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Abstract Deep learning has shown great promise for CT image re-
construction, in particular to enable low dose imaging and integrated
diagnostics. These merits, however, stand at great odds with the low
availability of diverse image data which are needed to train these
neural networks. We propose to overcome this bottleneck via a deep
reinforcement learning (DRL) approach that is integrated with a style-
transfer (ST) methodology, where the DRL generates the anatomical
shapes and the ST synthesizes the texture detail. We show that our
method bears high promise for generating novel and anatomically
accurate high resolution CT images at large and diverse quantities.
Our approach is specifically designed to work with even small image
datasets which is desirable given the often low amount of image data
many researchers have available to them.

1 Introduction

One of the key challenges in unlocking the full potential of
machine and deep learning in radiology is the low availability
of training datasets with high resolution images. This scarcity
in image data persists predominantly because of privacy and
ownership concerns. Likewise, publicly available annotated
high resolution image datasets are also often extremely small
due to the high cost and small number of human experts who
have the required amount of medical knowledge to undertake
the labeling task. With insufficient data available for model
training comes the inability of these networks to learn the
fine nuances of the space of possible CT images, leading
to the possible suppression of important diagnostic features
and in the worst case making these deep learning systems
vulnerable to adversarial attacks. We present an approach
that can fill this void; it can synthesize a large number of
novel and diverse images using training samples collected
from only a small number of patients.
Our method is inspired by the recent successes of Deep Rein-
forcement Learning (DRL) [1, 2] in the game environments
of Atari [3], Go and Chess [4] which all require the explo-
ration of high-dimensional configuration spaces to form a
competitive strategy from a given move. It turns out that
this is not too different from generating plausible anatomical
shapes in medical CT images. Our methodology combines
the exploratory power of Deep Q Networks [5] to optimize
the parameter search of geometrically defined anatomical or-
gan shapes, guided by medical experts via quick accept and
reject gestures. This need for feedback eventually vanishes,
as the network learns to distinguish valid from invalid CT
images.

During the generation, once the anatomical shapes for a novel
CT image have been obtained from the DRL module, we use
a style transfer module, designed for the texture learning
of component organs and tissues [6], to generate the corre-
sponding high resolution full-sized CT image. To the best of
our knowledge, our proposed approach is the first attempt to
incorporate DRL networks for the synthesis of new diverse
full-sized CT images.

2 Methods

We adopt a two-step approach for synthesizing the full-
resolution CT images. The first step consists of creating
an anatomically accurate semantic mask (SM) for the im-
age; this is the focus of this paper’s discussion. The second
step uses our existing style transfer network [6] to render
anatomically accurate texture into the different portions of
the generated SM.
As shown in Figure 1 (next page), step 1 consists of two
phases. The first phase includes data pre-processing and train-
ing of a classifier following a traditional Convolutional Neu-
ral Network architecture [7] for classifying images. The data
pre-processing stage produces the SMs of the high-resolution
CT training images; it represents the annotated segmentations
of the various anatomical features, such as organs and skeletal
structures, as a set of 2D curves which are then geometrically
parameterized as B-splines of order n for n+1 control points
{(xi, yi)}n

i=1. The control points of the anatomical features
are stored as sequences of coordinates into vectors and then
embedded into a lower dimensional space obtained via PCA.
PCA is attractive since it preserves the spatial relationships
of the SMs, has a linear inverse transform, and identifies a
reduced orthogonal basis that approximates the shape of the
SM statistical distribution well. Next, to train the classifier
sufficiently, we generate a large number (on the order of
10,000) new semantic masks by interpolating in this PCA
space and group these images into clusters via k-means. The
clusters are then manually labeled by experts as good and bad
image sets and the classifier is then trained on these clusters.
The classifier thus represents an approximation of control
points that could serve as valid semantic masks.
Phase 2 uses this trained classifier as the reward predictor
in our Reinforcement Learning Environment (RLE). DRL
networks learn by optimizing on results via a reward mech-
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Figure 1: Two-Phase box diagram for training RL agents. The pre-trained classifier in Phase 1 is used as reward predictor in Phase 2.
Segment refers to the resulting SM from agents’ actions. Preference refers to the user preference of one segment (SM) over other.

anism that derives from the rules of the environment. This
environment serves to stimulate the learning of an effective
strategy for exploring the anatomical shape space to facilitate
a diversified yet accurate image generation. Our specific
environment for DRL involves a user-feedback interface that
consists of a front-end where linear interpolations between
the semantic masks of two distinct valid SMs are corrected
by the agents of the RLE followed by the expert user marking
them as good or not. This feedback is then used to further
train the classifier/reward predictor such that it can give bet-
ter predictions of the actual rewards to the agents as they try
to correct future interpolations. Hence the agents in RLE
and the reward predictor are trained asynchronously. As the
reward predictor gets better, so do the actions of the agents
and consequently we gain more semantic masks representing
valid plausible anatomy.
Our contributions are as follows:

• We discuss a robust way of learning anatomical shapes
via their geometrical representations of B-splines and
their interpolations / samplings in PCA space.

• We define an environment where the true image space
of the anatomical shapes could be discovered without
the supporting dataset via Reinforcement Learning.

• We build a visual user-interface where users can con-
trol and guide the generation process. Once sufficiently
trained, users have the option to add the generated im-
ages to the training dataset.

2.1 General Interpolation Framework: B-Splines and
PCA Interpolation

Curvature is a central morphological feature of organs, tis-
sues, cells, and sub-cellular structures [8]. Hence we rep-
resent the curve shapes by the set of control points with

strongest curvatures between some predefined distances
across the whole curves depicting organs, skeletal structures,
etc., we shall refer to it as anatomical shapes. These control
points also integrate easily with B-spline curves to decode
them back into full curves. B-spline curves provide flexibil-
ity to represent these anatomical curves [9] since the degree
of a B-spline curve is separated from the number of con-
trol points. Hence lower degree B-spline curves can still
maintain a large number of control points and the position
of a control point would not change the shape of the whole
curve (local modification property). Since B-splines are lo-
cally adjustable and can model complex shapes with a small
number of defined points, they are an excellent choice to
model anatomical shapes with control points selected based
on strong curvatures.
Since each semantic mask (SM) is expressed as a set of
control points, we embed the training data SMs in a lower
dimensional space via Principal Component Analysis (PCA).
The PCA model is used to reconstruct the anatomical shapes
of the training dataset giving us a repository of coefficients for
eigen-vectors that make plausible anatomy for lung CT SMs.
We can then reconstruct new anatomy curves by sampling
these coefficients. Each type of anatomical shape, such as
left lung, right lung, torso, spinal cord, esophagus, and heart,
forms a dedicated subspace of SM vectors and is represented
as a multivariate Gaussian with mean (for each coefficient of
the corresponding eigen-vector) and co-variance matrix. The
set of anatomical shapes for a specific SM are interlinked
so they can be jointly used in the interpolation procedure.
In our initial implementation we represented all anatomical
shapes of the training SMs as a single vector to form a single
multivariate Gaussian. In practice, however. this approach
does not work well and fails to generate SMs with correlated
anatomical shapes.
One way to generate a novel SM is to take any two available
SMs and linearly interpolate between the two. One problem
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Figure 2: The first row shows linearly interpolated SMs for a lung CT image. The second row shows their improved counterparts from
RL agents. In the first three columns, the agents tries to make them more symmetric and remove intersections. For anatomically accurate
interpolated SMs, agents don’t make much change as seen in the fourth column. The fifth column represents the anatomical space in our
PCA for which agents have not yet been trained on and would improve with incoming user feedback

with this approach is that with small training datasets there is
not enough variety to construct an accurate PCA decomposi-
tion. leading to noise and subsequently to erroneous features
in the generated SM. Also, accurate anatomical shapes do
not occupy a perfectly linear space even in heavily reduced
dimensions and the interpolation on the eigen-vectors still
limits the number of novel anatomical shapes that can be
generated since the set of images between which the interpo-
lation is being done is small. To overcome these limitations,
we introduce the powerful mechanism of DRLs within our
environment which we describe in the next section.

2.2 User Assisted Deep Reinforcement Learning

We propose to solve the aforementioned problem with PCA
space exploration using Deep Reinforcement Learning, ob-
taining user feedback via a dedicated user interface. We ask
a user to interpolate between two generated anatomies by
moving a slider. We then present small perturbations made
by the agents in the Deep Q Learning environment to the
linear interpolation and present these to the user as alterna-
tive results. The user picks which ones are better and which
ones are worse and submits his or her feedback via the inter-
face. The submitted preferences train a CNN (Convolutional
Neural Network) based image classifier that is simultane-
ously used as a reward predictor for training the agents in the
Deep-Q Learning algorithm. Our approach of using a reward
predictor to predict rewards based on user feedback mainly
borrows from the work of Christiano et al.[10] who utilize
user feedback on video clips of game play to train a reward
predictor.
As shown in Figure 1, we pre-train the reward predictor dur-
ing the data processing stage. By modifying the parameters in
the clustering (via k-means), we can visibly alter the quality
and anatomical accuracy of the generated SMs when inter-
polating in PCA space. These groups of SMs can be used to
pre-train the reward predictor that is used in our DRL envi-
ronment where it is further fine-tuned with the help of user
feedback. The trained reward predictor on submitted user

preferences then help the agents in learning the perturbations
that need to be applied to the coefficients of eigen-vectors
representing a SM while interpolating in between any two
random SMs. Note that because of this setup once agents are
trained, they can also be used to "fix" any generated SM inter-
polated on the PCA space. With the help of user verification,
we add perfectly generated SMs in the training dataset that
are then used to interpolate more novel SMs hence expanding
the known PCA space representing valid anatomy. This helps
our SM generating interface get better with the usage by the
users.

2.3 Loss Function, Input/Output and Network Archi-
tecture of Deep-Q Agents

We follow the Deep-Q DRL algorithm used by the authors of
Atari [3]. We maintain a policy π that takes the observation
state O as input and gives an action A to be performed; π : O
−→ A. The reward predictor takes the resulting image as input
and gives a reward estimate R; r̂ : O x A −→ R. For training
our policy π we use the traditional Deep-Q loss:

yi = Es′∼ε [r̂+ γmaxa′Q(s′,a′;θi−1))
2] (1)

Li(θi) = Es,a∼ρ(·)[(yi−Q(s,a;θi))
2] (2)

where yi represents the discounted reward estimate from
iteration i and ρ(s,a) represents the distribution of all states
and actions applicable on those states. Since our states are
sequences of coefficients for representing the control points
of every organ (thereby representing the set of anatomical
shapes constituting SMs), we use a neural network using six
fully connected layers to estimate the second term; Q(s,a;θi)
in equation (2). The parameters from the previous iteration
θi−1 are held fixed when optimising the loss function Li(θi)
and are estimated via stochastic gradient descent.
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Figure 3: Some stylized CT images, generated by linear SM pair interpolation, and corrected with the RL framework.

2.4 Loss Function, Input/Output and Network Archi-
tecture of Reward Predictor

Once the agents modify the contributions of the eigen-
components, the resulting anatomical shapes are assembled
into a SM and sent to a six layer CNN with batch normal-
ization layers and relu activations [7]. The CNN classifies
the SM image in one of five or six categories indicative of
their anatomical accuracy according to which a reward is
assigned to the action of agent. The policy π interacts with
the environment to produce a set of trajectories {τ1...τ i}. A
pair of such trajectory results (SMs) are selected and are sent
to our front-end for user feedback. To fine-tune the reward
predictor further we use the cross entropy loss between the
predictions of the reward predictor and user feedback ν [10].

loss(r̂) = ∑
τ1,τ2,ν

ν(1)logP̂[τ1 � τ
2]+ν(2)logP̂[τ2 � τ

1]

(3)

where under the assumption that user’s probability of prefer-
ring a SM over other should depend exponentially on the true
total reward over the SM’s trajectory; P̂[τ1 � τ2] could be
expressed as:

P̂[τ1 � τ
2] =

exp∑ r̂(s1
t ,a

1
t )

exp∑ r̂(s1
t ,a1

t )+ exp∑ r̂(s2
t ,a2

t )
(4)

As evident from figure 1, the above two networks are trained
asynchronously. With increasing data from the user’s feed-
back, the reward predictor gets better which helps better train
the RL agents.

3 Results, Future Work and Conclusion

Figure 2 shows corrected SMs via RL agents from badly
formed counterparts which were interpolated linearly be-
tween two generated SM images. In most cases, our RL
agents are able to correct the obvious errors like the intersec-
tions between the organ curves or the sharp unnatural bends
in the boundaries of torsos, but as evident from the example
in the last column of the figure, for some badly formed SMs
the agents are unable to make better SMs. That’s because
we need more user feedback for training the reward predictor

enough to make agents respond to a wide range of generated
SMs. With more feedback that the reward predictor would
receive, the agents could be trained better for responding to
the generated SMs. Figure 3 shows stylized CT images on
corrected SMs.
For future work, we intend to modify the user-interface to
enable faster user interaction hence enabling larger feedback
collection quickly for more efficient training of the reward
predictor and the RL agents. We also plan to make the texture
learning more robust on varied SMs and not just lung CT
SMs. We also intend to extend our framework for learning
and generating pathology which should integrate well with
our two step approach. At the current time, we generate
volumes slice by slice. For better continuity across slices, we
plan to learn anatomical curves directly in 3D volumes, using
B-spline patches.
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