step 1: pre-fetch transaxial footprint */
9 if (tx < Nf and iview < Nβ) then

10 sF [tx ·Blky + ty]← gFxy[iview ·Nf + tx] ;

11 syncthreads() ;

/* Step 2: back-project error terms in Eq.(3) and Eq.(4) */
12 [θ1,β , θ2,β ]← 0 ;
13 iz← Nz ;
14 if (ivox < K and iview < Nβ) then
15 iz← idx[ivox] ;
16 Compute θ1,β and θ2,β with SF [3] ;

17 sidx← tx ·Blky + ty ;
18 sθ1[sidx] = θ1,β ;
19 sθ2[sidx] = θ2,β ;
20 syncthreads() ;

/* Step 3: parallel reduction within a thread block */
21 if ty < 4 then
22 sθ1[sidx] = θ1,β = θ1,β + sθ1[sidx + 4] ;
23 sθ2[sidx] = θ2,β = θ2,β + sθ2[sidx + 4] ;

24 syncthreads() ;
/* repeat above 4 lines until ty < 1 */

25 ...

/* sequential reduction over blocks using atomic operations */
26 if (ty = 0 and iz < Nz) then
27 atomicAdd (gθ1 + ivox, θ1,β) ;
28 atomicAdd (gθ2 + ivox, θ2,β) ;

Since the voxels in a block all have the same (x, y) coordi-
nate they only require one footprint information array per view.
And so, the array portion dedicated for the thread block’s Blky
views can be shared among its Blkxvoxels. To avoid redundant
computations, the footprint information is precomputed (see
Section.III-A) and stored in global memory. To minimize any
expensive global memory accesses, the footprint information
is first pre-fetched from global memory and then stored in
shared memory. Shared memory is as fast as local registers
provided there are no bank conflicts [35].

Once the footprint information has been stored in shared
memory and is available to all threads in a thread block, each
thread computes a part of θ1 in Eq.(3) and θ2 in Eq.(4) by
back-projecting the projection error, e, weighted by W, onto
the thread’s target voxel using the separable footprint projector.
A thread only computes θ1,β and θ2,β corresponding to a
specific view, β, and the results are stored in shared memory.
They are then added in a subsequent parallel reduction step
(within the thread block) [36] in which only a subset of
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Algorithm 4: FP kernel to update the error term, e
gAtt : the attenuation to be updated (K × 1)
idx : voxel index to be updated (K × 1)

Result: Updated error projection term, e

1 global void FP kernel(. . .)
2 shared sF [Blky ×Nf ] ;
3 shared sA[Blkx];

/* same as FP for thread preparation */
4 ...

/* same as FP for pre-fetching transaxial footprint */
5 ...

/* pre-fetch attenuation */
6 if (ivox < K and ty == 0) then
7 sA[tx] = gAtt[ivox];

8 syncthreads() ;

/* update projection error terms, e */
9 if (ivox ≥ K and iview ≥ Nview) then

10 return ;

11 iz← idx[ivox] ;
12 att← sA[tx] ;

13 Projecting att with the SF [3] ;

the block’s threads participate. Lastly, once the within-block
aggregation phase has completed, the reduction results of the
different blocks are sequentially added to global memory using
atomic operations.

Algorithm 3 shows the pseudo CUDA code for the back-
projection kernel, where we specifically focus on shared
memory utilization. When using shared memory it is important
to ensure that any updates are visible to all threads in a thread
block before the data stored there is actually utilized. This is
accomplished by using the CUDA API, syncthreads(), to
set a barrier at which all threads in a thread block must wait
until all of them reach it. Only then the threads are allowed to
proceed [35] to the next task. We note that in our application
the branch for parallel reduction in line 22 to 25 starts when
threadIdx.y is less than 4 assuming Blky = 8.

D. Forward projection kernel
The CUDA implementation of the forward projection kernel

is similar to that of the back projection kernel due to the
symmetry of volumetric CT projectors [2]–[4]. The main
difference is that while the back projection accumulates the
corresponding projection values into a voxel, which is a so-
called gathering operation, in the forward projection, the voxel
value is spread out to the corresponding projections, which is
the so-called scattering operation [31].

Algorithm 4 shows the pseudo code for the forward pro-
jection kernel. In this kernel, the parameters Blkx and Blky
are set to the same values as in the back projection kernel.
The shared memory stores the K pre-fetched, updated voxel
values from global memory as well as the transaxial footprint
information. As noted above, the voxels are chosen to have
no overlaps in the projection data for all views (i.e. have zero
correlation in Eq.(6)), Atomic operations are not needed while
projecting the updated voxel values to the error projections.

Algorithm 5: Voxel update kernel
ix, iy : common x and y index of K parallelizable voxels
f1 : prior model computing influence of neighbor voxels
θ1, θ2: the first and second derivative of Eq.(2) (K × 1)
idx : voxel index to be updated (K × 1)
d : updated voxel amount, x̄j − xj (K × 1)

Result: Updated the object, x, and the updated amount, d

1 global void voxelUpdate kernel(. . .)
2 shared att ctr[Blkx][3] ;
3 shared influ[Blkx] ;
4 att nei[3] ; /* private register per thread */

5 tx← threadIdx.x ;
6 ty← threadIdx.y ;
7 ivox← blockIdx.x ·Blkx + tx ;
8 iz← idx[ivox] ;

/* pre-fetching attenuation */
9 sx← cStepx[ty] ; /* cStepx(y) is in constant memory */

10 sy← cStepy[ty] ;
11 att nei[1]← x[iz + 1][ix + sx][iy + sy] ;
12 att nei[2]← x[iz + 0][ix + sx][iy + sy] ;
13 att nei[3]← x[iz− 1][ix + sx][iy + sy] ;
14 if (ty == 0) then
15 att ctr[tx][1]← x[iz + 1][ix][iy] ;
16 att ctr[tx][2]← x[iz + 0][ix][iy] ;
17 att ctr[tx][3]← x[iz− 1][ix][iy] ;

18 syncthreads() ;

19 xj ← att ctr[tx][2] ;
/* compute influence of three neighbors */

20 for i = 1 to 3 do
21 δ ← xj − att nei[i] ;

/* atomic operations in shared memory */
22 atomicAdd (influ + tx, f1(δ)) ;

23 if (ty == 0) then
/* same as above for two neighbors at (ix, iy, iz ± 1) */

24 syncthreads() ;

/* update attenuation */
25 if (ty == 0) then
26 x̄j ← max (0, influ[tx] + θ2[ivox] · xj − θ1[ivox]) ;
27 x[iz][ix][iy]← x̄j ;
28 d[ivox]← x̄j − xj ;

E. Voxel update kernel

We assume a prior model that operates on a neighborhood
of 27 voxels (one center voxel and its 26-connected direct
neighbors). Given K voxels that can be updated in parallel,
an efficient CUDA kernel implementation for solving Eq.(5)
needs to fulfill two key properties. First, given that these voxels
will be stored in global memory, we must ensure that their
memory access pattern is well coalesced to maximize L2 cache
hit rate (see Section.III-B). The second requirement is that
there should be a sufficient number of warps in the thread
blocks in order to hide the long latency incurred for fetching
the voxel values from global memory [31]. Algorithm 5 shows
the corresponding CUDA pseudo-code we designed to satisfy
both of these conditions.

Let us denote Blkx and Blky as the number of threads
in a 2D thread block, with Blkx ≤ K being the number
of voxels processed in parallel and Blky = 8 being the
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Fig. 3. Comparison of a corresponding slice taken from volumes reconstructed with FBP as well as with the two ICD-SIR schemes - the conventional SVU
and our MVU each after 4 iterations. The visual quality obtained with our MVU scheme is virtually identical to that obtained with the conventional SVU
scheme and the convergence curves are also very similar.

number of neighborhood voxels in the xy-plane. Each thread
takes responsibility for one of these 8 neighbors (at a given
xy-position). It fetches the associated 3 voxels in the z-
direction, computes and sums their influences, and adds the
result to the overall voxel update using an atomic operation.
A thread’s x and y offset from the target voxel in the center
of its neighborhood is obtained from an array stored in
constant memory as cStepx = [−1, 0, 1,−1, 1,−1, 0, 1] and
cStepy = [−1,−1,−1, 0, 0, 1, 1, 1], respectively.

After computing the target voxel’s index, iz (line 5−8), each
thread fetches the three voxel values in the z-direction at its
designated xy-offset and stores them in three private registers,
att nei (line 9 - 13). The central voxel and its two z-neighbors
are taken care of by threads with threadIdx.y = 0 and stored
as a 3D-array (for each voxel) in shared memory (line 14 -
17). The center of that array is the target voxel, xj (line 19).

With all required data fetched from global memory and
put into the right locations, the thread computes and adds
the influences of its three z-connected voxels using the prior
model f1 (line 20 − 23). After all 27 neighbor (and own)
influence contributions have been collaboratively added by the
9 threads associated with the target voxel (barrier in line 24),
the ty = 0 thread solves the 1D minimization problem in
Eq.(5) with the θ1 (Eq.(3) and θ2 (Eq.(4) factors stored in
the corresponding arrays filled in the back-projection kernel.
We note that although we use a 3-D indexing scheme for
the volume data, x, in Algorithm 5 for brevity, in the actual
implementation the data is flattened and stored in a 1-D array.
A detailed 1-D indexing scheme is discussed in Section IV.

IV. RESULTS

We begin by comparing the reconstruction quality achieved
with conventional filtered back-projection (FBP) and with
our ICD-SIR using the multi-voxel update (MVU) scheme.
For these reconstructions, we obtained 391 X-Ray projec-
tions over 360° by scanning a lumbar region with 20 cm
field-of-view using a Medtronic O-arm O2 surgical imaging
system under low-dose conditions (120 kVp, 40 mA). The
system has a source-detector distance of 1147.7 mm and a
source-axis distance of 647.7 mm. Its X-ray flat detector has
Nx × Nt = 1024 × 386 detector bins with a bin size of

∆s × ∆t = 0.384 × 0.755 mm2. All reconstructions had a
resolution of Nx ×Ny ×Nz = 512× 512× 512 with a voxel
size of ∆x × ∆y × ∆z = 0.415 × 0.415 × 0.3 mm3. Fig.3
shows an example slice of the 3-D volumes we reconstructed
using FBP and ICD-SIR with both the SVU and the MVU
schemes. For ICD-SIR, the reconstructed volume was obtained
after 4 iterations which took about 2.5 minutes for MVU and
about 10.5 hours for SVU, in total. We found that the MVU-
based version exhibited a similar convergence rate than the
conventional ICD-SIR method using SVU scheme. We also
observe that the reconstruction obtained with the SVU scheme
is virtually indistinguishable from the one generated with our
MVU scheme. Fig.3 confirms what has already been amply
demonstrated in the literature [6], [8], [11], [22], [37], namely
that ICD-SIR achieves significantly better reconstruction qual-
ity with less noise and CT artifacts (including streaks and
beam-hardening effect) than FBP.

We also observe that the reconstruction obtained with the
conventional SVU scheme is virtually indistinguishable from
the one generated with our MVU scheme.

In the following, we will present results that are related
to the main premise of this paper – accelerating ICD-SIR.
We will compare the time performance of the proposed multi-
voxel update scheme with that of the conventional single-voxel
update scheme within a GPU-accelerated ICD-SIR framework.
To gain further insight we will also present an analysis of the
three CUDA kernels listed in Algorithm 3 to 5.

A. Analysis of CUDA kernels in ICD-SIR
We first conducted an experiment to see how data arrange-

ment affects the time performance of the three CUDA kernels
listed in Algorithm 3-5. First, for both the forward- and back-
projection kernels, the 2-D projection data were arranged in
a 1-D array in two different ways: (1) with the s-axis as the
leading dimension (called ST order), and (2) in the transposed
arrangement (called TS order). In ST order, the 1-D index
corresponding to the location (is, it) in the 2-D projections is:

indexST = it×Ns + is , (15)

and, for the TS order, the 1-D index becomes

indexTS = is×Nt + it . (16)
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Fig. 4. Projection kernel performance with different thread block configurations and projection data arrangements. (a) TS order, (b) ST order

Here, Ns and Nt are the dimension sizes of the projection
data on the s- and t-axis, respectively. In addition to the data
arrangement, we also investigated the thread block size for
the projection kernels. Let us assume a threat block size of
Blkx ×Blky . where Blkx is the number of voxels and Blky
is the number of views assigned to the thread block.

On recent NVIDIA GPU Pascal architectures [38], a mul-
tiprocessor (MP) can have at most 64 concurrent warps
(2, 048 threads/MP = 64 warps× 32 threads/warp) which can
be distributed in maximal 16 concurrent thread blocks. To fully
utilize the compute resources in a MP, a preferred CUDA
kernel configuration would be 16 blocks with 128 threads
each (2, 048 threads/MP = 16 blocks × 128 threads/block).
Specifically, in order to fully utilize the GTX 1070 processors,
one would want at least 240 blocks with 128 threads each
(240 blocks = 16 blocks/MP× 15 MPs). Therefore, through-
out our experiments we fixed the total number of threads in
a thread block to 128 in order to maximize the computational
occupancy of all multiprocessors on the NVIDIA GTX 1070
GPU we used.

Fig. 4 shows the experimental results we obtained by
measuring kernel execution time averaged over 1000 samples.
In each sample, 256 voxels aligned in the z-direction were
simultaneously forward- and back-projected over 391 projec-
tion views and the xy coordinates of these voxel locations were
randomly chosen. The trans-axial footprint size in Eq.(14) was
5. We readily observe that the TS order offers better perfor-
mance than the ST-order, which confirms our initial thoughts.
The better time performance occurs for both forward- and
back-projection and for all thread block configurations. For
both ordering schemes, the best time performance is observed
when all threads in a block process voxels for the same view
(i.e. 128× 1). On the thread block level, this is due to (1) the
reduced amount of global memory accessing for fetching pre-
computed trans-axial footprint information, (2) the increased
L2 cache hit rate for the projection data, and (3) a smaller
number of thread barriers (only for the back-projection kernel).
This results in about 10 times better performance for forward
projection and about 17.6 times for back-projection than the
TS order. Table I summarizes the time performance for the
forward- and back-projection kernels with a 128 × 1 thread
block size. It is worth noting that for all experiment settings in
Fig.4 the achieved thread occupancy (measured using NVIDIA
Nsight [39]) was between 90 to 98%.

For the voxel update (VU) kernel listed in Algorithm 5 we
used a fixed thread block size of 16 × 8 such that 8 threads

TABLE I
DATA ARRANGEMENT AND TIME PERFORMANCE

order Time(µs) speed-up

FP ST 212.841 n/a
TS 21.412 9.94

BP ST 377.162 n/a
TS 21.322 17.68

VU XYZ 3.899 n/a
ZXY 2.838 1.37

in a thread block collaborated to solve the 1-D minimization
problem in Eq.(5) for the given voxel. We measured the
average execution time for the VU kernel in a similar fashion
than for the projection kernels, by varying the 3-D volume
data arrangement in two different ways. One way was to store
the volume data in a 1-D array with the leading dimension
being the x-axis (called XYZ order), such that the indexing
for a voxel at (ix, iy, iz) becomes:

indexXYZ = ix+Nx × (iy +Ny × iz) , (17)

The other ordering was with the z-axis being the leading
dimension (called ZXY order). Here the indexing is:

indexZXY = iz +Nz × (ix+Nx × iy) . (18)

As shown in Table I, the ZXY order shows about 1.37 times
better performance than the XYZ order since it has a slightly
better cache locality for the voxels along the z-direction.

B. Execution time comparison between SVU and MVU

We compared the time performance of the multi-voxel
update (MVU) scheme with that of the single-voxel update
(SVU) scheme by varying the number of volume slices from
16 to 512 while keeping the number of voxels in the xy-
plane fixed as 512 × 512. For each case, we found that the
number of parallelizable voxels, K, was about half of the
number of z-slices. We note that the GPU-accelerated SVU
is just a special case of MVU when K = 1. The execution
times of MVU and SVU were measured by averaging over
10 iterations in the ICD-SIR framework. The speedup was
computed by dividing SVU execution time by MVU execution
time. Table II shows the results. We observe that MVU shows
speedups of one and two orders of magnitude compared to
SVU and we also observe that the speedup increases as the
number of slices grows, which can be expected. However,
the real speedup drifts apart from the ideal speedup, which
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TABLE II
TIME PERFORMANCE COMPARISONS BETWEEN MVU AND SVU

# slices 16 32 64 128 256 512
K 8 16 32 64 128 256

MVU (min/iter) 0.36 0.36 0.36 0.37 0.57 0.63
SVU (min/iter) 2.8 5.7 11.5 23.1 46.1 90.8

Actual gain 7.9 16.0 31.9 61.3 80.4 143.4
Ideal gain 8 16 32 64 128 256

Fig. 5. Normalized execution time comparison

is the number of parallelizable voxels in each case. This is
largely because of the increased cache miss rate when reading
and writing the projection data during forward- and back-
projection operations. With an increasing number of slices, the
projection data corresponding to the K parallelizable voxels is
increasingly distributed more irregularly due to the increasing
spread and divergence of the cone-beam. This results in the
gap with respect to the ideal speedup.

On the other hand, MVU shows a much slower growth in
execution time than SVU as the number of slices increases.
To observe this behavior, we measured the average execution
time from 50 slices to 500 slices, each over 50 intervals, and
normalized the execution time by that obtained with 50 slices
(i.e. the smallest execution time). Fig.5 shows the normalized
execution time for both MVU and SVU. While both schemes
grow linearly, the approximated slopes estimated using the two
end points of the curves are 0.0015 ≈ (1.68− 1)/(500− 50)
for MVU and 0.02 ≈ (10.13 − 1)/(500 − 50) for SVU. We
observe that SIR-ICD execution time with MVU grows about
13.3 ≈ 0.02/0.0015 times slower than SVU.

V. CONCLUSION

In this paper, we have introduced a conflict-free multi-
voxel update (MVU) scheme to accelerate the ICD-based SIR
framework for general viewing geometries – we focused on
cone-beam with a circular trajectory in this work. Unlike
conventional ICD-based SIR which updates one voxel at a
time, the proposed method updates multiple voxels in parallel.
Since the parallelizable voxels are selected to have zero
correlation with each other, our method does not introduce
any additional complexities within the conventional ICD-
based SIR framework and so does not compromise robustness
and rate of convergence. Using a modern commodity GPU
platform, we show that our MVU scheme can gain speedups

of one to two orders of magnitude, compared to a traditional
single-voxel update (SVU) scheme.

To achieve these high speedups, for example, about x140
for reconstructing a clinically relevant 512×512×512 volume
from 391 cone-beam projections, we have carefully tuned the
CUDA code, the memory access patterns for both projection
and volume data, and the CUDA thread block configurations
for the maximum occupancy. However, despite these efforts
the achieved gain is about x0.56 (≈ 143.4/256) behind the
ideal gain. There are two reasons for this. First, it is due
to the accumulated overhead incurred by kernel launch time
which can prevent achieving the ideal gain for small number of
slices. Secondly, more importantly, we found that the overall
arithmetic pipe utilization (measured by NVIDIA Nsight)
show around 60 % indicating the CUDA kernels are inherently
compute-bound [39].

To get speed-up gain close to the ideal one, we will
first extend our present single GPU approach to support
a multi-GPUs platform such that the computational burden
can be shared among multiple GPUs. One straightforward
way would be to divide 256 parallelizable voxels into four
groups (i.e. 64 voxels per group) and processing them on
4 GPUs in parallel because 64 voxels seem a good number
to process in a single GPU as shown in Table II. We will
also explore possible ways to include loosely coupled voxels
in the z-direction as presented in the ABCD algorithm [28]
(but adding extract computational complexity) or in the xy-
plane in [25], [27], [40] (but tested only for parallel beam
geometry). Furthermore, we would also like to explore our
own more general voxel set identification scheme [29] in a
helical path with different parameter settings including pitch,
dsad, and dadd which might have a non-negligible impact
on the number of voxels that can be processed in parallel.
Finally, in future research we would also like to find a effective
method that includes a non-homogeneous update scheme [11].
The adaptive voxel selection and update might lead to an
unbalanced GPU workload in each iteration step within the
MVU framework. We suspect that there will be trade-offs
similar to those appearing when GPU-accelerating ordered
subsets methods [41]. A solution will hence need to address
two concurrent objectives: (1) improving convergence rate, and
(2) maintaining fast reconstruction performance with the GPU.
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