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Abstract
Integrating semantic features into parse trees is an active research topic in open-domain natural
language processing (NLP). We study six different parse tree structures enriched with various
semantic features for determining entity relations in clinical notes using a tree kernel-based
relation extraction system. We used the relation extraction task definition and the dataset
from the popular 2010 i2b2/VA challenge for our evaluation. We found that the parse tree
structure enriched with entity type suffixes resulted in the highest F1 score of 0.7725 and was
the fastest. In terms of reducing the number of feature vectors in trained models, the entity
type feature was most effective among the semantic features while adding semantic feature node
was better than adding feature suffixes to the labels. Our study demonstrates that parse tree
enhancements with semantic features are effective for clinical relation extraction.

Keywords: relation extraction, clinical text, natural language processing, support vector machine,

convolution tree kernel

1 Introduction

According to the Office of the National Coordinator for Health Information Technology (ONC),
the US has invested more than 30 billion on incentive payments to hospitals and physicians
to adopt EHRs (electronic health records) with more than 90% of the hospitals now attesting
to most functionalities in meaningful use stage 1. For example, the number of Mayo Clinic’s
clinical notes accrued between 2000 and 2010 exceeds fifty one million [15]. The clinical records
contained in these EHRs hold invaluable information for clinical decision support, effective
cohort identification for clinical trials, adverse effect detection, as well as numerous other ap-
plications in healthcare and biomedical research (Fig. 1). However, to reap the benefits of such
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big data in healthcare, the raw data must be properly converted to computable knowledge that
can support good decisions and actions for the triple aims of (1) improved quality of care, (2)
reduced costs, while (3) increasing access to care. In particular, information extraction (e.g., ex-
tracting entities and the relations between them) is critical to Big Data Analytics in the health
domain. Information extraction is a key step to converting the numerous free text clinical notes
into computable knowledge. For example, if we extracted all ”a treatment worsens a medical
problem” relations from discharge summaries and stored in a database, a physician can avoid
such treatment while planning care for a patient who experienced such event previously, or if
such negative effect is prevalent in a specific group, for example, people who are taking a certain
combination of medications, this can be interpreted as a sign of side effect of medications not
discovered in medical trials of those medications.

Figure 1: Role of information extraction in biomedical domain

In this paper, we focus on the problem of relation extraction that finds predefined relation
types between two entities in free text clinical notes. Supervised machine learning methods
have been prevalent in the recent clinical natural language processing (NLP) research. With
supervised learning methods, investigations have been focused on creating more and better
annotated data, designing better features, and improving the clinical linguistic model. Since
access to raw data and expertise to annotate data are limited, many existing methods have
focused on developing better features and classification strategies. However, a complex feature
set would not be a proper way to approach clinical notes in a big data situation, because the cost
and time of extracting features from raw data are not trivial, and errors in extracted features
propagate through the processing pipeline and can harm the relation extraction performance.
In this paper, we only use two features, entity types and parse trees generated by an English
parser. Instead of designing new features, we explored methods to integrate these two features
together by kernel composition and parse tree enrichment in clinical NLP.

2 Background

Relation extraction is the task of assigning one of many predefined relation types (e.g., Table. 1)
to a relation in a given text. Relation extraction is commonly defined as detecting and classifying
a relation between two named entities. The scope of a relation can be a sentence, a document
or a text collection. The simplest task definition is extracting relations between two named
entities appearing in a sentence together (Fig. 2-(b)) which is the definition used by the 2010
i2b2/VA Workshop on Natural Language Processing Challenges for Clinical Records [14]. The
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2010 i2b2/VA challenge defines eight positive relation types (Table 1) for pairs of entities, of
which the entity types are treatment, test, and medical problem.

Figure 2: Relation extraction examples: (a) a target sentence with annotated concepts, (b) two
“Test reveals medical problem (TeRP)” relations and a “Medical problem indicates medical
problem (PIP)” relation are extracted.

As long as there is an annotated corpus, supervised machine learning is the preferred ap-
proach to address the relation extraction task. Frequently used methods can be categorized
into two groups: feature-based and kernel-based. In open-domain NLP, feature-based meth-
ods [7, 6] dominated among earlier research which involved feature engineering as an important
step. However, feature engineering is time-consuming and requires domain knowledge. To
reduce the burden of feature engineering, kernel-based methods [16, 4, 2] were introduced to
relation extraction. Zhang et al. [17] proposed a composite kernel-based approach that utilizes
a convolution tree kernel [3] to capture complex syntactic information embedded in parse trees
and an entity kernel to use lexical and semantic information. They reported their approach
outperformed the state-of-the-art methods at the time in open-domain NLP.

The first attempt to apply supervised machine learning to clinical texts was done with
77 oncology narratives by Roberts et al. [13]. Their system utilized Support Vector Machine
(SVM) classifiers with feature vectors made of lexical, syntactic and semantic features. The
2010 i2b2/VA challenge offered a corpus of 394 training reports, 477 test reports, and 877
unannotated reports. The top two performing systems [12, 5] from the challenge were also
feature-based. In addition to features commonly used in open-domain NLP research, Rink et
al. [12] used Wikipedia links and categories as a semantic relatedness indication between the two
entities and edit distances between contextual strings to measure similarity between relations.
de Bruijn et al. [5] used clinical domain semantic features utilizing domain knowledge sources
such as the Unified Medical Language System (UMLS), manually built domain word/phrase
dictionaries, and MEDLINE abstracts. They also used word cluster prefixes produced by the
Brown clustering algorithm [1] and bootstrapped the training process with unannotated re-

Positive relation type[14] Training Test
“Treatment improves medical problem (TrIP)” 51 152
“Treatment worsens medical problem (TrWP)” 24 109
“Treatment causes medical problem (TrCP)” 184 342
“Treatment is administered for medical problem (TrAP)” 885 1732
“Treatment is not administered because of medical problem (TrNAP)” 62 112
“Test reveals medical problem (TeRP)” 993 2060
“Test conducted to investigate medical problem (TeCP)” 166 338
“Medical problem indicates medical problem (PIP)” 755 1448
Total number of examples 3120 6293

Table 1: Positive relation types of the 2010 i2b2/VA challenge and the number of training and
test samples used
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ports. The same research group that developed the latter system recently proposed a composite
kernel-based system utilizing a convolution tree kernel and showed that it outperformed their
previously top-ranked feature-based model [20].

In open-domain NLP, there has been research [17, 19, 18, 11] to integrate semantic features
into parse trees so that a convolution tree kernel can explore the compound feature space of
syntactic and semantic information. To the best of our knowledge, no prior work exists in using
parse tree enrichment methods for clinical text. In this paper, we study the effects of various
semantic features and different parse tree enrichment modes on accuracy, runtime, and model
complexity on clinical notes from the 2010 i2b2/VA challenge.

3 Methods

3.1 Overview

In our experiment, an example (a relation) is represented by the entity types (test, treatment,
or medical problem) of the two entities in a relation and a parse tree such as Fig. 3-(a). The
final goal is to classify a relation using our trained SVMs into one of the eight positive relation
types in Table 1. The most critical element in training SVMs and using them for classification
in high dimensional space is to have an efficient and accurate similarity measure between two
relations.

Our similarity measure is based on the similarity scores from two kernels: (1) the entity
kernel and (2) the convolution tree kernel. The entity kernel compares the entity types of two
relations to compute the similarity score. The convolution tree kernel searches common tree
fragments (subtrees) (e.g., Fig. 3-(b)) between two parse trees to compute the similarity score.
Then, the two similarity scores are linearly combined as the output of a composite kernel.

Our study focuses on improving the similarity measure computed by the convolution tree
kernel by enhancing the parse tree structures with semantic information such as tree portion
types and entity types. Three different tree portion types are used [18]: (1) a tree fragment
belonging to the first entity, (2) a tree fragment belonging to the second entity, and (3) a
tree fragment belonging to the connecting path between the first entity and the second entity.
A parse tree is structurally modified in two different ways using semantic information, either
inserting extra tree nodes carrying semantic information, or modifying the existing tree node
labels with semantic information.

3.2 Composite kernel

We use one of the composite kernels proposed by Zhang et al. [17]. The composite kernel, KC

is a linear combination of the normalized entity kernel KP
L and the normalized tree kernel KT

(defined below): KC(R1, R2) = αK̂P
L (R1, R2) + (1 − α)K̂T (R1, R2) where 0 < α < 1, and R1

and R2 are two relations to be compared.

3.2.1 Entity kernel: KL

KL(R1, R2) computes similarity between two relations (R1 and R2) using features of the two
entities in each relation. Our study uses only the entity type feature with KL. KL returns the
sum of the number of common features between the first entities and between the second entities
of R1 and R2. KP

L (R1, R2) is a polynomial expansion of KL of degree 2, which is (KL + 1)2.
For example, the value from KL is higher when two relations share the same entity types for
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their first entities and the second entities than when two relations share the same entity type
only for their first entities but not for the second entities.

3.2.2 Convolution tree kernel: KT

Figure 3: (a) An example parse tree (simplified from the previous example sentence used in
Fig. 2). (b) All subtrees of the NP clause, ”a herniation”, that are compared for common
subtree calculation.

We use the convolution tree kernel, KT described by Collins and Duffy [3]. KT (T1, T2)
computes the similarity between two given parse trees, T1 and T2 from the two relations’ texts.
KT computes its score based on how similar the two trees are in terms of matches between
their fragments (subtrees). Fig. 3-(b) shows what are the candidate subtrees to be considered
for the boxed tree fragment in Fig. 3-(a). It is computationally expensive to enumerate all
possible subtrees from two parse trees and compare those subtrees to find matches. To reduce
such computational burden, in principle, KT counts the number of common subtrees under
a pair of tree nodes, one each from T1 and T2 recursively. The recursive counting procedure
adds λ (0 < λ < 1) to the similarity score if the productions (node labels) at two nodes
being compared are the same and they are pre-terminals (nodes directly above the surface
word) and adds 0 if the productions at two nodes are different. Otherwise, the procedure
recursively repeats the same counting process with the child nodes where the return value is
down-weighted by λ as the recursive step goes deeper. Without down-weighting on each step
in recursive counting along the trees, the convolution tree kernel can produce a very large value
when it compares two large trees as opposed to two smaller trees even if the two smaller trees
are more similar than the two larger trees. Thus, λ is introduced to adjust the values produced
by the convolution tree kernel to be comparable regardless of the tree size.

3.3 Tree enrichment

We compared six different enriched parse tree structures (two enrichment modes X three dif-
ferent semantic features). We chose the Shortest Path-enclosed Tree (SPT) as our baseline tree
structure since it has performed the best in the experiments done in open-domain NLP [17] as
well as in clinical domain NLP [20]. SPT is a shortest path subtree that encloses two entities
in the parse tree. We then used the enriched trees as inputs to the convolution tree kernel in
place of SPTs.

We consider two modes of parse tree enrichment: (1) inserting extra nodes (insertion) [17,
19, 9], and (2) modifying existing node labels (suffixing) [18]. We use three semantic features
to label nodes in both enrichment modes: portion type, entity type, and the combination of
portion type and entity type. Portion types are encoded by three letters: “A” for the first
entity, “B” for the second , and “C” for the connecting path between the first entity and the
second. Entity types are also encoded by three letters: “e” for “test”, “r” for “treatment”, and
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“p” for “medical problem”. The combinations of portion types and entity types are encoded
by combining two letters from the above encoding letters with a hyphen. For example, “A-e”
means that the node belongs to the first entity of which type is “test”.

Fig. 4-(c) is an example of the insertion mode. In this case, we use the combination of
portion type and entity type to create labels for extra nodes we insert. “A-e” means that the
tree fragment below it belongs to the first entity of which type is “test”, and “B-p” means that
the tree fragment below it belongs to the second entity of which type is “medical problem”
Fig. 4-(b) and (d) are examples of the suffixing mode. The node labels of the tree depicted in
(b) are suffixed with portion type, and the node labels of the tree in (d) are suffixed with entity
type. Zhou and Zhu [18] proposed the suffixing mode for open-domain NLP and tested it with
the portion type but not with entity type nor with the combined feature.

Figure 4: Parse tree enrichment examples: (a) Unmodified SPT. The non-terminal node labels
are part of speech (POS) tags. (b) Portion type suffixes. POS tags are suffixed with portion
types, and (c) Insertion of portion type + entity type nodes. Two nodes labelled with “A-e”
and “B-p” are inserted. (d) Entity type suffixes. POS tags are suffixed with the entity type
labels.

3.4 Training and classification

We train eleven binary classifiers in total for each of the eight positive relation types and three
negative relation types. The positive relation types are relation types that the 2010 i2b2/VA
challenge requires to be classified. The three negative relation types are “no relationship be-
tween a treatment and a medical problem” (NTrP), “no relationship between a test and a
medical problem” (NTeP), and “no relationship between a medical problem and a medical
problem” (NPP). Since the i2b2/VA challenge data do not provide training examples for these
negative relation types, we generated negative training examples from the given entity records.
We select all possible pair combinations of entities that appear in a sentence if one entity of the
pair is a medical problem and the pair has not been identified as a positive relation instance
in the challenge data. In summary, the training procedure for a relation type is as follows: (1)
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generate negative examples, (2) obtain parse trees (SPTs) by running the Berkeley parser [10]
on the positive and the negative examples, (3) produce enriched parse trees by introducing
entity type and/or portion type to SPTs, and (4) train a SVM with examples of which features
are entity types and enriched parse trees. We use the SVM-light-TK package [8] for binary
SVM training and classification.

We used the one-versus-all strategy with eleven SVMs we trained to classify multiple class
examples. Classification of a test example is done as follows: (1) get a parse tree using the
Berkeley parser, (2) produce an enriched parse tree, (3) feed the example with entity types
and the enriched parse tree to eleven SVMs, and (4) label the example with the relation type
belonging to the SVM that produces the highest output value.

We use all relations that belong to a relation type as positive training examples and all
other instances as negative training examples for a binary classifier.

4 Results

We evaluated our results with micro-averaged F1 (defined as 2 ∗ P ∗ R/(P + R)), precision
(P), and recall (R). Test examples from the three negative relation types (NTrP, NTeP, and
NPP) were excluded from the computation of the evaluation metrics because the 2010 i2b2/VA
challenge only requires the other eight positive relation types to be classified. We used the
public “2010 Relations Challenge” dataset downloaded from the i2b2 web site. All six enriched
parse tree structures improved the F1 score, P, and R compared to the baseline SPT structure.
Among the enriched tree structures, the differences were marginal. Enrichment with entity
type suffix showed the best performance in F1 score and recall. It was the fastest in runtime
for training and test combined. Even though it resulted in 8.7% (1180) more support vectors
in its models than SPT, it finished faster than SPT because of the reduced subtree search time.

Additional nodes Suffixes
SPT Portion

type
Portion type
+ Entity type
(Fig. 4-(c))

Entity
type

Portion type
(Fig. 4-(b))

Portion
type +
Entity type

Entity type
(Fig. 4-(d))

F1 0.761 0.7709 0.7701 0.7709 0.7713 0.7704 0.7725
Precision 0.8044 0.8126 0.8115 0.8109 0.814 0.8132 0.8131
Recall 0.7221 0.7332 0.7327 0.7346 0.7329 0.7319 0.7357
# of support
vectors

13624 13608 12614 12334 15997 15781 14804

Run-time (sec) 474.99 482.37 468.39 478.42 477.42 484.78 467.9

Table 2: Performance of different parse tree structures

As shown in Table 1, TrAP, TeRP or PIP accounted for 83.3% of test examples. Thus, the
accuracy with these three classes determined the overall accuracy of each enrichment scheme.
We found that the entity type suffix tree produced the highest scores in precision (0.722), recall
(0.4233) and F1 (0.5337) for PIP class, which explains the best overall F1 score among the
seven tree structures. The F1 scores ranged from 0.8572 (SPT) to 0.8660 (entity type suffixes)
for TrAP, from 0.9404 (SPT) to 0.9430 (portion type suffixes) for TeRP, and from 0.4891 (SPT)
to 0.5337 (entity type suffixes) for PIP.

4.1 Semantic features

We tested three semantic features for tree enrichment – portion type, entity type, and the
combination of both. When we compared three tree structures in each enrichment mode, the
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trees with entity type feature resulted in the least number of support vectors in the trained
models in each enrichment mode. The entity type node tree has 9.3% fewer support vectors
than the portion node tree, and the entity type suffix tree has 7.4% fewer support vectors than
the portion suffix tree. Among the enriched parse tree structures in each enrichment mode,
enrichment with entity type produced the highest F1 score with the least number of support
vectors. The compound feature of portion type and entity type performed the worst among
the three semantic features in each enrichment mode in both F1 score and recall. The number
of support vectors is less than tree structures enriched with portion type and more than tree
structures with entity type.

4.2 Enrichment modes

We found that among the two modes of enrichment, the suffixing mode can be potentially
useful for reducing runtime. The portion suffix tree reduced runtime compared to the portion
node tree by 1%, and the entity type suffix tree reduced the runtime by 2.2% compared to the
portion node tree. This trend did not hold for the compound feature of portion type and entity
type. The runtime reduction results were small because the current implementation for node
label comparison uses a sequential character comparison resulting in longer runtime for longer
labels. With better encoding of node labels to be equal length, we expect the runtime to be
reduced further, especially in the classification time. Tree structures enriched by inserting nodes
resulted in fewer number of support vectors compared to adding suffixes in all three semantic
feature cases. For example, the entity type node tree has 20% fewer support vectors than the
entity type suffix tree.

5 Discussion

Our evaluation with six different enriched parse tree structures showed that they improve the
F1 score, precision and recall against the unmodified SPT. These results show that integrating
semantic features into parse trees can improve relation extraction performance with tree kernel-
based approaches in clinical domain NLP. For example, although the entity kernel already
incorporate entity type information, we can still improve accuracy by integrating entity type
information into the parse trees. We found it is feasible and desirable to utilize a compound
feature space of semantic features and syntactic parse trees in relation extraction through
convolution tree kernels.

Among three semantic features – portion type, entity types, and the combination of both –
entity types produced the simplest trained model with the least number of support vectors which
also can improve runtime performance. We observe that the differences in F1 scores between
all enriched tree structures were relatively small. This is specific to the dataset, because for all
of the relation types except PIP, portion type and entity type are interchangeable, because the
2010 i2b2/VA challenge specifies a relation should have a medical problem as the second entity.
Except PIP relations, all relations have a treatment or a test as their first entity and a medical
problem as their second entity. Therefore, just by knowing the entity type, the system can tell
which subtree belongs to the first entity or to the second entity without any help from portion
type. This can also explain why the compound feature of portion type and entity type produced
a slightly worse F1 score than the other two semantic features. With the i2b2 dataset, adding
portion type to entity-level features would have not added any additional information. Hence,
for a better evaluation of compound semantic feature integration, combinations of independent
or complementary semantic features would be desirable.
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We showed that tree enrichment by suffixes can reduce runtime, and we believe that the
runtime performance can be further improved by an efficient implementation for comparing
node labels. For example, since we are dealing with a limited number of distinct node labels,
we can map node labels to integer values and compare integer values instead of comparing every
characters in two strings sequentially.

The main limitation of this work is that the dataset differs from the original challenge
dataset which makes direct comparisons difficult. The original dataset was composed of clinical
documents contributed by three different organizations: Partners Healthcare, Beth Israel Dea-
coness Medical Center, and the University of Pittsburgh Medical Center. However, the currently
available data have fewer examples for training and classification because the data from the Uni-
versity of Pittsburgh Medical Center has been excluded. This is not a major flaw in the study
itself since there are still data from two organizations exhibiting inter-organization variations.
Since the tree convolution kernel compares structural similarity between parse trees that are
generated by a parser governed by grammatical rules, the system is robust to inter-organization
variations to some degree through linguistic abstraction. Although direct comparison is difficult,
the dataset is still comparable. Our tree kernel-based system with tree enrichment achieved
a higher F1 score than the two top performers [12, 5] of the 2010 i2b2/VA challenge and the
recent Zhu et al’s tree kernel-based system [20] which produced the F1 scores of 0.737, 0.731
and 0.742, respectively.

6 Conclusions

In this paper we have explored the feasibility of applying parse tree enrichment with semantic
features to relation extraction from clinical notes. We found that all six different parse tree
enrichment schemes performed better than non enriched parse tree (SPT) in F1, precision, and
recall. While we only used two features, entity types and a parse tree, the performance was
comparable to the state-of-the-art results. Since entity types are usually pre-annotated and
syntax parsing is necessary for syntactic features extraction, our approach has an advantage
over models with more features in terms of the time to extract features. With fewer features,
it also has fewer sources of error propagation that can be introduced in the feature extraction
step.
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