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Abstract—Iterative reconstruction algorithms are preferably 
used when the projection data are noisy, irregular in acquisition, 
or limited in number or size. They typically offer a set of 
parameters that allow some control over the convergence process, 
both in terms of quality and speed. Examples include relaxation 
factor, number of subsets, regularization coefficients, and the like. 
The interactions among these parameters and within the various 
data conditions can be complex, and thus effective combinations 
can be difficult to identify, leaving their choice often to educated 
guesses. We propose a data-driven learning approach to match 
given data configurations with their most effective reconstruction 
parameter configurations. We overcome the computational 
challenges associated with such a data-intensive approach by using 
commodity high-performance computing hardware (GPUs), 
which themselves have interacting parameters as well.  

Index Terms—Iterative Algorithms, Ordered Subsets, 
Computed Tomography, GPU, Image Quality Metrics 

I. INTRODUCTION 
An effective way to limit the overall radiation dose a patient 

is subjected to in a CT scan is to reduce the number of 
projections and also the radiation per projection. Both, however, 
increase noise in the CT reconstructions, compromising 
contrast as well as resolution. Iterative algorithms have been 
shown to excel in these adverse settings, but due to the absence 
of an exact solution, careful parameter tuning is typically 
required to converge to a solution close to the exact. Examples 
for such parameters include relaxation factor, number of subsets, 
and regularization coefficients. Their choice is often made 
ad-hoc based on some prior experience, yet typically not 
endorsed by a certified level of confidence. An added difficulty 
is that parameters often interact in their effects on 
reconstruction speed and outcome. Thus it can be a non-trivial 
task to derive the most suitable combination for a given data 
scenario. There are two main strategies by which one may arrive 
at effective parameter settings: optimization and data-driven 
learning. Optimization is similar to the reconstruction process 
itself, seeking to find the optimal solution (here the parameter 
configuration) constrained by some objective function. 
However, optimization can be vulnerable to local minima and it 
also lacks in some sense the capability to adapt to new data 
scenarios. Learning, on the other hand, aims to determine a 
process model (described by parameters) from a set of collected 
observations. In our application, these observations are 
reconstructions obtained with parameterizations of a given 
iterative reconstruction algorithm, where the quality of the 
reconstructions then drives the parameterization.  

Clearly, the more observations we can provide and the 

greater their diversity, the more accurate our model is set to be. 
An important factor in this context is the quality metric. Since 
we aim to provide reconstructions to be examined by human 
observers, we require a quality metric that is perceptually based. 
Further, since we strive for a large number of observations, this 
perceptual metric needs to be computer-based and efficient to 
compute. In the following, we present a metric fitting these 
requirements and then describe our reconstruction 
parameter-learning framework. 

In our paper, Section 2 presents related work and background, 
Section 3 describes our parameter-learning framework, Section 
4 presents results, and Section 5 ends with conclusions.  

II. RELATED WORK AND BACKGROUND 
Iterative methods can broadly be categorized into projection 
onto convex sets (POCS) algorithms (such as SART, SIRT, and 
POCS) and statistical algorithms (such as EM, OS-EM, and 
MAP). For the purpose of demonstrating the principles of our 
proposed approach, we select OS-SIRT (Ordered Subsets SIRT) 
[5]. OS-SIRT is a generalization of SART and SIRT, with SIRT 
having just one and SART having M subsets (with M being the 
number of projections). Its correction update is computed as: 
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Here, the weight factor wij determines the contribution of a 
voxel vj to a ray ri (starting from a projection pixel pi in subset 
OSs), and is typically given by the interpolation kernel. Hence, 
there are two parameters, the relaxation factor λ and the number 
of subsets S. Using these parameters the effects of noise and 
sparse views on reconstruction quality can be controlled, but 
their choice can also affect the number of iterations needed to 
converge. Typically, noisier projections require larger subset 
sizes (smaller S) and/or smaller λ-settings. On CPUs the subset 
size does not influence the speed of computation On GPUs, 
however, an iteration with SART is typically the slowest due to 
the many projection-backprojection context switches which 
disturb parallelism and data flow. This has significant 
implications for the overall reconstruction wall clock time [5]. 

In CT reconstruction, the commonly used metrics for gauging 
reconstruction quality are mostly statistical, such as the 
cross-correlation coefficient (CC), root mean square (RMS) 
error, and R-factor. However, the assessment of image quality 
should include both objective and subjective metrics [1]. 
Objective metrics, such as blurriness and contrast, measure the 
physical and geometric properties of the image and their effect 
on human perception. Subjective methods, rooted in 
psychophysics, more formally introduce observer perceptual 
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Fig. 1.  Image metric comparison I: the value for each metric is fixed to 0.99 in 
the first row and to 0.82 in the second row. 
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metrics to gauge overall image quality. For example, Zhou et al. 
presented a comprehensive study of image comparison metrics 
[8], some described in the spatial and the frequency domain and 
some formulated in terms of the human visual system – the 
perception-based metrics – such as the visual differences 
predictor (VDP). While this (and many other) studies strongly 
suggest that perception-motivated metrics are superior to 
statistical ones, most of these involve heavy computation and 
thus are not desirable for the large data quantities we anticipate 
to process in our learning framework.  

For few-view and noisy projection scenarios, the application 
of regularization operators between reconstruction iterations 
seeks to tune the final or intermediate results to some a-priori 
model. Total variance minimization (TVM) has commonly 
been used for noise and streak artifact reduction. But the 
iterative procedure of TVM is quite time-consuming, even 
when accelerated on GPUs. We therefore propose to use 
bilateral filtering [2], which is non-iterative, as an alternative 
regularization scheme. In a companion publication [7] we show 
that the bilateral filter can, in many scenarios, provide 
regularization effects of similar quality than TVM but at a 
fraction of its cost. The bilateral filter is a convolution operator 
which weighs a pixel neighborhood both in terms of closeness 
and similarity. We use Gaussian functions for these terms, 
adding two further parameters to our model: 
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Here, σr and σd control the amount of smoothing and denoising.   

III. METHODOLOGY 
In the study presented here, in order to facilitate the 
computation of a ground truth-based figure of merit, we only 
used projection data acquired via simulation from known 
objects. We then added Gaussian noise at different SNR levels. 

A. Overall Approach 
Using the simulated projection data, we compute a 
representative set of reconstructions, sampling the parameter 
space in a comprehensive manner. We then evaluate these 
reconstructions with a perceptual quality metric, as discussed 
below. Adaptive sampling can be used to drive the data 
collection into more “interesting” parameter regions (those that 
produce more diverse reconstruction results in terms of the 
quality metrics). Having acquired these observations, we label 
them according to certain criteria, such as “quality, given a 
certain wall-clock time limit” or “reconstruction speed, given a 
certain quality threshold”. The observations with the higher 
marks, according to some grouping, subsequently receive 
higher weights in determining the reconstruction algorithm 
parameters. Currently, we either use the max-function or a 
fast-decaying Gaussian function to produce this weighting.   

B. Image Quality Metrics 
As mentioned, most popular for the assessment of image quality 
in CT have been statistical metrics such as mean absolute error 
(MAE), root mean square (RMS), normalized RMS (NRMS), 

cross-correlation coefficient (CC) and R-factor. However, as 
also discussed above, these metrics do not consider the fact that 
human vision is highly sensitive to structural information [3]. 
These properties are well captured in the gradient domain, by 
ways of an edge-filtered image calculated via a Sobel Filter 
operator. We have labeled this group of metrics by prefix “E-”. 
For example, the E-CC metric stands for the CC of two edge 
images. Further, shifting effects caused by the CT 
reconstruction backprojection step can be alleviated by 
Gaussian-blurring the reconstruction image before 
edge-filtering. We have labeled this group of metrics with 
prefix “BE-”.  

Another method to gauge structural information is Structural 
Similarity (SSIM) which combines luminance, contrast and 
structure [3]. Given two signal images x and y, the definition of 
SSIM index is defined as: 

   [ ] [ ] [ ]γβα ),(),(),(),( yxsyxcyxlyxSSIM ⋅⋅=  (3) 

where α, β and γ are parameters adjusting relative importance. 
The terms l(x,y), c(x,y) and s(s,y) are the luminance, contrast 
and structure comparison functions, respectively. These 
functions are computed from local image statistics [3].  

IV. RESULTS 
All computations used an NVIDIA GTX 280 GPU / Intel 2 
Quad CPU 2.66GHz. We group our results into four sections: (1) 
the metrics comparison showing which metrics give consistent 
scores, (2) the OS-SIRT results showing the relationship 
between noise levels and parameters settings, (3) the OS-SIRT 
results for few-projection parameters settings, and (4) the 
parameter settings with our GPU-accelerated bilateral filter.  

A. Comparing the Metrics 
Our first (somewhat informal) study examined various image 
quality metrics and their suitability to replace a human 
judge/observer. We note that our emphasis in the onset was to 
select metrics that are fairly easy to evaluate, in order to keep 
the assessment of the expected large data volume manageable. 
We use a baby head scan (size 2562) to demonstrate our results 
(see Fig. 1). All metrics are in the range [0, 1] and thus allow 
direct numerical comparison. We compared the metrics at two 
levels: 0.99 (row 1 of Fig. 1) and 0.82 (row 2). We observe that 
the scores of E-CC and SSIM are quite faithful to the scores a 
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Fig. 2.  Image metric 
comparison II: four 
reconstructed images that 
have the same CC (0.89) 
but score differently with 
other metrics (see plot). 
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Fig. 3. Results for all SNR levels of three datasets using the same parameter 
settings, those found most effective for the baby head dataset: columns from 
left to right - baby head, visible human head, and visible human lung, rows 
from top to bottom - noise-free, SNR 15, 10, 5 and 1. 

human observer might give (0.99 for a near-perfect image and 
0.82 for a “B+ similarity”). On the other hand, CC is clearly 
bound to over-score the images. It assigned the left bottom 
image a score of 0.82 even though the object structure is barely 
discernable, and it assigned the top left image a near-ideal score 
even though the structures are still quite blurry.    

For a more comprehensive study of all metrics discussed in 
Section II, we reconstructed the popular “Barbara” test image 
(size 2562), varying the number of projections and the level of 
noise (quantified by SNR). This image contains very high 
frequency detail and is thus quite sensitive to small errors. For 
all reconstructions we stopped iterations when the CC reached a 
value of 0.89. We chose this relatively low CC value so all SNR 
levels could reach it – better reconstructions are possible. Fig. 2 
presents the images reconstructed from 180 and 140 noise-free 
projections (NF 180 and NF 140), respectively, and from 180 
projections with Gaussian noise added (SNR 10 and SNR 5). 
We clearly see that these images do not look the same from a 
perceptual point of view, although the CC metric has the same 
outcome. Informally, an observer would likely rank these 
images in the order NF140, NF180, SNR10, SNR 5, with 
NF140 being the best (small detail is better visible there, 
although there are some slight yet tolerable artifacts). From the 
table in Fig 2 we observe that only the edge-based metrics 
(E-MAE, E-NRMS, and E-CC) as well as SSIM can reproduce 
this ranking (note that the ordering for CC is the opposite than 
for RMS and MAE since they have reverse maxima, and also 
note that we scaled some metrics by the given multiplicative 
factor to better visualize the contrast of the bars). The other 
metrics have either a wrong ranking or could not distinguish 
some images at all. In the remainder of the paper, we use E-CC 
since it better tolerates global density shifts and is faster to 
compute (than SSIM).  

B. Learning Parameters 
With a suitable quality metric in place we are now ready to learn 
the most effective parameters for the iterative OS-SIRT 
reconstruction algorithm we used to evaluate our approach. We 
first simulated, from the baby head CT scan, 180 projections at 
uniform angular spacing of [-90˚, +90˚] in a parallel projection 
viewing geometry. We then added different levels of Gaussian 
noise to the projection data to obtain SNRs of 15, 10, 5, and 1. 
The first column of Fig. 4 presents the best reconstruction 
results (using the E-CC between original and reconstructed 

image), for each SNR, in terms of the “reconstruction speed, 
given a certain quality threshold” criterion. In other words, the 
images shown are the reconstructions that could be obtained at 
the shortest wall clock time given a certain minimal E-CC 
constraint. This constraint varies for each projection dataset 
(low SNR cannot reach high E-C levels), and this is also part of 
the process model.  

Fig. 4 summarizes the various parameters obtained for the 
various data scenarios mentioned above. The “Best Subset” and 
“Best Lambda” values denote the parameter settings that 
promise to give the best results, in terms of the given quality 
metric and label criterion. The “Lowest Lambda” and “Turning 
Point” values describe the shape of the λ-curve as a function of 
the number of subsets. The λ-factor is always close to 1 for 
small subsets and then linearly (as an approximation) falls off at 
the “Turning Point” to value “Lowest Lambda” when each 
subset only consists of one projection (which is SART) [5].    



 
 
 
 
 

 
 

Fig. 4. Optimal parameter settings using E-CC for the baby head dataset: 
subset number and relaxation factor as a function of imaging condition 
(SNR) and the turning point and lowest lambda for each SNR level.

Fig. 5. Results for the few-view case: (first row) reconstructions from 180, 
90 and 60 projections, (second row) reconstructions from 45, 30 and 20 
projections, (third row) a lung reconstruction using the same parameters 
than the second row with 45, 30 and 20 projections. 

 
 

Fig. 6. (Top) The best results (using the time criterion) for the lung dataset 
with SNR 10 and 30 projections (E-CC=0.6). (left to right): original image, 
reconstruction without and with bilateral filter. (Bottom) Comparing the 
number of iterations required with / without bilateral-filter regularization.    

  

  

The summary plot of Fig. 4 helps practitioners to pick the 
best-performing number of subsets and the associated λ (to 
obtain the best possible quality within a given time) for a given 
expected SNR level. For example, we observe that low SNR 
requires a low number of subsets, while less noisy data can use a 
higher number of subsets. This trend is well confirmed by prior 
studies and field experience and thus validates the correctness 
of our general approach.  

We then explored if the knowledge we learned translates to 
other similar data and reconstruction scenarios. Column 2 and 3 
of Fig. 5 show the results obtained when applying the optimal 
settings learned from the baby head to reconstructions of the 
Visible Human head (size 2562) and Visible Human lung (5122), 
from similar projection data. We observe that the results are 
quite consistent with those obtained with the baby head, which 
is promising. As future work, we plan to compare the settings 
with those learned directly from these two candidate datasets.   

Next, we investigated the few-view reconstruction scenario. 
Here, we “learned” that SART consistently gave the best results. 
Fig. 5 shows the best reconstructions of the baby head with 
S=180 to 20 in the top two rows. The third row shows the results 
of lung dataset using the same parameters than used in the 
second row. They are quite similar which confirms the 
generalization of the learned parameters.  

Finally, we sought to learn the σ-parameters for the bilateral 

filter used for regularization. Fig 6 presents results. We found 
that the bilateral filter helped to reduce the number of iterations 
especially for the smaller number of subsets. Since the bilateral 
filter is less expensive than an iteration it pays off to use it.  

V. CONCLUSION 
We demonstrated an intelligent framework that has the potential 
to automate the parameter selection for CT reconstruction tasks. 
Iterative algorithms likely benefit the most from this scheme, 
since they tend to have a variety of parameters to adapt the 
optimizer to the present data conditions and reconstruction 
goals. Such a system can be helpful to practitioners that do not 
have the expertise to tune these parameters by hand. Eventually, 
we hope to refine our framework such that it can recognize 
“signatures” directly from the projection data, combining them 
with other information about scanner and object, and use this 
information to index the parameter knowledge base.    
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