
Simulating Fire With Texture Splats

Xiaoming Wei1, Wei Li1, Klaus Mueller1 and Arie Kaufman1

Center For Visual Computing (CVC)
And Department Of Computer Science

State University Of New York At Stony Brook
Stony Brook, NY 11794-4400

ABSTRACT

We propose the use of textured splats as the basic display primi-
tives for an open surface fire model. The high-detail textures help
to achieve a smooth boundary of the fire and gain the small-scale
turbulence appearance. We utilize the Lattice Boltzmann Model
(LBM) to simulate physically-based equations describing the fire
evolution and its interaction with the environment (e.g., obstacles,
wind and temperature). The property of fuel and non-burning ob-
jects are defined on the lattice of the computation domain. A tem-
perature field is also incorporated to model the generation of smoke
from the fire due to incomplete combustion. The linear and lo-
cal characteristics of the LBM enable us to accelerate the compu-
tation with graphics hardware to reach real-time simulation speed,
while the texture splat primitives enable interactive rendering frame
rates.

CR Categories: I.3.5 [Computer Graphics]: Computational Ge-
ometry and Object Modeling—Physically based modeling; I.3.6
[Computer Graphics]: Methodology and Techniques—Interaction
techniques; I.3.7 [Computer Graphics]: Three-Dimensional Graph-
ics and Realism—Animation

Keywords: Fire Modeling, Textured Splatting, Lattice Boltzmann
Model, Graphics Hardware

1 INTRODUCTION

Amorphous phenomena, such as smoke, fire, and gas are essen-
tial in many applications, such as in virtual environments, flight
simulation, landscape design and film making, to name just a few.
However, the animation and visualization of such phenomena is a
difficult task. Among the recent and impressive works to model
fluid behaviors, the Navier-Stokes (NS) equations have been solved
in different ways. To simulate the hot and turbulent behavior of gas,
Foster and Metaxas [8] presented a full 3D finite difference solution
of the NS equations. Stam [21] further proposed an unconditionally
stable implicit solution. Foster et al. [7] implemented a modified
semi-Lagrangian scheme to solve the animation of liquid. Fedkiw
et al. [6] improved the semi-Lagrangian method by introducing the
concept of vortex confinement to the graphics field.

Among all these natural phenomena, fire is believed to be the
most difficult to describe, since we do not have a complete un-
derstanding of fire and its complexity. Numerous studies have
been conducted to describe different aspects of the behavior of fire
[1, 3, 12, 17, 18, 19, 20]. Nielsen [16] has given a good survey of the
visualization and modeling of fire. Among the early works, Perlin
and Hoffert [17, 18] have presented a noise-based method to model

1Email:fwxiaomin, liwei, mueller, arig@cs.sunysb.edu

2D and 3D fire, where the turbulence movement is achieved by a
fractal perturbation. However, this procedural method constrains
the viewpoint position and it cannot describe external effects, such
as wind and spread over terrain. Reeves [20] was the first to use
particle systems to model fire. In the film Star Trek II: The Wrath
of Khan, the wall-of-fire element was generated using a two-level
hierarchy of particle systems. The top-level system was centered
at the impact point of the genesis bomb, generating particles which
were themselves particle systems. These second-level particle sys-
tems were modeled to resemble explosions where each such par-
ticle system acted like a volcano exploding upwardly, eventually
falling back to the planet surface due to the pull of gravity, forming
a parabolic curve rather than a straight line. Due to the discrete na-
ture of particles, a huge amount of them were required to achieve
good results.

To avoid the computational complexity of large particle systems,
King et al. [11] have used textured splats to achieve fire anima-
tion. These splat primitives are based on simple and local dynam-
ics, and only a small number of them are required for an animation
with a sufficient amount of complexity. The high-detail textures not
only supply the turbulence appearance of the fire, but also generate
a smooth boundary. A drawback of their model is, however, that
it lacks the interaction of the fluid with environmental influences,
such as wind and temperature, isolating the fire from the rest of the
scene.

Chiba et al. [3] have proposed the use of a vortex-based velocity
field and a 2D fuel map to describe the spread of fire. Their 2D
velocity field is generated randomly. Stam and Fiume [22] have
represented the flammable objects with a map indicating the fuel
density and temperature at every point on the surface. They then
used a numerical finite difference method to simulate the resulting
fire. Their method is computationally somewhat expensive. Perry
and Picard [19], and recently Beaudoin et al. [1], have simulated
the spreading of fire on polygon meshes. They used several con-
nected sample points to represent the boundary of the fire. Lee et
al. [12] have extended their work to model both the evolution of
fire on complex geometrical structures and the merging of multiple
fires. After we completed the current work, we came across Nguyen
et al.’s [15] paper, which was concurrently developed. However,
while they implemented a full physically-based simulation of fire,
our main concern has been to achieve real-time modeling speed.

In this paper, we propose the use of textured splats, instead of
particles, as the display primitives in order to achieve real-time
performance. However, in contrast to King et al. [11], we also
model the interaction of the display primitives with the environ-
ment, such as wind and boundary objects. Since our goal is to pre-
serve real-time performance, we cannot use the standard finite dif-
ference methods. However, at the same time, we do not want to give
up the physically-based behavior either. For this reason, we propose
to model fire using a technique known in the fluid dynamics liter-
ature as the Lattice Boltzmann Model (LBM), which has not been
used before in the fields of computer graphics and visualization.
Based on a simple cellular automata framework, the LBM has great

potential to achieve our goals of real-time and physically-based in-
teraction with the environment. In contrast to the traditional dif-
ferential equations, the LBM approach considers the problem from
the microscopic perspective, using simple, linear and local calcu-
lations. These properties make the LBM method very amenable to
acceleration on commodity graphics hardware.

In our implementation, we distinguish between macroscopic and
microscopic particles. The microscopic particles form the ”pack-
ets” that propagate across the LBM grid links, while the macro-
scopic particles form the ”display primitives” that move freely
about in space. The LBM consists of a discrete lattice, where on
every lattice cell, a number of microscopic packet distribution val-
ues, representing the density of the microscopic particles, are de-
fined. At each time step, these local microscopic packets relax
toward certain values in order to conserve the mass and momen-
tum locally, and their new values propagate to the neighbors along
predefined directions. After the LBM packet propagation phase,
macroscopic velocity vectors are calculated at each grid node and
the resulting velocity field is used to drive the macroscopic parti-
cles across space. A physically-based flow simulation results, but
at a coarse scale. To add the fine-scale detail for visual plausibil-
ity, we associate that macroscopic particle with a texture splat that
bears some detail of fire or smoke. An advantage of this framework
is that both simulation and rendering of the textured splats can be
accelerated on commodity graphics hardware. All put together, we
obtain a visual simulation of fire with smoke that is both physically
and visually realistic and can occur in real-time.

The remainder of the paper is organized as follows. In the next
section, we introduce the basic elements of fire. The textured splats
are discussed in Section 3. In Sections 4, 5, 6 and 7, we present
the ideas of the LBM, the initial and boundary conditions and the
hardware acceleration and its implementation. In Section 8, we
demonstrate the generation of smoke from fire by incorporating a
temperature field into the model. Finally, we describe several ex-
amples in Section 9.

2 FIRE THEORY

Fire requires three elements to be present: fuel, heat and oxygen.

� Fuel can be in the form of a solid, liquid or gaseous sub-
stance. However, in order to burn, all fuels must be chem-
ically decomposed into gases or vapors. This process takes
place through the action of heat.

� Heat can be understood as a measure of the molecular activity
occurring within an object. The higher the temperature, the
faster the action of the molecules. If sufficient heat is applied
to an object, the molecules may move so fast that they break
away from the bulk of the surface. This is how the fuel is
transformed to gas. Heat can be transferred in three ways:
convection, conduction and radiation. An intensely burning
fire may be sufficient to ignite fuel even from a distance.

� Oxygen contained in air is essential to the combustion. At
a certain stage, fire particles may change to smoke particles
because of the lack of oxygen in air.

Based on the sum of these conditions, the fire will spread in some
places and extinguish in others, due to the existence and consump-
tion of fuel, heat and oxygen. Fire can exist in different forms under
different circumstances, ranging from the quietly burning flame of a
candle to the roaring fire of a burning oil well. Generating an accu-
rate model of physics that covers all types of fire is too complicated
at least for now. In this work, we will concentrate on the modeling
of the freely fed fire, for instance, the flickering torch which has
no lack of fuel and receives plenty of air. This kind of fire may be

(a)

(b)

Figure 1: Two sets of example texture splats generated from real
images, used in our work (courtesy of Scott King).

(a) (b)

Figure 2: A simple camp fire using texture splats.

advected by all kinds of external forces, which requires the model-
ing of the interaction between the burning objects and non-burning
objects.

3 TEXTURE SPLATS

In this paper, we associate texture splats [4] with the display prim-
itives for visualizing the fire. A texture splat in this context is a
small image of turbulence detail, that is multiplied with a smooth-
ing function, for example a Gaussian, to provide good blending in
areas where splats partially overlap. The textures can be generated
from real images (see Figure 1 for two sets of example textures),
from a noise function [18], or from a high-resolution detailed sim-
ulation of fire. The high-detail textures can achieve the appearance
of turbulent behavior. In our experiments, around 100 display prim-
itives are sufficient to obtain a visually pleasing result. The image
size of the textured splats is 32� 32 pixels. Besides 2D textures,
3D hypertextures [18] could also be employed.

The color and transparency of the display primitives are decided
by their location in the fire. Since the temperature rises towards the
center of the fire, the radiation from different layers of the fire has
a different wavelength distribution. In our work, we use a black
body color table to define the colors at different layers. The display
primitives at the center of the fire are assigned a brighter color than
those located on the periphery of the fire. We further assume that
light scattering inside the fire is insignificant and thus implement a
single scattering of light toward the viewer [9] in form of the back-

(a) (b) (c) (d)

Figure 3: The four sub-lattices defined on a 3D grid. The velocity vectors eqi are shown as arrows in each sub-lattice.

to-front rendering of the N primitives to the screen:

Ei =Ci +Ti �Ei�1 1� i� N (1)

Here, Ei is the light received at the current position, Ci is the amount
of light emitted toward the viewer by the display primitive i, and Ti
is the transparency of the display primitive i. This function can be
implemented by the blending function of OpenGL, if we consider
Ci as the incoming fragment and Ei�1 as the content of the frame
buffer. Figure 2a and 2b show the results of a simple camp fire
generated using the two sets of texture splats shown in Figure 1a
and 1b respectively. In this example, around 100 display primitives
were used. Both results are quite satisfying as long as we keep the
turbulent detailed part at the center of the texture. The following is
the process of our basic campfire model:

1. Set glBlendFunc(GL ONE,GL ONE MINUS SRC ALPHA);

2. Clear frame buffer to black;

3. Inject new display primitives into the system with an initial
assigned texture splat;

4. Update the position of the display primitives based on a sim-
ple upward velocity;

5. Assign color and opacity for each display primitive based on
its current location;

6. Render all textured splats in back-to-front order using splat-
ting [23];

7. Go back to step 2.

As mentioned in the introduction, this simple model works quite
well for an individual open surface fire, however, it cannot address
the issues of the generation of smoke and the interaction with sur-
rounding environment, such as wind and boundary objects. By
defining the conditions of temperature, pressure and wind velocity
around a burning object, one could solve the governing differen-
tial equations to model the exact movement of the fire. However,
this would require a huge amount of computation time. We avoid
this expensive computation by considering the fire as a form of hot
gas, so the behavior of the fire is mainly decided by the wind direc-
tion and the location of the fuel and non-burning boundary objects.
In the next section, we describe the use of LBM as the underly-
ing physical model to account for the effect of wind and boundary
objects.

4 LATTICE BOLTZMANN MODEL

The LBM [10, 13, 14] is based on Cellular Automata (CA), pro-
posed by John Von Neumann as formal models of self-reproducing
organisms. They are discrete dynamic systems, where the space,

Figure 4: The D3Q19 lattice geometry

time, and the state of the cells are all discrete. Each cell in the reg-
ular spatial lattice can be in any one of a finite number of states.
The states are synchronously updated according to local rules. The
CA can produce extremely complex structures from the evolution
of rather simple local rules. Dobashi et al. [5] used a special CA
model to implement a realistic animation of clouds.

Like CA, the LBM is calculated on a 2D or 3D discrete grid,
where both the time and the state of each cell are also discrete. Sev-
eral variables are defined at each cell to indicate whether there are
microscopic packets moving in a certain direction. In CA, boolean
values are used as these variables, while in the LBM, the averaged
packet distributions fqi are used at each cell. They can be of any
positive real value, representing the density of the microscopic par-
ticle packet. In this way, the simulation result of the LBM does
not need to be averaged over a certain grid size, while the aver-
aging has to be done in a CA with boolean variables. The index
qi describes the D-dimensional sub-lattice defined by the permuta-
tions of a D-tuple of (�1,...,�1,0,...0), where q is the number of
non-zero components and i counts the sub-lattice vectors. For a 3D
grid, there are four sub-lattices, as shown in Figure 3:

(a) q=0, the cell (0,0,0) has particle packets with zero velocities;

(b) q=1, the six nearest neighbors (�1;0;0),(0;�1;0), (0;0;�1),
where the particle packets move with unit velocity;

(c) q=2, the twelve second-nearest neighbors (�1;�1;0),
(0;�1;�1), (�1;0;�1), where the particle packets move
with a velocity of

p
2; and

(d) q=3, the eight third-nearest neighbors (�1;�1;�1) where the
particle packets move with a velocity of

p
3.

Three different 3D LBM grids can be formed by combining these
sub-lattices. In our current work, we implement the D3Q19 model,

which represents a good compromise in terms of computational ef-
ficiency and reliability. The D3Q19 lattice consists of three sub-
lattices: sub-lattices 0, 1 and 2. Figure 4 shows the D3Q19 model
lattice geometry. The velocity directions of the 18 moving packet
distributions are shown as arrows. The red center is the packet dis-
tribution with zero velocity.

The macroscopic density (mass) ρ and velocity u are calculated
from the respective velocity moments of the packet distribution val-
ues as follows:

ρ =∑
qi

fqi (2)

u =
1
ρ ∑

qi
fqieqi (3)

where fqi is the packet distribution value defined at each cell and
eqi is the velocity vector, representing the packet velocity along the
lattice link qi. Its definition is shown in Figure 3. The physical
rules of the LBM grid are designed such that they satisfy the in-
compressible Navier-Stokes equations globally. That is, the LBM
must guarantee the conservation of mass and momentum. Based
on this, at each time step, every cell updates its packet distribution
values according to two simple and local rules: collision and prop-
agation. Collision describes the redistribution of microscopic pack-
ets at each local node. It is decided by the collision operator. No
matter how the collision operator is defined, the local conservation
of mass and momentum must be satisfied. Propagation means the
packet distribution values move to the nearest neighbor along their
velocity directions. These two rules of the LBM can be described
by the following equations:

collision : f new
qi (x;t)� fqi(x;t) = Ωqi (4)

propagation : fqi(x+ eqi;t+1) = f new
qi (x;t) (5)

where Ω is a general collision operator. The collisions are com-
pletely local, making the LBM efficiently parallelizable. In one
time step t, each packet distribution value at every node is updated
based on the collision operator Ω. Then, in time step t+1, the new
packet distribution value propagates to the nearest node along the
velocity vector eqi.

Combining Equations 4 and 5, we get fqi(x + eqi;t + 1)�
fqi(x;t) =Ωqi. It is critical to select Ωqi in such a way that the mass
and momentum are conserved locally. Based on the work of Chen
and Doolean [2], we assume that for each individual packet distri-
bution fqi at each cell, there is always a local equilibrium packet
distribution f eq

qi . Its value only depends on the conserved quantities
ρ and u at that cell. In this way, we get a new equation, also called
the kinetic equation:

fqi(x+ eqi;t +1)� fqi(x;t) =�1
τ
(fqi(x;t)� f eq

qi (ρ;u)) (6)

Table 1: Coefficients of the three sub-lattices in the D3Q19 model

Sub-lattice 0 Sub-lattice 1 Sub-lattice 2

Aq
1
3

1
18

1
36

Bq 0 1
6

1
12

Cq 0 1
4

1
8

Dq �

1
2 �

1
12 �

1
24

where τ is the relaxation time scale and f eq
qi (ρ;u) is the equilibrium

packet distribution. According to Muders’s work [14], the equilib-
rium packet distribution can be represented by a linear formula:

f eq
qi = ρ(Aq +Bq(eqi �u)+Cq(eqi �u)2 +Dq(u)

2) (7)

where the coefficients Aq through Dq are dependent on the em-
ployed lattice geometry. They are constant values for the specific
model. In Table 1, we list the coefficients used in the D3Q19
model. Using these coefficients in conjunction with Equations 6
and 7 ensures local conservation of mass and momentum. Based
on the work [10, 13, 14], it can be demonstrated that by observ-
ing the above propagation and collision rules, the following macro-
scopic incompressible Navier-Stokes equations without external
forces can be recovered.

∇ �u = 0 (8)

∂u
∂t

=�(u �∇)u� 1
ρ

∇p+ν∇2u (9)

The viscosity of a fluid is a measure of the fluid resistance to
change of shape. For example, water has a higher viscosity value
than gas. In LBM, the viscosity is decided by the relaxation time
scale τ with equation ν = 1

3 (τ� 1
2). Since viscosity is always

greater than zero, τ must be greater than 1
2 .

We now describe our algorithm for calculating the LBM:

1. Set the initial conditions for all grid cells, choose proper den-
sity and velocity for inlet cells, and select a relaxation time
scale τ. In our current work, τ is empirically set to be 0.5128
to have a stable simulation;

2. Calculate the macroscopic variables of density and velocity
for each cell using Equations 2 and 3;

3. Compute the equilibrium packet distribution for each packet
distribution by Equation 7;

4. Plug the packet distribution and equilibrium values into the
kinetic equation, Equation 6;

5. Propagate the packet distribution to all neighboring cells;

6. Modify the packet distribution locally to satisfy the boundary
conditions;

7. Back to Step 2.

5 INITIAL CONDITIONS AND BOUNDARY
OBJECTS

Initial conditions are usually specified in terms of macroscopic vari-
ables, such as densities and velocities. For the LBM, these macro-
scopic values are translated into the corresponding microscopic
packet distribution values for each node. This is done by solving
the equilibrium Equation 7. Hence, the initial values of the den-
sity and velocity of each node are plugged into Equation 7, and the
equilibrium packet distribution values are set as the initial packet
distribution values at each node.

Obstacles in the scene are modeled as boundary conditions. For
a grid node near the boundary, some of its neighboring nodes lie
outside the computation domain. Therefore, the packet distribu-
tion values at these nodes are not uniquely defined. In Figure 5,
we show a concave edge boundary node of the D3Q19 model with
nine unknown packet distribution values. Different types of bound-
ary conditions have been introduced in the field of Hydrodynamics

Figure 5: Concave edge boundary node with nine unknown values
(some invisible links shown by dashed arrow lines).

for the LBM. In this paper, we implement the simple bounce-back
method, where boundary nodes are placed half-way between the
grid points. When packets propagate to the boundary nodes, they
just bounce back along the link. The propagation step is changed to
f�qi(x;t + 1) = fqi(x;t). This approach is fast, easy to implement
and it can handle complicated boundaries.

For the boundary condition of an outlet, one way to do in the
LBM is to assign a density value for the outflow. However, we
have found that it is difficult to define the outflow density before the
simulation. We instead impose a zero derivative condition after the
collision step, which works very well. Suppose the surface Z=Nz is
an outlet (where Nz is the number of lattice cells in the Z-direction),
for each of the outlet nodes, we execute the equation: fqi(i; j;Nz�
1) = fqi(i; j;Nz)

6 HARDWARE ACCELERATION

The local nature of the LBM calculations lends itself well to an
implementation on commodity graphics hardware for additional
speedup. The LBM Equations 2, 3, 6 and 7 are mainly composed of
simple operations such as addition, subtraction and multiplication,
that are naturally available on the rasterization stage of the graph-
ics hardware. Division and other more complicated operations are
implemented with lookup tables.

First, we divide the Lattice Boltzmann model and group the
packet distributions fqi into arrays according to their velocity di-
rections. All the packet distributions with the same velocity direc-
tion are grouped into the same array, while keeping the neighboring
relationship of the original model. We then store the arrays as 2D
textures. For a 2D model, all such arrays are naturally 2D, while
for a 3D model, each array forms a volume and is stored as a stack
of 2D textures. The idea of 2D textures stacks is from 2D texture-
based volume rendering, but note that we don’t need three repli-
cated copies of the dataset (one for each major direction). The den-
sity ρ and velocity u are then computed by summing the fqi from
all directions. Next, the fqi are updated according to Equations 6
and 7 with similar hardware configurations. The new distribution
textures are generated and replace the old ones. Finally, the newly
created fqi propagates to the neighboring grid at every time step.
We decompose the velocity into two parts, the velocity component
within the slice and the velocity component orthogonal to the slice.
The propagation is done for the two velocity components indepen-
dently. The in-slice propagation is achieved simply by translating
the distribution textures and the propagation along the direction of
the orthogonal velocity is done by renaming the textures.

To reduce the overhead of switching between textures, multi-
ple textures representing packet distributions with the same veloc-
ity direction are stitched into one larger texture. For the initial and

boundary conditions, the packet distribution values should be han-
dled differently. A general approach is to compute the new distribu-
tion values for these nodes, then set the new values into the distri-
bution textures. The computation of these new packet distributions
can be done with either CPU or graphics hardware.

A major concern about using graphics hardware for general com-
putation is the accuracy. Most graphics hardware supports only 8
bits per color channel. There have been a few limited supports of
16-bit textures but these are too restrictive to be capable of relatively
complicated application such as the LBM simulation. Fortunately,
the variables of our current LBM simulation fall into a small nu-
merical range which makes the use of range scaling quite effective.
The hardware acceleration gives us a speedup factor of over 50.
(See [13] for detailed description of the hardware implementation.)

7 IMPLEMENTATION

Our simulation process consists of two parts. First, considering
that the fire can only burn in the form of gas, we initialize the LBM
grid with the velocity of the fire and the boundary conditions, and
generate a 3D velocity volume. Then, the display primitives, later
rendered as texture splats, are injected into the scene and are ad-
vected by this 3D velocity volume. We assume that each display
primitive has a certain amount of fuel. After a few time steps, the
display primitives are removed from the system as the fuel they
carry is consumed by the combustion. Initially, the inlets are de-
fined explicitly. During the simulation, the flammable objects can
catch fire and new inlets are defined. The power of our method is
that we distinguish between the microscopic packets in the LBM
and the macroscopic display primitives that we can observe. Thus,
we do not require a huge amount of display primitives, which al-
lows the rendering to be fast. Our fire simulation system works in
the following way:

1. Inject new fire particles (display primitives) into the system
with an initial texture (the number of particles characterizes
the density of the fire);

2. Update the velocity vector on the grid points according to the
LBM algorithm in Section 4. We implement this part in tex-
ture hardware to attain real-time interaction speed;

3. Compute the velocity vector at the current position by trilin-
ear interpolation for each fire particle, and move it to its new
location. If a fire particle moves out of the grid, remove it
from the system. If a fire particle consumes all of the fuel it
carries, it is also removed from the system;

4. Assign the color and transparency for each fire particle;

5. Render all fire particles in a back-to-front order using texture
splatting. Since fire emits light, to account for the effect of fire
on other objects, we first render the fire particles separately to
construct a light image, then use projective textures to map
the image onto surrounding objects.

6. Go back to step 1.

8 SMOKE

Smoke generally refers to a visible mixture of products given off
by an incomplete combustion of a substance such as wood, coal
and fuel oil. This airborne mixture usually contains small particles
of carbon, ash and the like, as well as vapor, such as carbon dioxide
and water vapor. The generation of smoke from fire can be modeled
by ways of a temperature field. The exchange of fire energy in air

(a)

(b)

Figure 6: A camp fire with smoke

Figure 7: A kettle on a campfire

can be characterized as a combination of the convection and diffu-
sion of heat in neighboring cells. To achieve fast speed, we use a
linear equation, similar to Chiba et al.’s [3], instead of a more accu-
rate differential equation, to approximate the change of temperature
for the display primitives. Our model is governed by the following
heat formula:

Tk(t) = αTk(t�1)+β ∑
j 6=k

G(dk j)Tj(t�1) (10)

where α is the conservation coefficient; β is the transferability co-
efficient; dk j is the distance between the display primitives k and
j; and G() is a function describing the thermal diffusion. We use
a Gaussian filter as the function G() to approximate the effect of
diffusion. At t=0, Tk(0) is a predefined initial value, indicating the
initial temperature. As the temperature of a display primitive de-
creases to a certain point, the fire particle changes to a smoke par-
ticle. The texture on it is kept unchanged. A separate color table is
used to assign the color for smoke. The computation for smoke is
done on CPU.

9 EXAMPLES

In this section, we show a few examples of fire generated using the
LBM and the textured splats. Our work has been implemented on a
P4 1.6GHz PC with a Nvidia GeForce3 Ti 200 card that has 64MB
of memory. Figure 6 shows two images of the same camp fire model
in Figure 2, with the addition of smoke. In Figure 2b, we set a wind
boundary condition on the left side of the grid. Figure 7 indicates
the interaction of fire with the surrounding boundary objects. A
kettle is placed above a campfire. We initialize a 4�4 patch as the
inlet of the LBM grid with a velocity of 0.2. The kettle is placed as
a boundary box into the grid.

Figure 8 is an image sequence showing the change of the fire
boundary as we move a torch. Initially, the torch is stationary, as
shown in Figure 8a. As we move it to the left, the computation
LBM grid moves together with the base of the torch and we set
the left side of the grid to a velocity of 0.1, simulating the mov-
ing speed. This boundary condition is kept unchanged throughout
the moving process. As the torch stops, the speed of the boundary
condition is gradually reduced to 0. The shape of the fire becomes
stable again, as shown in Figure 8d. In all these examples, our grid
size is 32�32�32. The time used for one step simulation without
using graphics hardware is about 180ms. With graphics hardware,
the computation time for one simulation step is about 4.6ms. For

(a) (c)

(b) (d)

Figure 8: An image sequence (a) to (d) showing the dynamic change of fire behavior as a torch is moving to the left side of the scene.

each example, around 100 display primitives are used to generate
the images. The rendering time for the entire image is 15ms.

Since in our current work, we solve the LBM on a relatively low-
resolution grid, one may ask why not solve the NS equations on
the same grid. Although it is true that combining the NS equations
with the high-resolution texture splats has the same effect, however,
the computation of the NS equations is not as simple as that of the
LBM. Also, the fact that the calculation of the LBM only consists of
simple operations such as addition, subtraction and multiplication,
and it is conducted locally, allows us to further improve the calcula-
tion speed of the LBM by employing commodity texture hardware
to achieve real-time speed.

10 CONCLUSIONS

In this paper, we have proposed the use of textured splats as the ba-
sic primitives to model fire. The interaction of fire and the surround-
ing environments, such as boundary objects and blowing wind, is
described by the simple and linear LBM. This method can be used
in many applications, such as virtual environment, flight simulation
and landscape design. Our approach has the following advantages:

� The calculation of the LBM can be accelerated by texture
hardware, due to the LBM’s linear and local computations.
In all of our experimental results, we were able to achieve
real-time frame rates. This can be of great help when dealing
with dynamic changes of the boundary conditions during 3D
simulations.

� The turbulence behavior of the fire can be incorporated via
texture splats. These can be rendered quickly as well on com-
modity texture hardware.

There still remain a few things to be investigated. First, we plan
to extend our model to handle the propagation of fire in complex
polygonal models. We believe that combining our work with the
fire spreading models [1, 12, 19] will be a promising direction. Sec-
ond, alternating the textures of the display primitives during the
simulation will also help to get visually more pleasing results. Fi-
nally, we would like to incorporate more complex illumination ef-
fects in future implementations, such as the heat-based refractive
effects that occur when objects are viewed across the hot fire.

ACKNOWLEDGMENTS

This work has been partially supported by ONR grant
N000140110034 and NSF CAREER grant ACI0093157.

REFERENCES

[1] P. Beaudoin, S. Paquet, and P. Poulin. Realistic and control-
lable fire simulation. Proc. Graphics Interface, pages 159–
166, June 2001.

[2] S. Chen and G. D. Doolean. Lattice Boltzmann method for
fluid flows. Annu. Rev. Fluid Mech., 30:329–364, 1998.

[3] N. Chiba, K. Muraoka, H. Takahashi, and M. Miura. Two-
dimensional visual simulation of flames, smoke and the
spread of fire. The Journal of Visualization and Computer
Animation, 5:37–53, 1994.

[4] R. A. Crawfis and N. Max. Texture splats for 3D scalar and
vector field visualization. Proceedings of IEEE Visualization,
pages 91–98, October 1993.

[5] Y. Dobashi, K. Kaneda, H. Yamashita, T. Okita, and
T. Nishita. A simple, efficient method for realistic anima-
tion of clouds. Proceedings of SIGGRAPH, pages 121–128,
August 2000.

[6] R. Fedkiw, J. Stam, and H. Jensen. Visual simulation of
smoke. Proceedings of SIGGRAPH, pages 129–136, August
2001.

[7] N. Foster and R. Fedkiw. Pratical animation of liquids. Pro-
ceedings of SIGGRAPH, pages 15–22, August 2001.

[8] N. Foster and D. Metaxas. Modeling the motion of a hot,
turbulent gas. Proceedings of SIGGRAPH, pages 181–188,
August 1997.

[9] M. J. Harris and A. Lastra. Real-time cloud render-
ing. Computer Graphics Forum (Eurographics Proceedings),
20(3):76–84, September 2001.

[10] B. D. Kandhai. Large scale lattice-boltzmann simulations.
PhD thesis, University of Amsterdam, December 1999.

[11] S. A. King, R. A. Crawfis, and W. Reid. Fast volume render-
ing and animation of amorphous phenomena. Volume Graph-
ics, pages 229–242, 2000.

[12] H. Lee, L. Kim, M. Meyer, and M. Desbrun. Meshes on fire.
EG Workshop on Computer Animation and Simulation, pages
75–84, September 2001.

[13] W. Li, X. Wei, and A. Kaufman. Accelerating lattice
Boltzmann method on graphics hardware. Technical Re-
port 010416, Computer Science Department, SUNY at Stony
Brook, April 2001 (revised version submitted for publication).

[14] D. Muders. Three-dimensional parallel lattice boltzmann hy-
drodynamics simulations of turbulent flows in interstellar dark
clouds. PhD thesis, University at Bonn, August 1995.

[15] D. Nguyen, R. Fedkiw, and H. Jensen. Physically based mod-
eling and animation of fire. Proceedings of SIGGRAPH, to
appear 2002.

[16] T. E. Nielsen. Modelling, animation, and visualization of fire.
Master’s thesis, University of Copenhagen, Denmark, April
1999.

[17] K. Perlin. An image synthesizer. Proceedings of SIGGRAPH,
19(3):287–296, July 1985.

[18] K. Perlin and E. M. Hoffert. Hypertexture. Proceedings of
SIGGRAPH, 20(3):253–262, July 1989.

[19] C. H. Perry and R. W. Picard. Synthesizing flames and their
spreading. Proceedings of the Fifth Eurographics Workshop
on Animation and Simulation, pages 1–14, September 1994.

[20] W. T. Reeves. Particle system-a technique for model-
ing a class of fuzzy objects. Proceedings of SIGGRAPH,
17(3):359–376, July 1983.

[21] J. Stam. Stable fluids. Proceedings of SIGGRAPH, pages
121–128, August 1999.

[22] J. Stam and E. Fiume. Depiction of fire and other gaseous
phenomena using diffusion processes. Proceedings of SIG-
GRAPH, pages 129–136, August 1995.

[23] L. Westover. Footprint evaluation for volume rendering. Pro-
ceedings of SIGGRAPH, pages 367–376, August 1990.

