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Abstract—In order to effectively reduce the risk of radiation
exposure, low-dose CT using fewer projection views is becoming
more and more preferred recently although it suffers significantly
from poor image quality. The deep learning approach has
demonstrated its effectiveness in natural image field. However, its
application in medical imaging is still lacking. In this paper, we
present a novel deep residual network structure to remove low-
dose CT streak artifacts. Experiments using real patient clinical
data were conducted to prove its superior performance.

I. INTRODUCTION

X-ray Computed Tomography (CT) has been a major diag-
nostic modality in the clinical field for decades. However, the
potential cancer risk caused by excessive radiation exposure
has become an unsustainable risk. To counteract these short-
comings, low-dose CT imaging has become an active area
of research and development. One popular way of reducing
the radiation dose in CT scanning is to use fewer projection
views. This, however, introduces strong streak artifacts in the
CT reconstructions which make clinical diagnostics difficult.

Many methods have been proposed to reduce or even
remove low-dose streak artifacts. One strategy is to impose
additional constraints via regularization, such as penalizing
large local variations. A popular method is Total Variation
Minimization (TVM) [1]. However, TVM’s application in
clinical practice is limited since it is an iterative optimization
method and therefore exhibits extensive computational costs.
In addition, TVM also introduces artifacts on its own, such as
patch-like constant regions that look unnatural to clinicians.
Other approaches include Non-Local Means (NLM) filtering
[2]. NLM reduces low-dose noise by averaging statistically
similar neighboring pixels. A major drawback of NLM filters
is that the neighboring pixels selected are equally contami-
nated with the same low-does noise. Ha [3] have proposed
a database-assisted framework to overcome these types of
problems. The database contains high-quality images taken
at regular dose conditions. Pixels in the aligned images and
selected based on structural similarity from the database are
used to update corresponding noisy pixels. The main limiting
factor for this framework is the large physical storage required
for maintaining the database and the potential latency caused
by searching through the database.

Fig. 1: Diagram for the Denoising Autoencoder

In recent years, deep learning methods have enjoyed sig-
nificant success and have shown great potential in the field
of natural image denoising [4], [5]. The concept of Denoising
Autoencoder (DA) was first brought up by Pascal Vincent in
[6]. Its goal is to reconstruct a clean image from a corrupted
input by feeding it into a pre-trained neural network. As is
shown in Fig.1, x represents a clean image and x̃ denotes
the corresponding noisy image. The corrupted input x̃ is then
encoded into a hidden representation y = fθ(x̃), which in turn
is decoded back to z = gθ′(y). During the training process,
pairs of clean images and noisy images are required as input.
The objective is to minimize a loss function which is defined
as the squared error between reconstructed image z and clean
image x.

Despite the success of deep learning methods in natural
image denoising, there have been few studies in field of
medical imaging based on such an approach, especially in
the area of low-dose CT. We propose a novel convolutional
neural network structure to remove streak artifacts caused by
an insufficient number of projection views. The next section,
Section II, describes the neural network structure we have
devised. The following section, Section III, presents first
experimental results we have obtained with our prototype. The
results confirm the great promise these types of networks have.
While the training can take a large amount of time, once this
has been accomplished, the streak removal is exceptionally fast
and the quality acceptable. We end the paper with a discussion
and pointers to future work.

II. METHODS

The structure of our neural network is shown in Fig.2.
Inspired by the idea of Denoising Autoencoder, our network
consists of two key parts – the Encoder and the Decoder.
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Fig. 2: Our proposed deep residual neural
network

The Encoder takes low-dose images with streak artifacts as
input and then delivers encoded representations to the Decoder.
The Decoder, on the other hand, reconstructs images from
the hidden representations and compares them with the noise-
free images. The Encoder and the Decoder are structurally
symmetric because of the opposite roles they play. The hidden
represemtations have a smaller number of unts than the input
and output. This forces them to learn a compressed represen-
tation of the input that captures the essential image structures.

A. Basic Structure

In the Encoder part, the actual image encoding is imple-
mented by the combination of convolution layers and non-
linear layers. Each convolution layer consists of multiple
convolution kernels. The number of kernels within each convo-
lution layer can be set arbitrarily. However, it is recommended
to be powers of 2 for faster memory allocation considering
the fact that the size of Random Access Memory (RAM)
is always a power of 2. Some most widely used number
of kernels in each convolution layer include 64, 128 and
256. The choice is in fact a trade-off between computational
complexity and capabilies. Each convolution kernel performs
convolution operations over the entire input, serving the role

of one feature extractor. Therefore, more kernels will lead to
more robust feature extraction and better overall performance.
In the meantime, more kernels also mean more parameters to
train since all the weights and the biases of each convolution
layer are trainable variables.

After each convolution layer, one non-linear layer is added.
Such layers are essential to the network because convolution
layers are completely linear. Suppose we have two consecutive
convolution layers denoted by subscript 1 and 2 respectively.
Then the output y can be expressed as a function of the input x
using the weights and biases of these two layers y = W2(W1∗
x+ b1) + b2. Since a convolution operation is linear, we can
define a third convolution layer (W3, b3) with W3 = W2 ∗W1

and b3 = W2∗b1+b2. It is obvious that layer 3 is equivalent to
layer 1 and 2 combined. Therefore, without non-linear layers
in between, it is pointless to stack multiple convolution layers
together. The most popular non-linear layer is called Rectified
Linear Unit (ReLU) [7], which is defined as the maximum
value of 0 and the input.

In the Decoder part, convolution layers and non-linear layers
are also used but for another purpose. Instead of performing
convolution operations over the original input, deconvolution
operations are carried out over the encoded representation to
reconstruct clean images. In practice, however, deconvolution
operations are implemented using convolution layers. And
because of the inverse operations performed by the Encoder
and the Decoder, these two parts have symmetric structure.

B. Batch Normalization

Our basic network structure is already ready to be trained
to remove streak artifacts. However, as we quickly realized
during our experiments, this structure is far from optimal.
The first modification we make is introducing the batch
normalization layer [8] into our basic model.

Traditional convolutional neural networks tend to suffer
from saturation and slow convergence caused by changes in
the nput distribution during training. This is known as internal
covariate shift . Let us assume we have a network with two
succeeding layers 1 and 2. The loss function is defined as
loss = L2(L1(x,Θ1),Θ2), where x is the network input and
Θ represents the parameters for each layer. The output of layer
1 is viewed as the input for layer 2. Then given a learning rate
α, based on a simple gradient descend update method, Θ2 will
be updated using the following equation for each step.

Θ2 = Θ2 −
α

N

N∑
i=1

∂L2(L1(xi,Θ1),Θ2)

∂Θ2

As we can see, the changes of parameters in previous
layers have a direct impact on updating the parameters in the
following layers. Since we assume that the training data and
the test data follow the same distribution, the input distribution
properties should be kept throughout the network. But in
practice, it is difficult to maintain especially with non-linear
layers. Therefore, Θ2 has to readjust to compensate for the
change in the input distribution slowing down convergence.



The batch normalization layer normalizes each batch to have
zero mean and unit variance. By adding a batch normalization
layer after each convolution layer we force the input of each
layer to follow the same distribution. As a result, the training
process of our network can be dramatically accelerated.

C. Residual Learning

As is discussed in [9], the depth of the network plays a
vital role in achieving superior performance. However, as the
network goes deeper, it is increasingly more prone to the
notorious problem of degradation [10]. Such a problem is not
caused by overfitting, but is rather due to the phenomenon that
optimization of the loss function tends to get harder as more
layers are stacked to the network. Therefore, instead of obtain-
ing better performance as expected, the degradation problem
causes deeper networks to return unsatisfying results simply
because the objective function is not properly optimized during
the training process. This prevents us from further exploiting
the power of deep neural network.

In order to deal with this problem, we add residual blocks
(see Fig.2) on top of the convolution layers in our basic model.
We use x to represent the input and F (x) to denote the original
function of the network. By adding a direct bypass from the
input to the output we recast the original mapping F to a new
mapping H : H(x) = F (x)+x. The network is then trained to
approximate a residual function H(x)−x, explicitly changing
the function of the network to F (x)+x. This modification does
not introduce any new trainable parameters to the network.
Thus it does not increase its overall computation complexity.
However, in practice, it has been shown that the new residual
function is much easier to optimize than the original function
leading to better performance for deeper networks.

D. Multi-scale vs. Single scale

One major drawback of the traditional Denoising Autoen-
coder is that its effective noise removal ability is strictly
limited to Gaussian noise or salt-and-pepper noise which
exhibit more local distribution patterns. Suppose we have one
convolution layer and the size of its convolution kernel is 3×3.
Then the receptive field of the output is simply 3×3 meaning
that each pixel in the output comes from 9 pixels within a
3× 3 region in the input. Comparing this with the size of the
input image which is usually 512× 512, this receptive field is
quite small. This is why the Denoising Autoencoder has been
rather successful in removing locally distributed noise.

In our case, however, low-dose CT streak artifacts exhibit
a strong global pattern as well as a local one. As a result,
extracting features on a single scale is not sufficient. In order
to achieve the multi-scale learning needed to resolve the
streak artifacts, we introduce pooling layers to our network. A
pooling layer compresses the input image based on a given
criterion and ratio. A 2 × 2 maxpooling layer is the most
preferred choice. It only picks the pixel with the maximum
value from a 2 × 2 region. We can then use subsequent
convolution layers to extract features on the pooled images,
which are on another scale. In this way, the receptive field

Fig. 3: Convergence rate comparison between
networks with BN and without BN

can be doubled after each 2 × 2 pooling layer. Thus, by
adding multiple maxpooling layers and corresponding residual
connections to the network, we are able to achieve a multi-
scale learning scheme.

III. EXPERIMENT

A. Dataset Preparation

Thanks to The Cancer Imaging Archive (TCIA) [11], we
were able to download normal-dose abdomen CT images with
size of 512 × 512 from 20 patients. We manually selected 30
images from each patient to form 20 groups of images. Fom
each such image, we cropped out a region of size 128 × 128
that shared a similar structure for our experiments. One group
was randomly chosen to be the test subject while images from
other patients were used to train the network.

To enable a fair comparison, the original CT images were
re-generated from 720 projections over 360◦ using a fan-beam
geometry. Images reconstructed using 720 projections were
then set as ground truth. We found that 720 projections were
sufficient for simulating good quality normal-dose CT images.
Our criteria were RMS error as well as manual examination.
Finaly, another group of images were generated using 90 views
to simulate low-dose CT images with strong streak artifacts.

B. Implementation and Training Details

The proposed neural network was implemented using the
Theano framework [12] in a Python2 environment under
Ubuntu 14.04 LTS. All experiments were performed using a
NVIDIA M2070 Tesla graphics card with 6 GB RAM.

The number of kernels in each convolution layer was set to
64 with a size of 3×3. All weights were randomly initialized.
We used the adaptive gradient algorithm (AdaGrad) [13] to
update the parameters during the training process for its faster
convergence compared with the traditional Stochastic Gradient
Descent (SGD) algorithm. The initial learning rate was set to
0.01 and gradually reduced to 0.001 over 100 epochs. The
training time for each epoch was about 43.5 seconds for a
total time of 70 minutes. After the training was finished, the
reconstruction time for each input image was around 13 ms.



(a) Ground Truth (b) Input (c) Total Variation (d) Single Scale (e) Proposed

Fig. 4: Reconstructed results of a slice of abdomen CT images by TV based denoising method and our proposed method

TABLE I: Quantitative measurements for the images in Fig.5

Low-dose TV Single scale Proposed
RMSE 41.77 11.70 8.52 7.43
PSNR 15.71 26.77 29.53 30.71
SSIM 0.59 0.64 0.86 0.89

C. Results and Comparison

In order to demonstrate the effectiveness of batch normal-
ization layers, we used two networks as comparison, one with
batch normalization layers and another without. The other
structural parameters and training settings were all kept the
same. The values of the loss functions for each epoch are
plotted in Fig.3. As we can see, the network with batch
normalization layers enjoys a convergence rate twice as fast.

We also constructed a network without pooling layers to
demonstrate the advantage of a multi-scale structure over the
single scale structure of such a network. Our proposed network
model was evaluated by comparing the reconstructed results
with the TV-based denoising method. Fig. 4 compares the
streak-removal performance of the single-scale and multi-scale
network, respectively, with that of a TVM implementation.
We observe that the multi-scale processed image (labeled
’proposed’) has fewer artifacts and more detail than any of
images processed with the other methods. Likewise, Table I
shows that its RMS error is lowest, while its PSNR and SSIM
(Structural Similarity with the ground truth) is highest.

IV. CONCLUSION

We presented a novel deep residual network structure pur-
posed to apply deep learning techniques for low-dose CT
streak artifacts removal. We started with a basic model moti-
vated by a standard Denoising Autoencoder and continued to
improve its performance by modifying the structure and adding
further layers. We then used clinical data for conducting
preliminary experiments to examine the effectiveness of our
framework. Given the encouraging results we believe that our
approach has great potential for low-dose CT artifact removal.

In future work, we would like to apply our network to
deal with more challenging tasks, such as the removal of
metal artifact, beam hardening, and so on. Further, although
we presented our method with fan-beam data only, we be-
lieve that our overall framework will naturally extend to
data from cone-beam CT, helical CT, and others. The most

significant requirement will be the availability of a larger
multi-GPU server architecture. Experiments that use such a
computational infrastructure are underway. Finally, we would
also like to integrate the deep learning restoration into an
iterative reconstruction pipeline to mitigate possible image
feature suppression imposed by the network.
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