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Abstract

Recently, deep learning visualization gained a lot
of attentions for understanding deep neural net-
works. However, there is a missing focus on the
visualization of deep model training process. To
bridge the gap, in this paper, we firstly define a
discriminability metric to evaluate neuron evo-
lution and a density metric to investigate output
feature maps. Based on these metrics, a level-of-
detail visual analytics framework is proposed to
locally and globally inspect the evolution of deep
neural networks. Finally, we demonstrate the ef-
fectiveness of our system with two real world
case studies.

1. Introduction

With the explosive development of deep learning tech-
niques (Krizhevsky et al., 2012; Simonyan & Zisserman,
2014), deep learning visualization, an effective way to un-
derstand deep neural networks, is conceived as a significant
research area. There have been efforts promoting the com-
prehension of deep neural networks, not only from deep
learning community but also from visual analytics com-
munity. The former focuses on designing optimization
based methods to visualize neuron learned features such
as NLP, speech features (Karpathy et al., 2015; Bahdanau
et al., 2014) and vision features (Zeiler & Fergus, 2014;
Simonyan et al., 2013; Krizhevsky et al., 2012) while the
latter seeks to incorporate visual analytics techniques to re-
veal neuron weight connections (Liu et al., 2016; Smilkov
et al.; Harley, 2015) and hidden state patterns (Strobelt
et al., 2016; Kahng et al., 2017).

However, the visualization of network training process, as
an indispensable way to monitor the network evolution, has
been largely overlooked by previous works. By examining
the drawbacks of current works, we discover three impor-
tant yet unfathomed aspects:
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1) Monitoring neural network evolution: Understanding
and visualizing how a deep neural network evolves can pro-
vide tremendous insights on how it works.

2) Rigorous quantitative evaluation: An effective assess-
ment and monitoring requires quantitative metrics that can
accurately evaluate the neural network training phase.

3) Expanding theoretical insights: Theoretical insights
into deep learning techniques (e.g. batch normalization)
and phenomena (e.g. overfitting) are required due to their
significance to deep model design and refinement.

In this work, we investigate and fill these gaps by propos-
ing Deep View (DV), a scalable level-of-detail visualization
system for deep learning visualization. DV is leveraged by
two quantitative metrics, discriminability and density for
layer and neuron evaluation. Based on that, we uncover
the evolution of deep neural networks w.r.t. three granular-
ities, network (macroscopic), layer (mesoscopic) and neu-
ron (microscopic).

The rest of this paper is structured as follows: Section 2
presents our proposed methodology. Section 3 describes
the visualization framework. Two real world case studies
are examined in Section 4. Finally, the paper is concluded
in Section 5 with a brief discussion.

2. Methodology

In this section, we propose two metrics, discriminability
and density, to quantitatively evaluate neurons and layers.

2.1. Discriminability Metric

In deep learning, loss function is a frequently-used metric
for the class-wise discriminability evaluation of final layer
neurons. As for inner layer neurons, due to lack of ground
truth for specific classes or visual concepts, it is quite chal-
lenging to quantitatively evaluate them. However, we ob-
serve that in most cases, neurons start from a random even
distribution and converge to a specific distribution steadily.
This process inspires us to devise a distribution distance
based metric to describe inner layer neuron discriminabil-
ity. Specifically, for a neuron n,, we take average of all the
class pair distance as its discriminability:
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m—1
D(n,) = avg Z dist (92?,92?’) (1)

ci,cj=0

where (c;, ¢;) is a class pair, m is the number of class, and
0.7 is the activation distribution of neuron n,, over class c;.
In terms of computation, 6.7 is approximated from average
activation samples Og” € RW*"X#¢  where w and h are
the feature map width and height, and #c; is the number of
input images for class c;.

As seen from Formula (1), discriminability heavily re-
lies on the distance metric. Among multifarious candi-
dates, most divergence based metrics (e.g. KL-divergence,
Jensen-Shannon divergence and Hellinger distance) are in-
eligible, since they fail when two distributions have no
overlap. Inspired from Arjovsky et al. (2017), 2"¢ Wasser-
stein distance, a.k.a earth mover’s distance fits well here:

where oy, and (3, are p*" distribution samples.

2.2. Density Metric

In CNN structure, rectified linear unit (ReLU) activation,
usually succeeding each convolutional (CONV) layer, cuts
negative values and preserves positive values to achieve
representation sparseness. Nonetheless, too dense or sparse
output indicates pathological deep model training. There-
fore, we define the denseness of positive activations for a
neuron as density. Given neuron n,, density is formulated
as:

DN (n,) =avg [g| avg (O") (2)

axis=w,h

where O™ € R@*h*xZ75" ¢ s neuron n,’s activation.
g () is activation mapping function that sets negative val-
ues to zero, positive values larger than one to one, and re-
serves remaining values.

Density directly reveals neuron learning condition and as-
sists to detect potential training problems. For instance,
overfitting, a common symptom in deep learning, can only
be diagnosed based on loss curves. With density metric, in-
stead of waiting for overfitting to happen in the final layer,
we can “infer” it by observing neuron density in early train-
ing phase.

3. Deep View Visualizations

In this section, we introduce DV system in three gran-
ularities:  macroscopic, mesoscopic and microscopic
scales. Specifically, the user first obtains general network

overviews in macroscopic scale. Then for interested lay-
ers, layer visualization displays neuron evolutions with av-
erage features in mesoscopic scale. To detailedly analyze a
specific neuron, multifaceted features are shown in micro-
scopic scale.

3.1. Macroscopic Scale: Network Overview

Network overview summarizes the evolution of layers
along with training epochs using heatmaps. In Fig. 1(a),
each row represents one layer over different training epochs
and each column represents one epoch over different lay-
ers. The color scheme encodes discriminability or density
levels. Since one layer consists of many neurons, layer dis-
criminability and density could be obtained by averaging
those of neurons’. For the final layer, we provide loss func-
tion, top 1 or 5 training/validation errors.

3.2. Mesoscopic Scale: Layer Visualization

Besides high level network overview exploration, a specific
layer is indispensable for detailed analysis. Layer visual-
ization provides an opportunity to understand layer-wise
neurons in terms of neuron overview (discriminability or
density) and neuron learned features.
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Fig. 1. (a): Discriminability overview of shallow. (b): Layerl
discriminability overview of Shallow. Only exceptional neurons
are shown using red lines.
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3.2.1. LAYER OVERVIEW

To visualize neuron evolution of a specific layer, an el-
egant design: heatmap embedded with line chart is pro-
posed, where heatmap shows neuron overview and lines
show neuron evolution over epochs. In Fig. 1(b), x axis
indicates epochs and y axis indicates discriminability lev-
els. The layer overview panel is discretized into buckets
(e.g. 45 epochs x 20 levels). In the heatmap, with epoch
(column-wise) normalization, we denote the percentage of
neurons in each bucket by grid opacity. The darker a grid
is, the higher percentage it represents. In the line chart,
each line presents one neuron evolution. When the number
of neurons becomes large, only exceptional ones are shown
using red lines to avoid visual clutter.

3.2.2. LAYER FEATURE

The general overview access of the neurons in one layer
is helpful, however, the corresponding learned features of
neurons are completely abandoned. To remedy this, we
employ receptive field (RF) based neuron feature extrac-
tion method (Girshick et al., 2014), where top k activated
patches are extracted for each neuron. However, there are
two challenges entangling feature visualization: 1) the im-
possibility of visualizing all neurons, 2) the difficulty of
exploring all facets, even for a single neuron.

For the first challenge, we solve it through neuron cluster-
ing. The distribution distance of class-wise neuron pair is
exploited, where the distance of neuron pair (1, ng) is de-
fined as:

m—1

Ndis(npunq) = Z W2 (QZPVHZQ) (3)
=0

With neuron distance matrix obtained from Formula (3),
we adopt agglomerative clustering and multidimensional
scaling (MDS) to hierarchically cluster and project neurons
into 2D space. By default, we set the number of clusters
five, and the user could change it dynamically.

For the second challenge, an elegant solution is average im-
age explorer (Zhu et al., 2014), which effectively extracts
informative patterns and filters irrelevant noise. Clear av-
erage image shows well-regulated features and indicates a
pure neuron with good quality, while messy average im-
age shows chaotic patterns and indicates an impure neu-
ron with bad quality. Hence, we apply this weighted av-
erage methodology to hierarchical neuron feature explo-
ration. Specifically, for a neuron, we treat the activation
level as weight and average over top ko (kg = 20) fea-
tures to represent the highest activated pattern. For a neu-
ron cluster, we treat the inverse of distance from neuron to
the cluster center as weight and average the corresponding
average features of k; (k; = 4) nearest neurons.

The integration of MDS, agglomerative clustering and
weighted average image techniques offers us a clear view
of layer-wise neuron feature visualization (Fig. 2(a)). The
color of nodes encodes clustering groups and center node
radius encodes the size of a cluster. For each neuron clus-
ter, the average image neuron cluster is the single image at-
tached to the cluster center inside the black rectangle. For
each neuron inside a cluster, the neuron average image is
shown in the leftmost red column followed by top 5 high-
est activated patterns.

3.3. Microscopic Scale: Neuron Multifaceted Feature
Visualization

When considering neuron learned feature, most attentions
are paid to the highest activated feature. As a matter of
fact, a neuron learns multifaceted feature patterns (Nguyen
et al., 2016), among which is the highest activated feature.
As deep neural networks are highly nonlinear with com-
plex weight connections, these multiple aspects all play
key roles for neuron understanding and deserve equal at-
tentions. Unfortunately, previous works do not realize it,
thus leading to a biased and incomplete view of neurons.

Similar to (Nguyen et al., 2016), we apply K-means, t-
SNE (Maaten & Hinton, 2008) and image weighted aver-
age methods to uncover multifaceted features. The proce-
dure analogizes and extends layer feature visualization in
Section 3.2.2. Firstly, a range of features (e.g. top 1000
highest activated features) are extracted and clustered into
groups. Secondly, the clusters and centroids are projected
into 2D space using t-SNE. Lastly, for each feature cluster,
20 nearest images are weighted averaged for representa-
tion. As shown in Fig. 2(b), each node with average fea-
ture represents one feature facet. Currently, the limitation
lies in that it is hard to detect the number of multifaceted
features. Unsupervised clustering is a good direction, how-
ever, tuning hyper-parameter (e.g. leaf size in DBSCAN)
is miserable. So we simply use K-means with 10 clusters
by default. The user could change it based on preferences.
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Fig. 2. (a): Layerl neuron features of shallow. (b): Multifaceted
feature visualization of 4'" neuron in shallow layerl.
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Fig. 3. The interface of our DV system for lenet visualization. Network discriminability overview (a), is encoded using heatmap across
layers (y axis) and epochs (x axis). After selecting a specific layer (layerl), the discriminability overview (b) is shown as a heatmap
embedded with line chart. Each line represents one neuron discriminability evolution and exceptional (good or bad) neurons are indicated
using red lines. Besides, layer] neuron features (c) are clustered and projected into 2D space to preserve similarity. Here, a weighted
average feature method is used to enable hierarchical neuron cluster feature exploration. Multifaceted features of the 1% neuron (d) in
layer1 These features are obtained through the cluster of feature collections and presented using weighted average image to summarize
main patterns. They are projected into 2D space for locality preservation.

4. Case Study

To demonstrate the effectiveness of DV system, we per-
formed case studies with two domain experts (co-authors)
from university research labs. The first case study (Section
4.1) shows our system can promote deep neural network
comprehension, reveal potential underfitting/overfitting
and refine network structure. The second case study (Sec-
tion 4.2) manifests that DV advances the understanding of
state-of-the-art deep learning techniques.

For the ease of evaluation, we employ CIFARI10
(Krizhevsky & Hinton, 2009), a small but difficult dataset.
During case study, they experienced DV with various deep
neural networks. For reference, Fig. 4 shows related net-
work structures during exploration.

shallow [ Convs-16 | [ Pool3 | [ Convs-20 | [ Pool | [ Convs-20 | [ Poois | [ Conva-10 ]74.91%

tenet [ Gonvs-32 | [ Pooia | [ Gonvs-a2 | [ Pool3 | [ Convs-64 | [ Pooia | [ Gonva-64 | [ Convi-10 | 80.24%

Lenetw [ Convs-256 | [ Pools | [ Convs-256 | [convs-512] [ Conva-512 | [ Convi-10 | 77.80%
Lenet-w-bn [ Gonvs-256 | [conezsean | [convs-512 [ Conva-512 | [ Convi-10 | 82.40%
Lenet-sig1 [Gonvs-32-sig \ Convs-32 \\ Convs-64 \\ Conva-64 || Convi-10 | 74.57%
Lenet-sig | Gonv5-32 | [ Pool3 | [ Convs-32 | [ Pool3 | [ Convs-64 | [ Poois | [ Conva-64-sig | Convi-10 | 80.07%
Lenetsiga-8N| Convs-32 \\ Convs-32 \\ Conv5-64 \ [come-sa-san ][ Convi-10 | 82.36%

NIN - |[Conv5-192 | [Convi-160] [ Convi-96]

Fig. 4. Network structures and their corresponding accuracies.

x2 [Conva-192] [Conv1-192] [Convi-10] 89.16%

4.1. Case Study 1: Network Diagnosis and Refinement

Expert A (E 4), as a third year Ph.D. student, his research
interest is data mining and general machine learning. He

acts more like a deep model practitioner focusing on task
specific networks. Recently, he designed attention based
models for location prediction. He would like to utilize our
system to compare baseline deep models for understanding
inner strategies and pursuing better performances.

4.1.1. UNDERSTANDING BASELINE NETWORK

Adopting lenet (LeCun et al., 1998) as baseline, /4 de-
signed shallow network (Fig. 4) with fewer layers and neu-
rons, to see the influence of deeper and wider structure.

Results of shallow’s are shown in Fig. 1 and Fig. 2, and
those of lenet are shown in Fig. 3. After examining the
discriminability overviews in Fig. 1(a) and Fig. 3(a), he
found that both networks have a gradually increasing trend,
however discriminability in shallow was not as stable as
lenet. What is more, he noticed that layers in Fig. 1(a) (A)
block had a decreasing discriminability trend after the 30"
epoch. This was consistent with the training setting that
he lowered down the learning rate after 30" epoch for fine
tuning. From Fig. 3(b) and Fig. 1(b), E 4 also observed
that better quality neurons in lenet. All these visualizations
prove lenet’s superiority over shallow.

Width factor: For a specific layer, F4 inspected neuron
and neuron cluster learned features from lenet and shallow
in Fig. 3(c) and Fig. 2(a). From observations, he knew
that for layerl, lenet and shallow learned the same type of
features. However, careful scrutiny reveals that lenet em-
ploying more diverse features, indicating shallow network
was under fitting.
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Additionally, £'4 focused on neuron multifaceted feature
visualization for detailed analysis. He found two neurons,
1% neuron in layerl of lenet and 4*" neuron in layerl of
shallow, having similar feature facets. The corresponding
multifaceted features are visualized in Fig. 3(d) and Fig.
2(b) respectively. Both neurons mainly detected same fea-
tures: light blue edges and dark blue edges. This thorough
analysis indicated that in those networks, layerl neurons
learned very similar things. On account of fewer neurons,
shallow underfits.

Depth factor: In Fig. 5(a) and 5(A), through comparing fi-
nal layer features, E/ 4 noticed lenet’s cat, dog and bird neu-
ron average features are clearer than those of shallow. This
is obvious, since in shallow, the 15t, 274 and 37% features
of cat neuron were dogs and the 4 feature of dog neuron
was horse. Although bird neuron seems pure (all the top
5 are birds), further scrutiny on multifaceted features (Fig.
5(b)) reveals that it mostly concentrates on the discrimina-
tive part of bird without fully considering the background.
This leads to a motley average feature background. In view
of this, /4 concluded that network depth (capturing higher
level features) is one major advantage of lenet.

s + L12, E45; Neuron Pro]echon oo - L10, E45; Neuron Projection
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Fig. 5. (a) and (A): Final layer neuron features of lenet and shal-
low. Cat, dog and bird neurons are shown with their average fea-
ture and top 5 highest activated features. (b) and (B): Bird neuron
multifaceted features of lenet and shallow. Three facet average
features are shown in rectangles.

4.1.2. DIAGNOSING DEEP AND WIDE NETWORKS

After visualizing simple networks, lenet and shallow, E 4
attempted much deeper and wider networks, namely lenet-
d and lenet-w (shown in Fig. 4).

Wider network lenet-w: From Fig. 6, E 4 observed a
mild discriminability degeneration after 15 epoch (a), and
learned too sparse representations (b). It is known, sparse
representation is beneficial since it reduces noise and out-
liers, but too sparse is not a good signal.
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Fig. 6. The overviews of lenet-w discriminability (a) and density
(b). The digits are density values.

E 4 concluded by a conjecture that: lenef-w is prone to
overfit. His reasons come from: 1) Neurons sparseness:
layer evolution overview shows layerd (CONV, Fig. 7(a))
and layer5 (ReLU, 7(b)) neurons having very minor dis-
criminability. 2) Scant feature diversity: neuron learned
features of layer5 (Fig. 7(c)) shows that dominant cluster
(C1) was composed of dead neurons and remaining neuron
clusters learned the same feature: colorful background with
bars inside. In fact, lenet-w overfitted after 40" epoch and
achieved only 77.8% accuracy, verifying ' 4’s conclusion.

Layer4: conv © >

e +(2)

Fig. 7. (a) and (b): Layer4 (CONV) and layer5 (ReLU) discrim-
inability evolution overviews of lenet-w. Most neurons keep
steady (dead). (c): Layer5 (CONV) neuron learned features. C1
is the dead neuron cluster.

Deep network lenet-d: From Fig. 8(a), £, found that
layers in red block suffered from unstable optimization.

For lenet-d, in network discriminability overview (Fig.
8(a)), /4 found that layers in red block suffered from
unstable optimization. The reason might be vanish-
ing/explosive gradient problem accompanying deep struc-
ture. From Fig. 8(b), he noticed that most CONV (with ar-
rows) and ReLU layers learned dense representations (large
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density). These dense representation is undesirable owing
to the sensitivity to noise and tendency towards overfitting.

After training terminated, E4 checked lenet-d layer
overview and learned features to see what happened in-
side the network. He discovered the inner layer (from 27"
epoch to 33" epoch) discriminability stayed unchanged,
showing a terrible evolution direction (Fig. 8(c)). Besides,
from Fig. 10, he observed the neurons had already learned
to detect class-wise concepts (truck/car and ship/dog). It
seems that the network was premature (learning complex
features early), i.e. former layers being high level enough
and latter layers being unnecessary, adding model com-
plexity and risking of overfitting. After that, to further
check neuron quality, he looked into neuron multifaceted
features in Fig. 11, where he found there are many pure
facets other than highest activated patterns. From this, E' 4
made for sure that lenet-d was premature. He thought be-
cause of 3 x 3 filter size, RF increased too fast and cap-
tured high level features too early. Actually, lenet-d be-
came overfitting after 28" epoch and the prediction accu-
racy was only 79.7%.
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L37:
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(e.g. better pooling strategy), so he cares more about under-
standing the mechanism underneath deep models and state
of the art methodologies.

4.2.1. BATCH NORMALIZATION UNDERSTANDING

E'p is curious about batch normalization (BN), a simple yet
effective deep learning technique. He knows BN mainly
tries to normalize CONV layer output to increase CNN per-
formance. But he is curious about why BN is so robust to
large learning rate and careless initialization. E'g adopted
our system to resolve these questions in practice.
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Fig. 8. The overviews of Lenet-d discriminability (a) and density
(b). The digits are density values.

Based on the above analysis, E/4 came to know that mod-
erate depth, width and RF size are vital to network perfor-
mance. To validate, he applied network in network (NIN)
(Lin et al., 2013) structure with self-designed 1 x 1 filter to
restrict the increase of RF. Surely, NIN exhibited increased
layers’ discriminability and moderate density.

4.2. Case Study 2: State-of-the-art Deep Learning
Techniques Understanding

Expert B (Ep), is a fourth year computer vision Ph.D. stu-
dent, focusing on video analysis for action recognition. He
is also interested in designing new deep learning techniques

L5: bnor(nD)

L6: relu

Fig. 9. Layers with exceptional discriminability patterns of lenet-
bn (a), shallow-bn (b), NIN-bn (c) and lenet-w-bn (d). (A), (B),
(C) and (D): The corresponding layer density patterns. The ar-
rows indicate increase or decreaspatterns and heatmaps colors are
encoded locally to visualize layer evolution.

Starting from simple neural networks, 'z added BN lay-
ers after every CONV layer of lenet, shallow and NIN net-
works and noted them as lenet-bn, shallow-bn and NIN-
bn networks. He first checked discriminability overviews
and found some layers presenting exceptional patterns (Fig.
9(a), (b) and (c)). Normally, most layers of a well trained
network will exhibit a general increasing trend of discrim-
inability, but these selected layers experienced initial de-
creasing trends. It is hard for Ep to explain the decline
reasons of a well-trained network.
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Afterwards, he switched back to network density overview
(Fig. 9(A), (B) and (C)) and captured that these layers’
densities had the same evolution trends as discriminabili-
ties. This means all these layers originally tried to learn
sparse representation. It is interesting since it signifies the
behavior of discriminability and density are highly consis-
tent after adding BN layers. He then conducted an exper-
iment: Since lenet-w was overfitting due to learning too
sparse representation in layer4, he added a BN layer after
layer4 to see the response. In Fig. 9(d) and (D), he no-
ticed the consistency as well. While the only difference was
that this time layer4 gradually learned well populated rep-
resentation to avoid overfitting. Considering these cases,
BN seems to motivate sparsity/density networks and avoid
overfitting through normalizing the ReLU input. As for
the confusion of neuron discriminability (Fig. 9(a), (b) and
(c)), the intuition is that the normalization and rescaling of
BN may shrink input range and fail Wasserstein distance .
After all, optimizing the network discriminability is differ-
ent from optimizing a single neuron (Bau et al., 2017).

From above analysis, E'p concluded that BN tends to
learned dense or sparse representation for better perfor-
mance. Actually, in CNNs, BN interplays closely with
ReLU. ReLU enforces the network to learn sparse repre-
sentations by cutting off negative activations. But when a
network tries to learn too sparse representations, BN would
normalize input to larger values and guide ReLU to learn
dense representations. While for the case of too dense rep-
resentation, BN would normalize ReLU input to smaller
values and learn sparse representations.

4.2.2. ACTIVATION FUNCTION UNDERSTANDING

L32, E45; Neuron Projection

Fig. 10. Neuron features of lenet-d layer32.

E'p’s another interest is activation function. Recently, he

L32, N35, E45; Multifaceted Visualization
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Fig. 11. Multifaceted feature visualization of 35" neuron in
lenet-d layer32.

noticed the activation function evolved from sigmoid to
ReLU. He hoped to adopt DV for sigmoid interpretation.

E'p trained two new networks, namely lenet-sigl and lenet-
sig4 (in Fig. 4), which replaced lenet’s 15* ReLU and 4°¢
ReLU layers with sigmoid layers respectively. From Fig. 4,
lenet-sigl seems to have a large decrease, which means the
saturation in lenet-sigl (layer4) appears much earlier than
lenet-sig4 (layerl1). However, contrasting Fig. 12(a) and
Fig. 3(a), he realized that this tiny influence really changed
network fine tuning optimization pattern. He later exam-
ined layers’ discriminability overviews and found layer10
and layerl1 were very unusual. In Fig. 12(b), layerl0

was very near to the final layer and should have strong
other than weak increasing trends. In Fig. 12(c), he no-
ticed layerl1 evolved unhealthily fast with minor increas-
ing after 3rd epoch. Since layerll was a sigmoid layer, a
neuron’s discriminability stopped increasing after becom-
ing saturated.

- (c) Layert1: sigmoid

L

Fig. 12. (a): Lenet-sig4 discriminability overview. Layers inside
the red rectangle show tiny discriminability dropping down after
30" epochs. (b) and (c): Layerl0 and layerl1 discriminability
evolutions of lenet-sig4. (B) and (C): Layer10 and layer11 dis-
criminability evolutions of lenet-sig4-bn.
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Recalling that BN could normalize data, £’z employed
BN to alleviate sigmoid saturation. He trained lenet-sig4-
bn, where a BN layer was inserted before lenet-sig4 sig-
moid layer with over 2% accuracy increase. After check-
ing layer10 and layer12 discriminability evolutions in Fig.
12(B) and (C), he found layerl0 had stronger increasing
trends, and layer12 learned steadily and became saturated
much later. This provides a good solution to solve sigmoid
saturation problem and validates the effectiveness of BN.

5. Conclusion and Discussion

In this paper, we propose, DV, a scalable visual analytics
approach, enabling deep neural network inspection in real-
time for understanding, diagnosis and refinement. Specif-
ically, two powerful quantitative metrics, discriminability
and density are devised for layer and neuron evaluation.
Weighted average based hierarchical exploration method
is designed for multifaceted neuron features visualizations.
Based on two case studies, we prove the correctness, effec-
tiveness and efficiency of our system.

The bottleneck of DV is rooted in the limitation of weighted
average image method. There are two essential aspects:
1) This method could only be applied to vision datasets,
while for NLP and speech dataset, a universal method is re-
quired for feature exploration; 2) Average image may con-
ceal some features. For example, bright colors will be neu-
tralized by dark colors when combined together. We will
investigate into these aspects as future work, and conduct
case study on other types of networks.
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