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ABSTRACT 

Our paper takes the stance that a 3D shaded display can add a 
significant amount of information to the visualization of high-
dimensional data. We believe that it makes better use of the innate 
cognitive capabilities of the human visual system which is highly 
optimized to recognize and reason with 3D shape information. As 
a first step we studied a variety of real-world datasets and con-
firmed that the extension from the traditional 2D space to 3D 
space is indeed justified – most datasets we studied had clusters 
residing in subspaces with more than two significant principal 
components. We then describe an interactive interface that allows 
users to navigate these 3D subspaces, expand the exploration to 
higher dimensionalities, and also transition among the distinct 
subspaces inhabited by different clusters in the data. 

Keywords: Multivariate data, high dimensional data, subspace 
clustering 

1 INTRODUCTION 

Does 3D really make sense for data visualization? Or, more spe-
cifically, does it make sense for visual cluster analysis, which is a 
sub-field of visualization? This principal question might be 
framed in visual perception theory. It was Hermann von Helm-
holtz, who in the 19th century performed the first modern study of 
visual perception. When von Helmholtz examined the human eye 
he concluded that they could not aid humans in the perception of 

3D shapes directly. And indeed, as was already suspected by 
Helmholtz, it was later scientifically shown [6] that human per-
ception of the 3D physical world we live in is learned during in-
fancy. During this time an unconscious inferential chain is estab-
lished which is used to transform the input coming from the eye’s 
optical system into the perception of 3D shape and relations. 
These neural circuits can not only make inferences about 3D 
shapes and topologies, they can also resolve complex patterns and 
textures. So one may ask, why not take advantage of this complex 
neural circuitry, either by ways of stereo vision or motion parallax. 
Especially the latter is an interesting concept since we can easily 
facilitate it on the computer, via interaction, without the need for 
special glasses. It is also how we perceive 3D objects further away. 
And finally, we can also use other depth and shape cues, such as 
shading, shadows, depth of field, transparency, and the like, and 
control them via interaction. 

We have begun developing an interactive framework and sys-
tem that capitalizes on these concepts. The first instantiation of 
our research gave rise to the TripAdvisorND system [10]. It pro-
vides a touchpad-like interface by which users can smoothly tilt 
the projection plane in high-dimensional space to produce multi-
variate scatterplots that best convey the data relationships under 
investigation. These dynamic scatterplots appeal to the human 
cognition of 3D textures via motion parallax. 

In our current work we have continued on this path, but now 
addressing the notion of high-dimensional shape. In this context, 
shape is the high-dimensional manifold covering a point distribu-
tion (or cluster). Our system breaks this high-dimensional mani-
fold into 3D sub-spaces which innately appeal to the human cog-
nition of 3D shape. Similar to TripAdvisorND we also provide an 
interactive interface that allows users to change their viewpoints. 
But now we break the navigation into two modes. In the first 
mode users can only explore the current 3D space, while in the 
second they can transition to adjacent 3D spaces spanned by the 
original high-dimensional space.  

             (a) 2D scatterplot                                                 (b) Shaded 3D display                                       (c) SPLOM 

 

Figure 1. 2D scatterplot vs 3D display vs SPLOM. 
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To appreciate the power of 3D, let’s consider Fig. 1 which 
compares a multivariate scatterplot (Fig. 1a) with a shaded 3D 
display (Fig. 1b), both taken from the same orientation. Points 
colored in grey are outliers. We find that the third dimension, in 
combination with the shaded display, allows users to peek around 
cluster shapes, mitigating the point overlaps that exist in the scat-
terplot projection. This already works well in a static display (giv-
en a good viewpoint) and it so alleviates the need for interaction 
to invoke motion parallax. Finally, Fig. 1c shows a 3×3 scatterplot 
matrix (SPLOM [5]) that allows users to look at all pairwise com-
binations of dimensions. While we have not formally tested this 
yet, we believe that our navigable 3D shape display might help 
users gain a better understanding of the shapes of clusters and 
their relationships, compared to the generalized scatterplot or the 
3×3 SPLOM.  

Our current system is primarily designed for cluster analysis, 
i.e., we do not assume any prior classification of the data. We 
consider each cluster a sub-space of the data. Here, a cluster is a 
set of -connected points where is the minimal distance a point 
must have to some other point in the cluster to also be part of this 
cluster. This property is not fulfilled by the k-means algorithm but 
is common in sub-space clustering. The outcome of this clustering 
is a set of sub-spaces and associated shapes, each of which has a 
certain intrinsic dimensionality (ID). The ID determines the com-
plexity of the shape display needed to visualize it.  

A classic method to discover the ID is Principal Component 
Analysis (PCA). If ID=2 then a conventional scatterplot will do. 
On the other hand, if ID=3 then a simple 3D display is sufficient. 
And finally, if ID>3 we need to allow users to transition between 
multiple 3D shapes, one for each distinct PCA vector set of three.  

In this current research, we were particularly interested in find-
ing out how appropriate the simple 3D display would be in prac-
tice. For this purpose we studied a variety of representative da-
tasets to determine the ID characteristics of the subspaces in each. 
Subspace clustering can significantly reduce the ID of the data. It 
essentially decomposes the high-dimensional data into a compo-
site of lower-dimensional independent phenomena, for which a 

3D display or a transitional display that is not overly more com-
plex might be sufficient. To find these subspaces we used the 
well-established DBSCAN clustering algorithm [4], augmented 
by a visual interface that gave us some insight into proper parame-
ter settings to reach the different clusterings quickly.  
  The outline of our paper is as follows. In Section 2 we describe 
related work. Section 3 reports on the study we conducted to gain 
insight into the ID characteristics of a selection of datasets. Sec-
tion 4 describes our sub-space visualization framework which also 
features our 3D display. Section 5 ends with conclusions and 
pointers to future work.  

2 RELATED WORK 

Subspace analysis is a rich topic and the various approaches are 
well summarized in the survey paper by Kriegel et al. [9]. While 
DBSCAN is not a sub-space clustering algorithm per-se, it can be 
used in conjunction with one, such as SUBCLU [8]. We chose 
DBSCAN because it gives clear definitions on how to join points 
into clusters of arbitrary shape. Subspace clustering can give rise 
to large collections of subspaces and methods for their efficient 
visualization and management have been proposed by various 
authors, such as Tatu et al.[14] and Yuan et al. [16]. Our research 
does not aim into this direction. Rather, users can steer a specific 
clustering and then represent each cluster as a separate sub-space 
with specific intrinsic dimensions. 

Sedlmair et al. [11] investigate the relationship of dimension 
reduction and visualization paradigm (2D and 3D scatterplots and 
SPLOMs) with regards to the ability of users to discern cluster 
separability. They find that 3D scatterplots do not provide addi-
tional benefits for the particular task they studied, but they also 
argue that 3D displays might be a good choice if the intent was to 
recognize cluster shapes. Our work has this intent, and in addition, 
our 3D display does not only allow users to interact with 3D scat-
terplots but also with 3D shapes represented as geometry.  

Other methods that have exploited dynamic transitioning of 
scatterplots include ScatterDice [3] which restricts the transitions 
to motions between two SPLOM tiles, giving rise to a dynamic 
3D point cloud projection display. Similar to our tool, the popular 
GGobi system [12], derived from the seminal concept of the 
‘Grand Tour’ [1], also employs trackball controls but it does not 
have the advanced subspace exploration facilities our trackball 
interface provides. For example, with GGobi users cannot explic-
itly travel between adjacent subspaces and navigate the space via 
a dedicated map. 

The iPCA framework of Jeong et al. [7] shows users how the 
original data dimensions contribute to both PCA space and the 
clustering. Users can interactively manipulate the contribution of 
each individual dimension and then observe the impact as transi-
ent changes in the scatterplot visualizations. We also make use of 
PCA, but we only do so for dimension reduction.   

3 DATASET STUDY ON INTRINSIC DIMENSIONALITY 

To determine whether a 3D display would suffice for visual clus-
ter analysis, we conducted a series of studies on a variety of un-
clustered datasets, ignoring any classification when available. The 
workflow of our analysis is depicted in Fig. 2. As a first step, for 
each dataset, we performed density-based spatial clustering via 
DBSCAN to obtain a set of clusters of arbitrary shape. Here, the 
tuning of the DBSCAN parameters can give rise to different num-
bers of clusters (see Section 3.1). Next, we ran Principal Compo-
nent Analysis (PCA) on each cluster and used the elbow meth-
od/scree plot to estimate their intrinsic dimensionality. We also 
compared the PCs of different clusters via the cosine similarity to 
determine if the clusters exist in the same or different subspaces. 
In the following sections we describe our study methodology in 
detail and discuss its results.    

 
 
 

 

 

 

 

 

 

 

 

 

 

 

Figure. 2. Study workflow 
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3.1 DBSCAN 

DBSCAN stands for Density-Based Spatial Clustering of Applica-
tions with Noise and is one of the most widely used and cited data 
clustering algorithms. Its key concept is to define clusters based 
on the notion of reachability. Gven two points, p and q, if the 
distance between them is less than ε and q has a sufficient number 
of neighbors within the ε distance, we say p is directly density-
reachable from q. On the other hand, p and q are density-
reachable if there exists a sequence of points 𝑝1 ,  𝑝2 ,  𝑝3  … 𝑝𝑛 
where 𝑝𝑘+1 is directly density-reachable from 𝑝𝑘 (k = 1,2,3…n-1), 
then 𝑝1 = p and  𝑝𝑛 = q. Finally, if there is a third point r from 
which both p and q are density-reachable, p and q would be densi-
ty-connected. Every point-pair inside one cluster found by 
DBSCAN must be density-connected, and if a point is density-
reachable from any point within one cluster, it also belongs to that 
cluster.  

DBSCAN requires two parameters: the neighborhood radius ε 
and the minimum number of points (minPtn) that a cluster should 
at least have. It also uses a flag to distinguish whether a point has 
already been processed or not. DBSCAN starts with an arbitrary 
yet unvisited point and finds all points that are no further than ε to 
it. If this number of points is greater than minPtn, a new cluster is 
started else the point is classified as noise. If a cluster is formed, 
all discovered points are added to the starting point’s neighbor list. 
Next, for every point in the list (note that the elements of the list 
are dynamically added), its ε-neighborhood is also retrieved. If it 
is also dense (the number of points being larger than minPtn), all 
of its ε neighbors are also added to the list. This process continues 
until no density-connected points can be further discovered. Then 
DBSCAN finds the next unvisited point and repeats this process.  

DBSCAN has many advantages over k-means clustering that is 
commonly used in visual analytics. The main advantage is that it 

retrieves high-dimensional structures defined by density and con-
nectivity and not by radial distance to a centroid. As a conse-
quence, it can find irregularly shaped clusters that are more de-
scriptive of the underlying phenomena. Further, it is also robust to 
noise, and it does not require the number of clusters as input.  

3.1.1 Visual interface for DBSCAN parameter settings 

DBSCAN is not parameter free – it requires users to choose the 
proper combination of ε and minPtn. DBSCAN is quite sensitive 
to these two parameters, but there is no general guideline on how 
to set them. And so, finding the settings that resulted in a defined 
change typically required much time consuming trial and error.  

A first solution could be to run all possible setting as a back-
ground process and survey the clusterings that result. But this can 
take a considerable amount of time for reasonably sized datasets. 
Instead, we designed two visualizations that convey some idea 
about the relationships in the data and so provide some assistance 
in choosing the parameters. 

The first of these visualizations is a distance histogram (Fig. 3a) 
which shows all pairwise distances between points. The purple 
bars are the normal histogram while the blue bars are the cumula-
tive histogram which shows the setting at which the sharpest 
changes occur. These histograms convey the distance distribution 
of the data and allow users to pick specific ε-values that will like-
ly give rise to a change in the clustering.  

The second visualization is a 2D heat map (Fig. 3b) that visual-
izes the pairwise distances over the number of neighbors that are 
within each such distance. We constructed this plot by visiting 
each point, counting the number of neighbors for each discretized 
ε-setting, and incrementing the corresponding ‘number of neigh-
bors’ bin of the plot. The plot allows users to estimate how many 
points would have a certain number of neighbors residing within a 
certain ε-distance, which can be helpful when choosing minPtn 
(and ε). In this particular example, we learn that the relationship is 
a fairly narrow curve, and so this plot saves users the considerable 
amount of time trying out minPtn-ε combinations that fall into the 
vast black areas of the plot. 

3.2 Intrinsic Dimensionality Analysis 

Following DBSCAN, we perform PCA on each discovered cluster. 
PCA uses an orthogonal transformation to find linear uncorrelated 
variables (the PCs) that describe the data. The strength of each PC 
vector – the eigenvalue – determines the amount of variation in 
the data it can explain. Normalizing these eigenvalues by the 
overall sum of eigenvalues expresses this strength in percent.  

After obtaining these normalized eigenvalues and discarding 
those with values less than 0.001 we create a scree plot – an or-
dering of the eigenvalues from largest to smallest. The intrinsic 
dimensionality can then be estimated by locating the scree plot’s 
elbow or knee – the point on the scree plot curve at which it stops 
to decrease significantly [13]. A simple metric to find this elbow 
is to draw a line from the first to the last point of the curve and 
then find the point that is farthest away from that line (see red 
circle in Fig. 4).  

 

(a) Distance histogram 

(b). Heat map describing the number of points that have a certain 
number of ε-neighbors  

 

Figure. 3. DBSCAN visualizations 
 

 
Figure. 4. Elbow method 
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While the elbow criterion provides a clear and deterministic 
way to decide the intrinsic dimensionality, we (and others [15]) 
found that often the elbow is not overly well expressed. The curve 
only slowly bends and a slight variation of the elbow metric can 
change its location drastically. Instead, it might be more appropri-
ate to also look at the percent contribution of the eigenvalues. 
While we have not formally tested this, a contribution below a 
significance value of 0.05 (5%) may not account for much varia-
tion in the visual projection display. For the cluster plotted in Fig. 
4 this would then point to an intrinsic dimensionality of 4-5.  

Finally, we also conduct a similarity analysis of the subspaces 
found for a given dataset. We compute the cosine similarity for 
each significant PC pair for the two associated subspaces, and 
their normalized sum indicates if the two clusters reside in the 
same or similar subspace, or far apart. This then has implications 
on our subspace transitioning interface.  

3.3 Results 

We studied a variety of datasets, most from the UCI Machine 
Learning Repository (http://archive.ics.uci.edu/ml/). Below we 

present three representative results from this study. For each da-
taset, we first decide the intrinsic dimensionality of the clusters 
using the scree plot and then compute their cosine similarity. 

3.3.1 Boston Housing Data 

This dataset [18] describes housing values in suburbs of Boston. It 
has 506 instances with 14 continuous attributes. We set ε equal 
0.5828 and minPtn to be 12. After running DBSCAN, we ob-
tained three clusters. Fig. 5a shows the corresponding scree plot.  

We observe that for all three clusters the amount of variance 
covered by the third PC dimension is at or above 5%, and it is at 
or above 10% for clusters 1 and 2. Only cluster 3 has a clear el-
bow at PC=3. Cluster 1 has it there as well, while cluster 2 has it 
at PC=4. Hence, a 3D display will be appropriate for all subspaces. 

Fig. 5b shows the value histogram for PC1 and the table in Fig. 
5c presents the cosine similarities between pairwise PCs. We ob-
serve that for clusters 1 and 2 the similarity of their most signifi-
cant PC, PC1, is 0.91, while for the remaining three PCs, the simi-
larity drops only slightly to 0.75, 0.56 and 0.82, respectively. On 
the other hand, PC1 for cluster 3 is quite different from the PC1 of  

                   (a) Scree plot                                                                                                                                    (b) Value histogram 

 Similarity (cluster 1 & 2) Similarity (cluster 1 & 3) Similarity (cluster 2 & 3) 

PC1 0.91 0.15 0.13 

PC2 0.75 0.48 0.67 

PC3 0.56 0.38 0.49 

PC4 0.82 0.52 0.52 
 

(c) Table: similarity between PCs 
 

Figure 5. Boston housing dataset 

  (a) Scree plot                                                                                                                  (b) Value histogram 

 

Similarity 
/ PC 

Cluster  
1 & 2 

Cluster  
1 & 3 

Cluster  
1 & 4 

Cluster  
1 & 5 

Cluster  
2 & 3 

Cluster  
2 & 4 

Cluster  
2 & 5 

Cluster  
3 & 4 

Cluster  
3 & 5 

Cluster  
4 & 5 

PC1 0.89 0.60 0.62 0.86 0.40 0.44 0.97 0.92 0.34 0.24 

PC2 0.33 0.37 0.69 0.70 0.33 0.36 0.59 0.45 0.29 0.90 

PC2 0.79 0.48 0.82 0.34 0.67 0.57 0.57 0.52 0.62 0.31 

PC4 0.32 0.63 0.65 0.56 0.56 0.74 0.55 0.74 0.56 0.52 

 (c). Table: Similarity between PCs 

 

 

 

 

 

 

 

 

 

Figure. 6. Image segmentation dataset 
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the other two clusters (0.15 and 0.13, respectively), and the re-
maining PCs also only have a similarity of about 0.5 with those of 
cluster 1 and 2. We hence conclude that (1) cluster 3 resides in a 
rather different subspace than cluster 1 and 2, and (2) the subspac-
es of cluster 1 and 2 are somewhat closer.  

3.3.2 Image Segmentation Data 

This dataset [19] is composed of feature vectors derived from 
1,200 3×3 image patches – 300 random instances each from four 
image classes (Brickface, Cement, Foliage, and Grass). The fea-
ture vectors have 19 attributes (dimensions) which are statistical 
measures of the images, such as region centroid, region pixel 
count, density, hue, and others. The third attribute ‘region-pixel-
count’ is 9 for all instances. We removed it and are left with 18 
all-numerical attributes. We set ε=0.321 and minPtn=47 and ob-
tained five clusters.  

From the scree plot shown in Fig. 6a we find that for all clus-
ters the amount of variance covered by the third PC vector is in 
the range of 10-15%, the elbow is at the 4th eigenvalue and the 5% 
significance is reached at the 4th and 5th. So again, a 3D display 
with transitioning capabilities will be helpful. – a single 2D pro-
jection will not be able to capture the variances sufficiently. 

Fig. 6b shows the value histogram for PC1 and Fig. 6c presents 
the cosine similarities between pairwise PCs. Here we observe 
that probably the most similar clusters are cluster 1 and 5 as they 
have the most consistent PC vector similarities. Other clusters 
seem quite disparate.   

3.3.3 ISDAC data 

The ISDAC dataset [17] is an atmospheric dataset fused from 
multiple sources and consists of 221 data points, each a 33-
dimensional vector composed of latitude, longitude, altitude, time 
stamp, temperature, and pressure and measurements on the cloud 
particles (cloud droplets presence, cloud particle concentration, 
etc.) and on aerosol particles (size and composition: soot, sulfate 
levels, organics, dust, sea salt, etc.). We set ε=0.7592 and 
minPtn=6 and obtained two clusters. Fig. 7 shows the results we 
obtained. We notice that at least three PCs are required to capture 
90% of the data variance. The PCs for the two clusters are quite 
different (low cosine similarity values and very different PC1 
value histograms) and hence the two clusters belong to entirely 
different subspaces.  

4 SUBSPACE VISUALIZER 

The subspace visualizer is an interactive system to support the 
exploration of the subspaces found in the analysis phase. It is able 
to visualize the data points both as dynamic scatterplots and tes-
sellated into solid shapes.  

After running DBSCAN and obtaining the cluster information, 
all data points are shown in our local subspace explorer (LSE, Fig. 
8). By default, the LSE displays the data in the coordinate space 
spanned by the three most significant PCs of the first cluster 
DBSCAN finds. The LSE has an integrated trackball interface that 
lets users transform the 3D subspace and look for interesting pat-
terns. Additional trackball interactions are provided that allow 
users to move to adjacent 3D subspaces according to the cluster’s 
PC configuration, if its intrinsic dimensionality is greater than 3.    

Our system also provides another panel – the global subspace 
explorer (GSE, Fig. 9). This display has one central view sur-
rounded by several smaller peripheral views. With the GSE the 
user can gradually transition from one subspace to another simply 
by dragging the mouse towards the desired peripheral view. The 
user can then inspect it more closely in the central display via the 
trackball functionality. For the current application, the peripheral 
views hold the subspaces of the other clusters found by DBSCAN. 

Both the LSE and the GSE display allow users to highlight the 
cluster that matches the subspace currently selected for trackball-
based exploration. Other clusters can then be either all colored in 
grey, another color, or in their assigned colors.    

                                               (a) Scree plot                                                                                               

                                           (b) Value histogram 
 

 Similarity(cluster 1 & 2) 

PC1 0.143 

PC2 0.105 

PC3 0.276 

PC4 0.305 
 

(c)  Table: Similarity between PCs. 

 
Figure 7. ISDAC dataset 

 

 
Figure. 8. Local subspace explorer. 
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A final component of our system is the subspace trail map 
(STM, Fig. 10) which shows the explored subspaces as points or 
triangles in context of the dimensions. The STM is useful to visu-
alize the (dis)similarity of the various subspaces, to log and store 
newly found views and subspaces, and also to navigate them. 

4.1 Local Subspace Explorer (LSE) 

The key idea behind the local subspace explorer is the use of a 3D 
mouse trackball system (Fig. 11). Upon a mouse click, the screen 
location of the click is mapped onto a virtual unit sphere repre-
senting the trackball. This virtual sphere encapsulates the current 
generalized 3D subspace. We call it generalized because the axes 
are not necessarily dimension vectors. From the position of the 
last mouse click and the present one we can construct a plane with 
normal vector n and also compute the rotation angle. From these 
two quantities the 33 rotation (or transformation) matrix T is 
derived (for more detail see [2]). In our case, we deal with high-
dimensional point clouds and not with 3D objects, and so we re-
quire their projection into 3D trackball space before rotating with 
T. We achieve this by post-multiplying the trackball rotation ma-
trix with the 3N projection matrix P. The first two of these vec-
tors (we call them projection plane axis (PPA) x-axis and y-axis) 
are the most two significant PCs we obtained when performing 
PCA for the first cluster. The third vector is the third most signifi-
cant PC vector. This represents the PPA z-axis. Multiplying all 
these matrices generates the compound matrix M.  

 

 
There are three interactions one can perform with the LSE. We 

provide three types of operations all controlled with different 
mouse buttons depressed, described as follows.  

4.1.1 Explore a generalized 3D subspace. 

This is the basic interaction performed by moving the mouse and 
the left mouse button depressed. The user ‘grabs’ on to the track-
ball and rotates the generalized 3D subspace via the compound 
projection matrix M as described above.    

4.1.2 Chase clusters in adjacent 3D subspaces. 

One of the advantages of the dynamic display is that it allows one 
to quickly change the influence that a dimension has on the pro-
jection of the point cloud. Tilting the projection plane more into 
the dimension axis will spread the points along this dimension and 
so expose possible gaps between clusters or cluster components. 
An example to illustrate this concept is shown in Fig. 12. In the 
basic trackball interaction users may discover such an opportunity 
but it might be out of reach with the current generalized 3D sub-
space. In this case, with our interface, the user would let go of the 
left mouse button and instead press the right mouse button and 
move the mouse in the direction of this dimension’s projection, as 
indicated by a text string at the trackball’s periphery. The further 
the mouse is moved the more the projection plane is tilted into the 
dimension’s axis vector. Conversely, moving backwards along 
that direction, towards the center of the trackball, will decrease the 
influence of this dimension.   

4.1.3 Go deeper into higher-dimensional space 

A click on the middle mouse button will update the PPA z-axis to 
one of the less significant PCs, in order. Or users can also choose 
to let the system randomly generate one PPA z-axis. For the latter 
situation, based on the current PPA-x and PPA-y vectors – the 
first two rows in the compound matrix M – a new orthogonal 
vector is computed using Gram-Schmidt orthogonalization. This 
operation essentially moves the local 3D generalized subspace 
deeper into the high-dimensional universe.  

Figure. 9. Global subspace explorer. 

 

 

    (a) Triangle representation                       (b) Point representation 

Figure 10. Subspace trail map. 

 

Figure. 11. 3D trackball concept.  

 

Figure. 12. Chase clusters.  
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4.1.4 3D Shape visualizer 

The shape visualizer first tessellates each cluster’s point cloud 
into a polygonal hull [2] and then displays it as a 3D geometric 
solid (Fig. 13). A light source is enabled and each solid is lit and 
shaded such that its shape can be visually well appreciated. The 
same coloring rules as for the points display are enabled also for 
the shape display. For example, in Fig. 13 the cluster native to the 
current subspace is highlighted in red. Highlighting the shape 
reminds users that this cluster is the one whose extent is most 
accurately represented by this subspace – all others have distribu-
tion extents that are possibly not or only partially covered in the 
current PCA axis configuration. 

The surfaces of the solids are rendered semi-transparently such 
that the user is still able to see the data points in their interior. 
Finally, when the trackball is moved, the 3D shapes also move, 
allowing the user to gain a deeper understanding about the shapes 
of the clusters and their spatial relationships.    

4.2 Global Subspace Explorer (GSE) 

The core part of the GSE is the lens-shaped display in the center. 
It is surrounded by smaller peripheral lens-shaped displays which 
hold what we call the key views. Double-clicking on the center 
display pops-up the LSE which is the trackball. The number of 
small views is the same as the number of clusters. Each small 
view represents one cluster and its 3D vectors are this cluster’s 
three major PCs. One can change the central view by either drag 
and drop one of the peripheral views or by view interpolation. 
Interpolation can be useful to discover interesting subspaces be-
tween these views.  

4.3 Subspace Trail Map 

To keep track of the history of subspaces explored so far we pro-
vide what we call the ‘subspace trail map’. It maps the three sub-
space axis vectors into a circle in which the nodes representing the 
N dimensions are equally spaced on its perimeter. For each sub-
space, the vectors can either be drawn as a triangle (see Fig. 10a) 
or they can be averaged into a point (as seen in Fig. 10b) by 
switching between the top left ‘○’ or ‘△’ icons. The latter dis-

play leads to less clutter and gives a better overview. The trail 
map is updated as the subspaces are changed so users can gain a 
bird’s eye view on their voyage through high-dimensional space.   
    Every time when we obtain the subspaces for all clusters, we 
take the first three major PCs, do the above computation and map 
the subspace into the trail map. This is also done when the track-
ball moves. 

5 CONCLUSIONS 

We believe that a 3D shaded display can add a significant amount 
of information to the visualization of high-dimensional clusters, 
and that it allows users to gain better insight into higher dimen-
sional relationships in the data. This is because a 3D shaded dis-
play makes better use of the innate human capability to recognize 
and reason with 3D information. Our study of a variety of real-
world datasets showed that the extension from the traditional 2D 
space to 3D space is indeed justified – most datasets we studied 
had clusters residing in subspaces with more than two significant 
principal components. With this justification in hand, we designed 
an interactive interface that allows users to navigate these 3D 
subspaces, expand the exploration to higher dimensionalities, and 
also transition among the distinct subspaces inhabited by different 
clusters in the data.  

For the future, we like to enhance our tessellation and graphics 
engine. Currently, the solid enveloping the point cloud of a cluster 
has a rather low resolution and is convex. We would like to refine 
the tessellation routine such it can better reproduce fine detail and 
also capture concave shapes and concavities within a shape. Fur-
ther capabilities we would like to add is the ability to intersect 
(partially) overlapping solids and render hierarchical representa-
tions in which subdividing clusters are rendered within the solid 
of its parent cluster. 

Another rendering paradigm, alternative to the current polygo-
nal graphics, is volume rendering. It would enable a better rendi-
tion of the appearance properties of the point cloud, such as skew, 
varying density, and outliers. Each point could be represented as a 
radial basis function and rendering complexity could be handled 
by a level of detail solution as well as GPU-acceleration. If this 
proofs too slow for practical application, then texturing the sur-
face with projections of the point cloud could be another feasible 
solution, invoking concepts from image-based rendering.  

Finally, we would like to expand our study of datasets and also 
conduct extensive user studies to refine our interface and test its 
application scope and relevance.   
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